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Abstract

Real networks often exhibit clustering, the tendency to form relatively small groups of
nodes with high edge densities. This clustering property can cause large numbers of
small and dense subgraphs to emerge in otherwise sparse networks. Subgraph counts
are an important and commonly used source of information about the network struc-
ture and function. We study probability distributions of subgraph counts in a community
affiliation graph. This is a random graph generated as an overlay of m partly overlap-
ping independent Bernoulli random graphs (layers) G1, . . . , Gm with variable sizes and
densities. The model is parameterised by a joint distribution of layer sizes and den-
sities. When m grows linearly in the number of nodes n, the model generates sparse
random graphs with a rich statistical structure, admitting a nonvanishing clustering coef-
ficient and a power-law limiting degree distribution. In this paper we establish the normal
and α-stable approximations to the numbers of small cliques, cycles, and more general
2-connected subgraphs of a community affiliation graph.
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1. Introduction and results

Mathematical modeling of complex networks aims to explain and reproduce characteristic
properties of large real-world networks, such as power-law degree distributions and cluster-
ing. By clustering we refer to the tendency of nodes to cluster together by forming relatively
small groups with a high density of ties within a group. Locally, in the vicinity of a vertex v,
clustering can be measured by the probability that two randomly selected neighbors of v are
adjacent. The average of these probabilities defines the local clustering coefficient of a net-
work. Globally, the fraction of wedges (paths of length 2) that induce triangles defines the
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global clustering coefficient, which represents the probability that endpoints of a randomly
selected wedge (friends of a friend) are adjacent. Clearly, nonvanishing clustering coefficients
are connected to the abundance of triangles and other small and dense subgraphs. A natural and
interesting question is to trace the relation between the clustering characteristics and the fre-
quencies of various network motifs. We address this question by determining the distributional
asymptotics of motif (subgraph) counts in a particular network model (community affiliation
graph) that possesses the clustering property and a power-law degree distribution.

Another motivation for studying distributions of motif counts in complex network mod-
els comes from network science and its applications, where motif frequencies are used for
parameter estimation [1, 16] and model evaluation [8]. Moreover, motif frequencies tell of
the structure, function, and similarities of real-world networks [2, 13, 19, 20, 24]. In these
contexts, it is important to understand the variability of the empirical statistics used in the
methods. For example, the approach taken in [25, 27] was to compare empirical statistics from
various datasets to their theoretical bounds. Here the knowledge of (asymptotic) distributions
of respective motif counts facilitates statistical inference.

In the present paper we establish the normal and α-stable approximations of the numbers
of k-cliques, k-cycles, and more general 2-connected subgraphs in a sparse network model
defined by a superposition of Bernoulli random graphs [6, 28, 29].

To the best of our knowledge this is the first systematic study of an α-stable approximation
to subgraph counts in a theoretical model of a sparse affiliation network. We note that in the
network model considered, the clustering property and the power-law degree distribution, the
two basic properties of complex networks, are essential for an α-stable limit to emerge.

1.1. Network model

We start with the description of individual layers G1, . . . , Gm. Let (X, Q) be a random
vector with values in {0, 1, 2, . . . } × [0, 1], and let G = {G(x, p) : x ∈ {1, 2 . . . }, p ∈ [0, 1]} be
a family of Bernoulli random graphs independent of (X, Q). We set [x] = {1, 2, . . . , x} to be
the vertex set of G(x, p). Recall that in G(x, p) every pair of vertices {i, j} ⊂ [x] is declared
adjacent independently at random with probability p. For notational convenience we introduce
the empty graph G∅ having no vertices and set G(0, p) = G∅ for any p ∈ [0, 1]. We define the
mixture of Bernoulli random graphs G(X, Q) in a natural way: we first generate a random
vector (X, Q) and then, given the instance (X, Q), we generate a Bernoulli random graph on
X vertices with edge density Q. The individual layers G1, . . . , Gm are independent copies of
G(X, Q).

In the next step we map the vertex sets of the layers G1, . . . , Gm to the set V = {1, . . . , n}
independently and uniformly at random. The union of mapped layers represents the commu-
nity affiliation graph, which we denote by G[n,m]. More rigorously, let (X1, Q1), (X2, Q2), . . .

be a sequence of independent copies of (X, Q), and let Gi = {Gi(x, p) : x ∈N, p ∈ [0, 1]},
i = 1, 2, . . . , be independent copies of G. Given X1, . . . , Xm, let Vn,i = Vn,i(Xi), 1 ≤ i ≤ m,
be independent random subsets of [n] defined as follows. For Xi ≤ n we select Vn,i uniformly
at random from the class of subsets of [n] of size Xi. For Xi > n we set Vn,i = [n]. We write
X̃i = |Vn,i| = Xi ∧ n. Let Gn,i, 1 ≤ i ≤ m, be independent random graphs with vertex sets Vn,i

defined as follows. We obtain Gn,i by a one-to-one mapping of vertices of Gi(X̃i, Qi) to the ele-
ments of Vn,i and by retaining the adjacency relations of Gi(X̃i, Qi). We denote by En,i the edge
set of Gn,i. Finally, let G[n,m] = (V, E) be the random graph with the vertex set V = [n] and edge
set E = En,1 ∪ · · · ∪ En,m. Therefore, G[n,m] is the superposition of the layers (communities)
Gn,1, . . . , Gn,m.
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The random graph G[n,m] represents a null model of the community affiliation graph model
(AGM) introduced in [28, 29], which has attracted considerable attention in the literature. It
is worth mentioning that community memberships (i.e. the vertex sets of respective overlap-
ping communities) in the AGM [28, 29] are defined by a design that features non-negligible
overlaps, whereas the null model G[n,m] assumes that Vn,1, . . . , Vn,m are located at random
and, therefore, their overlaps are typically small. (In particular, for E X < ∞ and m = �(n) the
expected number of overlaps is linear in m as n, m → +∞. Moreover, most of the overlaps
are one-element sets.) We also mention that in the particular case where Q ≡ 1 the random
graph G[n,m] reduces to a union of randomly located cliques of variable sizes X̃1, . . . , X̃m. This
model has been studied in the literature under the name ‘passive’ random intersection graph;
see, e.g., [10].

In the parameter regime m = �(n) as m, n → +∞ the random graph G[n,m] admits a power-
law degree distribution with tunable power-law exponent, a nonvanishing global clustering
coefficient, and a tunable clustering spectrum [6]. Moreover, it admits a limiting bidegree distri-
bution with (stochastically dependent) power-law marginals, as shown in [7]. The present paper
continues the study of the random graph G[n,m] and focuses on the asymptotic distributions of
(dense) subgraph counts.

1.2. Results

Let F = (VF, EF) be a graph with vertex set VF and edge set EF . We write vF = |VF|
and eF = |EF|. We assume in what follows that F is 2-connected. That is, F is connected
and, moreover, it stays connected even if we remove any one of its vertices. We call F bal-
anced if eF/vF = max{eH/vH : H ⊂ F with eH ≥ 1}. For example, the cycle Ck and clique Kk

(where k stands for the number of vertices) are 2-connected and balanced. Let NF be the num-
ber of copies of F in G(X, Q). By a copy of F we mean a graph isomorphic to F. Denote by
σ 2

F = Var NF the variance of NF . We write σ 2
F < ∞ if the variance is finite and σ 2

F = ∞ oth-
erwise. We use the shorthand notation N∗

F :=E(NF | X, Q) = aF
(X

vF

)
QeF , where aF stands for

the number of distinct copies of F in the complete graph on vF vertices. We have, for example,

that N∗
Ck

= (X)kQk/(2k) and N∗
Kk

= (X)kQ(k
2)/k!. Here and below (x)k = x(x − 1) · · · (x − k + 1)

denotes the falling factorial. Furthermore, we have E NF =E N∗
F = aFE

((X
vF

)
QeF

)
.

In Theorems 1 and 2 and Remark 4 below we consider a sequence of random graphs
{G[n,m], n = 1, 2, . . . }, where m = mn satisfies mn = �(n) (i.e. both relations mn = O(n) and
n = O(mn) hold) as n → +∞. We often suppress the subscript n for notational simplicity.

Let NF be the number of copies of F in G[n,m]. Our first result, Theorem 1, establishes the
asymptotic normality of NF .

Theorem 1. Let m, n → +∞ and assume that m = �(n). Let F be a 2-connected graph with
vF ≥ 3 vertices. Assume that E X < ∞ and 0 < σ 2

F < ∞. Assume, in addition, that

E
(
X1+s(1−1/2eF)Qs)< ∞ for each s = 1, 2, . . . , vF − 1. (1)

Then (NF − mENF)/(σF
√

m) converges in distribution to the standard normal distribution.

Remark 1. For a balanced graph F, the finite variance condition σ 2
F < ∞ is equivalent to the

second moment condition E
(
N∗

F

)2
< ∞. In particular, we have σ 2

F < ∞ ⇔E(X2vF Q2eF ) < ∞.

Remark 2. In the special case where F is a clique on k ≥ 3 vertices (F =Kk), condition (1)
can be replaced by
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E
(
Xr−r̂/(k(k−1))Qr̂)< ∞ for each r = 2, . . . , k, (2)

where we write r̂ := (r−1
2

)+ 1. Note that the moment condition (2) can be weaker than (1) for
large k.

The proofs of Theorem 1 and Remarks 1 and 2 are presented in Section 2. Let us briefly
explain the result and conditions of Theorem 1. Let NF,i be the number of copies of F in
G(Xi, Qi), and define SF = NF,1 + · · · + NF,m. The first moment condition E X < ∞ and the
assumption m = �(n) ensure that, with high probability, X̃i = Xi, 1 ≤ i ≤ m, i.e. the layer sizes
do not need to be truncated. Next, from the fact that the typical overlap of two layers is either
empty or a single-element set, we can deduce that (for 2-connected F) the principal contri-
bution to the subgraph count NF comes from the subgraph counts NF,i of individual layers.
Therefore we have NF ≈ SF . To make this approximation rigorous we introduce conditions (1)
and (2) aimed at controlling the number of overlaps of different copies of F in G[n,m]. The com-
binatorial origin of (1) and (2) is explained in Lemmas 1–4. Finally, the asymptotic normality
of NF follows from the asymptotic normality of SF . The latter is guaranteed by the second
moment condition σ 2

F < ∞.
In the case where F is balanced and the random variable N∗

F has an infinite second moment,
we can obtain an α-stable limiting distribution for the subgraph count NF . In Theorem 2 we
assume that, for some a > 0 and 0 < α < 2, we have

P
{
N∗

F > t
}= (a + o(1))t−α as t → +∞. (3)

Let N∗
F,i =E(NF,i | Xi, Qi), 1 ≤ i ≤ m, be independent and identically distributed (i.i.d.) copies

of N∗
F , and put S∗

F = N∗
F,1 + · · · + N∗

F,m. It is well known [9, Theorem 2, §35] that the distri-

bution of m−1/α(S∗
F − Bm) converges to a stable distribution, say Gα,a, which is defined by a

and α. Here, Bm = mE N∗
F =E NF for 1 < α < 2 and Bm ≡ 0 for 0 < α < 1. For α = 1 we have

Bm = c�
α,a ln m, where the constant c�

α,a > 0 depends on a and α.
Our second result establishes an α-stable approximation to the distribution of NF .

Theorem 2. Let n, m → +∞ and assume that m = �(n). Let F be a balanced and 2-connected
graph with vF ≥ 3 vertices. Let a > 0 and 0 < α < 2. Assume that EX < ∞ and that (3) holds.
Assume, in addition, that

E
(
X1+s(1−1/αeF)Qs)< ∞ for each s = 1, . . . , vF − 1. (4)

Then (NF − Bm)/m1/α converges in distribution to Gα,a.

Remark 3. In the special case where F is a clique on k ≥ 3 vertices (F =Kk), condition (4)
can be replaced by

E
(
Xr−r̂(2/(αk(k−1)))Qr̂)< ∞ for each r = 2, . . . , k, (5)

where r̂ = (r−1
2

)+ 1.

The result of Theorem 2 is obtained by the approximations NF ≈ SF and SF ≈ S∗
F . To make

the latter approximation rigorous we apply exponential large-deviation bounds [15] combined
with Janson’s inequality [14, Theorem 2.14] to individual subgraph counts NF,i conditionally
given (Xi, Qi); see Lemma 5. (At this step we use the assumption that F is balanced.) The
α-stable limit of S∗

F is now guaranteed by condition (3) and [9, Theorem 2, §35].
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We briefly comment on the technical conditions (1), (2), (4), and (5). The mixed moments
defined there appear in our upper bounds on the expected number of overlaps of different
copies of F in G[n,m]; see Lemmas 1 and 4 and inequality (10) in the proof below. We note
that, for particular graphs F, the moment conditions (1), (2), (4), and (5) can be relaxed. For
example, in the simplest case where F =K2 such conditions are not needed at all.

Remark 4. Let F =K2. Let n, m → +∞. Assume that m = �(n) and E X < ∞.

(i) Assume that 0 < σK2 < ∞. Then (NF − mENF)/(σF
√

m) converges in distribution
to the standard normal distribution. Here, σ 2

F = Var
((X

2

)
Q
)+E

((X
2

)
Q(1 − Q)

)
< ∞

whenever E(X4Q2) < ∞.

(ii) Assume that, for some a > 0 and 0.5 < α < 2, condition (3) holds. Then (NF −
Bm)/m1/α converges in distribution to Gα,a. We note that E X < ∞ implies α > 0.5.

Let us examine Theorems 1 and 2 in the special case where the marginals X, Q of (X, Q)
are independent and P{Q > 0} > 0. We first consider Theorem 1. The finite variance condition
σ 2

F < ∞ of Theorem 1 reduces to the moment condition E X2vF < ∞. Indeed, by the sim-
ple inequality NF ≤ (X)vF , we have that E X2vF < ∞ ⇒E N2

F < ∞ ⇒ σ 2
F < ∞. On the other

hand, by the variance identity Var NF = Var N∗
F +E(Var(NF | X, Q)), we have that σ 2

F < ∞ ⇒
E
(
N∗

F

)2
< ∞, where the latter inequality (for independent X and Q) implies E X2vF < ∞.

Moreover, the moment condition E X2vF < ∞ implies (1). Therefore, Theorem 1 establishes
the asymptotic normality under the minimal second moment condition σ 2

F < ∞.
We now turn to Theorem 2. For independent X and Q condition (3) of Theorem 2 is

equivalent to the condition

P{X > t} = (b + o(1))t−γ as t → +∞, (6)

where γ = αvF and where b solves the equation a = b(aF/vF!)γ /vFE Qγ eF/vF . Note that
E X < ∞ implies γ > 1. Furthermore, the inequality vF ≤ eF (which holds for any 2-connected
F with vF ≥ 3) combined with γ > 1 implies αeF > 1. Observe that, for αeF > 1, condition (4)
reads as E X1+(vF−1)(1−1/αeF) < ∞. In view of (6), the latter expectation is finite whenever

1 + (vF − 1)

(
1 − 1

αeF

)
< γ . (7)

We have arrived at the following corollary.

Corollary 1. Let n, m → +∞ and assume that m = �(n). Let F be a 2-connected graph with
vF ≥ 3 vertices. Assume that X and Q are independent and P{Q > 0} > 0.

(i) If E X2vF < ∞ then (NF −ENF)/(σF
√

m) converges in distribution to the standard
normal distribution.

(ii) Let b > 0 and 1 < γ < 2vF. Assume that (6) holds. Assume, in addition, that F
is balanced and (7) holds, where α = γ /vF. Then (NF − Bm)/m1/α converges in
distribution to Gα,a. Here, Bm and Gα,a are the same as in Theorem 2, with
a = b(aF/vF!)γ /vFE Qγ eF/vF .

It is relevant to mention that the moment condition E X < ∞ together with the assump-
tion m = νn + o(n) for some ν > 0 (which is stronger than m = �(n)), imply the existence of
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an asymptotic degree distribution of G[n,m] as n, m → +∞. An asymptotic power-law degree
distribution is obtained if we choose an appropriate distribution for the layer type (X, Q).
Furthermore, under an additional moment condition E X3Q2 < ∞, the random graph G[n,m]
has a nonvanishing global clustering coefficient; see [6]. Therefore, Theorems 1 and 2 establish
the limit distributions of subgraph counts in a highly clustered complex network.

Finally, we discuss an important question about the relation between the community size
X and strength Q. In Theorems 1 and 2, no assumption has been made about the stochastic
dependence between the marginals X and Q of the bivariate random vector (X, Q) defining
the random graph G[n,m]. Although we can simplify the model by assuming that X and Q are
independent (as in Corollary 1), for network modeling purposes, various types of dependence
between X and Q are of interest. For example, a negative correlation between X and Q would
emphasise small strong communities and large weak communities, a pattern likely to occur in
real networks with overlapping communities. Assuming that Q is proportional to a negative
power of X, for example, Q = min{1, bX−β} for some β ≥ 0 and b > 0 (cf. [28, 29]), and
we obtain a mathematically tractable network model admitting tunable power-law degree and
bidegree distributions and a rich clustering spectrum [6, 7].

1.3. Related work

Asymptotic distributions of subgraph counts in Bernoulli random graphs is a well-
established area of research, see, e.g., [14, 23] and references therein. For a recent development
we refer to [3, 12, 17, 21, 22, 30]. A significant difference between the sparse Bernoulli ran-
dom graphs and complex networks is that the former have no or very few copies of a triangle
or a larger clique, while the latter often have abundant numbers of them. Since the global and
local clustering coefficients are expressed in terms of counts of triangles and wedges, a rig-
orous asymptotic analysis of clustering coefficients reduces to that of the triangle counts and
wedge counts. In particular, the bivariate asymptotic normality for triangle and wedge counts
in a related sparse random intersection graph was shown in [4], and related α-stable limits
were established in [5]. Another line of research pursued in [11, 16] addresses the concen-
tration of subgraph counts in G[n,m]. We also mention related work on local weak limits and
subgraph counts: the results of [18, 26] imply the linear growth in n of the numbers of small
dense subgraphs for a large class of sparse affiliation network models. Establishing the dis-
tributional asymptotics here is an interesting problem for future research. Another interesting
question is about revoking the 2-connectivity and balancedness conditions on F in Theorems 1
and 2.

The rest of the paper is organised as follows. In Section 2 we formulate and prove
Theorems 1 and 2 and Remarks 1–4. We mention that the combinatorial Lemmas 2 and 3
and inequality (17) may be of independent interest.

2. Proofs

2.1. Notation

Before the proof we introduce some notation. Let K be the complete graph with vertex
set V = [n] so that G[n,m] ⊂K. By E

∗( · ) =E(· | X, X1, . . . , Xm, Q, Q1, . . . , Qm) we denote
the conditional expectation given X, X1, . . . , Xm, Q, Q1, . . . , Qm. Given F, for any positive
sequences {an} and {bn} we write an � bn (respectively an ≺ bn) whenever, for sufficiently
large n, we have c1 ≤ an/bn ≤ c2 (respectively an ≤ c2bn), where constants 0 < c1 < c2 may
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FIGURE 1. Multigraph G�
[5,3] and overlay graph G[5,3].

FIGURE 2. Three polychromatic and two monochromatic copies of K3 in G�
[5,3].

only depend on F. For a sequence of random variables {Yn} we write Yn = oP(an) whenever
limn→∞ P{|Yn| < ε|an|} = 1 for any ε > 0; and Yn = OP(an) if, for every ε > 0, there exists a
constant cε > 0 such that limn→∞ P{|Yn| < cε|an|} > 1 − ε.

Recall that NF and NF,i denote the numbers of copies of F in G(X, Q) and G(Xi, Qi), respec-
tively. Furthermore, N∗

F =E(NF | X, Q), N∗
F,i =E(NF,i | Xi, Qi), and SF = NF,1 + · · · + NF,m,

S∗
F = N∗

F,1 + · · · + N∗
F,m. Note that N∗

F,i =E
∗(NF,i) and S∗

F =E
∗(SF). Finally, let ÑF,i be the

number of copies of F in Gn,i, and let S̃F = ÑF,1 + · · · + ÑF,m.
We can identify the indices 1 ≤ i ≤ m with colours, and assign (the edges of) each Gn,i the

colour i. The coloured graph is denoted by G�
n,i. The union of coloured graphs G�

n,1 ∪ · · · ∪
G�

n,m defines a multigraph, denoted by G�
[n,m], where parallel edges have different colours.

Furthermore, each edge u ∼ v of G[n,m] is assigned the set of colours that correspond to parallel
edges of G�

[n,m] connecting u and v.
A subgraph H ⊂ G[n,m] is called monochromatic if it is a subgraph of some Gn,i and none

of the edges of H are assigned more than one colour. Otherwise H is called polychromatic.
NF,M and NF,P stand for the numbers of monochromatic and polychromatic copies of F in
G[n,m]. A subgraph H� ⊂ G�

[n,m] is called monochromatic if it is a subgraph of some G�
n,i. It

is called polychromatic if it contains edges of different colours. Let N �
F,P be the number of

polychromatic copies of F in G�
[n,m].

Figure 1 depicts an instance of the overlay graph G[5,3] and respective multigraph
G�

[5,3] = G�
5,1 ∪ G�

5,2 ∪ G�
5,3, where G�

5,i has vertex set V5,i = {i, i + 1, i + 2} and edges labelled
(coloured) i. G�

[5,3] has three polychromatic and two monochromatic copies of K3 (Figure 2),
while G[5,3] has two polychromatic copies of K3 (induced by {1, 2, 3} and {2, 3, 4}) and one
monochromatic copy of K3 (induced by {3, 4, 5}).

Given H� = (VH� , EH� ) ⊂ G�
[n,m], let H0 ⊂K be the graph on the vertex set VH� obtained

from H� as follows: two vertices of H0 are adjacent whenever they are joined by an edge in
H�. We call H0 the projection of H�. Note that there can be several monochromatic and/or
polychromatic copies of F in G�

[n,m] sharing the same projection F0. We fix a copy F0 of F
in K and denote by hF the expected number of polychromatic copies of F in G�

[n,m] whose
projection is F0. By the symmetry of the random graph model G�

[n,m], the quantity hF does not

depend on the location of F0 in K. An expression of hF in terms of mixed moments E((X̃1)sQt
1)

is given in (11) and (12).
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2.2. Proofs

We first prove Theorems 1 and 2, and Remarks 2 and 3. Afterwards we prove Remarks 4
and 1.

We start with an outline of the proof of Theorems 1 and 2. We approximate NF ≈ S̃F and
S̃F ≈ SF . In the case where E N2

F < ∞ we deduce the normal approximation to the sum SF

(of i.i.d. random variables) by the standard central limit theorem. In the case where NF has an
infinite variance we further approximate SF ≈ S∗

F and deduce the α-stable approximation by
the generalised central limit theorem [9, Theorem 2, §35].

Approximation NF ≈ S̃F The approximation follows from the simple observation that

NF =NF,M +NF,P, NF,M ≤ S̃F ≤NF,M +N �
F,P, NF,P ≤N �

F,P. (8)

The inequalities NF,M ≤ S̃F and NF,P ≤N �
F,P are easy. To see why the inequality S̃F ≤NF,M +

N �
F,P holds true, let us inspect a pair Fi ∈ Gn,i and Fj ∈ Gn,j of copies of F = (VF, EF) that share

t := |EFi ∩ EFj | ≥ 1 edges. Note that both copies Fi and Fj contribute to the sum S̃F , and neither
contributes to the sum NF,M . In the case where t < |EF| the pair gives rise to 2 · 2t − 2 ≥ 2
polychromatic copies of F in G�

[n,m]. In the case where t = |EF| (now t ≥ 3) the pair gives

rise to 2t − 2 polychromatic copies of F in G�
[n,m]. Hence, S̃F ≤NF,M +N �

F,P. From (8) we
conclude that

|S̃F −NF| ≤N �
F,P. (9)

In order to assess the accuracy of the approximation NF ≈ S̃F we evaluate the expected
value of N �

F,P. We fix a copy of F in K, denoted F0 = (V0, E0) ⊂K, with vertex set V0 =
{1, . . . , vF}. Recall that hF denotes the expected number of polychromatic copies of F in G�

[n,m]
whose projection is F0. We have, by symmetry,

EN �
F,P =

(
n

vF

)
aFhF . (10)

Note that every polychromatic copy of F in G�
[n,m] (say, F� ⊂ G�

[n,m]) whose projection is F0 is
defined by a partition of the edge set E0 into non-empty colour classes, say, B1 ∪ · · · ∪ Br = E0,
and a vector of distinct colours (i1, . . . , ir) ∈ [m]r such that all the edges in Bj are of colour ij
(edges of Bj belong to G�

n,ij
). Denote by B̃ = (B1, . . . , Br) and ĩ = (i1, . . . , ir) the partition and

its colouring. The polychromatic subgraph F� defined by the pair (B̃, ĩ) is denoted F(B̃, ĩ). The
probability that such a subgraph is present in G�

[n,m] is

h(B̃, ĩ) := P

{
F(B̃, ĩ) ⊂ G�

[n,m]

}
=

r∏
j=1

1

(n)vj

E

(
(X̃ij)vjQ

bj
ij

)
. (11)

Here, bj := |Bj|, and vj is the number of distinct vertices incident to edges from Bj. We have

hF =E

(∑
(B̃,ĩ)

1{
F(B̃,ĩ)∈G∗

[n,m]

})=
∑
(B̃,ĩ)

h(B̃, ĩ). (12)

Here, the sum runs over all possible polychromatic copies F� of F whose projection is F0. We
upper bound the quantity on the right of (12) in Lemmas 1 and 4 below.
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Approximation S̃F ≈ SF For 1 ≤ i ≤ m we couple G(X̃i, Qi) ⊂ G(Xi, Qi) and ÑF,i ≤ NF,i so
that G(X̃i, Qi) �= G(Xi, Qi) and ÑF,i �= NF,i whenever Xi > n. For m = O(n), the event An :=
{max1≤i≤m Xi > n} has probability

P{An} ≤
m∑

i=1

P{Xi > n} ≤ m

n
E
(
X11{X1>n}

)= o(1). (13)

Hence, P{S̃F �= SF} = o(1). In (13) we used the fact that E X1 < ∞ ⇒E
(
X11{X1>n}

)= o(1).

Proof of Theorem 1 and Remark 2. By Lemma 1 (respectively, Lemma 4), we have hF =
o(n0.5−vF ). Invoking this bound in (10), we obtain N �

F,P = oP(
√

m). Next, from (9) we obtain

that (NF − S̃F) = oP(
√

m). Then, an application of (13) shows that (NF − SF) = oP(
√

m).
Finally, we apply the classical central limit theorem to the sum of i.i.d. random variables SF to
get the asymptotic normality of (NF − mENF)/(σF

√
m). �

Proof of Theorem 2 and Remark 3. By Lemma 1 (respectively, Lemma 4), we have
hF = o(n(1/α)−vF ). Using this bound and proceeding as in the proof of Theorem 1, we obtain
NF = SF + oP(m1/α). Next, from the fact that the random variables NF,1, NF,2, . . . obey the
power law (28) (see Lemma 5), we conclude that (SF − Bm)/m1/α converges in distribution to
Gα,a [9, Theorem 2, §35]. Hence, (NF − Bm)/m1/α converges in distribution to Gα,a. �

Proof of Remark 4. We have NK2 = |E | = |En,1 ∪ · · · ∪ En,m| and S̃K2 =∑n
i=1 |En,i|. By the

inclusion–exclusion principle,

0 ≤
m∑

i=1

|En,i| − |E | ≤
∑

{i,j}⊂[m]

|En,i ∩ En,j|. (14)

We write |En,i ∩ En,j| =∑
{u,v}⊂V 1{{u,v}∈En,i}1{{u,v}∈En,j} and evaluate the conditional

expectation

E
∗|En,i ∩ En,j| =

(
n

2

)
(X̃i)2Qi

(n)2

(X̃j)2Qj

(n)2
.

To prove (i), in view of the identity σ 2
K2

= Var
((X

2

)
Q
)+E

((X
2

)
Q(1 − Q)

)
we have

σ 2
K2

< ∞ ⇔E
(
X4Q2

)
< ∞. Hence, σ 2

K2
< ∞ implies ∞ >E(X4Q2) ≥ (E(X2Q))2, by

Cauchy–Schwarz. Consequently, the expected value of the quantity on the right of (14) is

E

( ∑
{i,j}⊂[m]

(
(X̃i)2Qi(X̃j)2Qj

2(n)2

))
=
(

m

2

)(
(E((X̃1)2Q1))2

2(n)2

)
= O(1).

Now, (14) implies NK2 = S̃K2 + OP(1). Next, (13) implies (NK2 − SK2 )/(σK2

√
m) = oP(1).

Finally, the asymptotic normality of (NK2 − mENK2 )/(σK2

√
m) follows by the classical

central limit theorem applied to the sum SK2 =∑
i∈[m] NK2,i.

To prove (ii), we have N∗
K2

= (X
2

)
Q. Observing that (3) implies P{X2 > t} ≥ P{N∗

K2
> t} =

(a + o(1))t−α , we obtain from the first moment condition E X < ∞ that α > 0.5.
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Let R denote the quantity on the right of (14), and put R∗ =E
∗R. We first show that

R = oP(m1/α). Note that R∗ ≤ 4m2/αn−2T2∗ , where T∗ := m−1/α
∑

i∈[m] N∗
K2,i

. Given ε ∈ (0, 1),

we have, for A = εm1/α and B = εA,

P
{
R > εm1/α

}= P{R > A} ≤ P{R > A, R∗ ≤ B} + P{R∗ > B} ≤ ε + o(1). (15)

Indeed, P{R∗ > B} ≤ P
{
4m2/αn−2T2∗ > B

}= P
{
4T2∗ > m−1/αn2ε2

}= o(1), since m−1/αn2

ε2 → +∞ for α > 0.5 and T∗ = OP(1) by (3). Furthermore, by Markov’s inequality,

P{R > A, R∗ ≤ B} =E
(
E

∗(1{R>A}1{R∗≤B})
)≤E

(
R∗

A
1{R∗≤B}

)
≤ B

A
= ε.

Clearly, (15) implies the bound R = oP(m1/α). Now, (14) implies NK2 = S̃K2 + oP(m1/α).
Next, (13) implies (NK2 − SK2 )m−1/α = oP(1). In the last step of the proof we show that
(SK2 − Bm)/m1/α converges in distribution to Gα,a using the same argument as in the proof
of Theorem 2. �

Proof of Remark 1. We have σ 2
F = Var NF = Var N∗

F +E
(

∗

F

)2, where 
∗
F := NF − N∗

F .

Therefore, σ 2
F < ∞ ⇒ Var N∗

F < ∞ ⇒E
(
N∗

F

)2
< ∞. To prove that E

(
N∗

F

)2
< ∞ ⇒ σ 2

F < ∞,

it suffices to show that E
(

∗

F

)2
< ∞. By [14, Lemma 3.5], we have E

∗(
∗
F

)2 ≺ (N∗
F

)2
/

�F(X, Q), where �F(X, Q) = minH⊂F XvH QeH . Furthermore, from the inequality in (27),
which holds for balanced F, we obtain

E
∗(
∗

F

)2 ≺
(
N∗

F

)2
min

{(
N∗

F

)2/vF , N∗
F

} = max
{(

N∗
F

)2−2/vF , N∗
F

}
≤ max

{
1,
(
N∗

F

)2}.

Hence, E
(
N∗

F

)2
< ∞ implies E

(

∗

F

)2 =E

(
E

∗(
∗
F

)2)
< ∞. �

2.3. Auxiliary lemmas

In Lemmas 1 and 4 we upper bound the quantities hF for 2-connected F and for F =Kk,
respectively. Clearly, the result of Lemma 1 applies to F =Kk as well, but the bound of
Lemma 4 is tighter for large k.

Lemma 1. Let F be a 2-connected graph with vF ≥ 3 vertices. Let n, m → +∞. Assume that
m = O(n).

(i) Assume that (1) holds. Then hF = o
(
n0.5−vF

)
.

(ii) Assume that 0 < α < 2, and that (4) holds. Then hF = o
(
n(1/α)−vF

)
.

In the proof we use the simple fact that, for any s, t, τ > 0, the moment condition
E(XsQt) < ∞ implies

E
(
( min{X, n})s+τ Qt)= o(nτ ). (16)

Write X̃ := min{X, n}. To see why (16) holds, choose 0 < δ < τ/(s + τ ) and split the
expectation:

E(X̃s+τ Qt) =E
(
X̃s+τ Qt1{X<nδ}

)+E
(
X̃s+τ Qt1{X≥nδ}

)=: I1 + I2.

https://doi.org/10.1017/jpr.2023.48 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.48


Normal and stable approximation to subgraph counts 411

The inequalities X̃ ≤ n and E(XsQt) < ∞ imply I2 ≤ nτ
E
(
XsQt1{X≥nδ}

)= nτ · o(1), and the

inequality X̃ ≤ X implies I1 ≤ nδ(s+τ ) = o(nτ ).

Proof of Lemma 1. The proofs of statements (i) and (ii) are identical. Therefore we only
prove statement (i).

We start by establishing an auxiliary inequality, (17), which may be interesting in itself. Let
r ≥ 2. Given a partition B̃ = (B1, . . . , Br) of the edge set E0 of the graph F0 = (V0, E0), and
given i ∈ [r], let Vi be the set of vertices incident to the edges from Bi. Let ρi be the number of
(connected) components of the graph Zi = (Vi, Bi), and put vi = |Vi|. We claim that

v1 + · · · + vr ≥ vF + ρ1 + · · · + ρr. (17)

To establish the claim we consider the list H1, H2, . . . , Ht of components of Z1, . . . , Zr

arranged in an arbitrary order. Here, t := ρ1 + · · · + ρr. Therefore, each graph Hi is a com-
ponent of some Zj, and their union H1 ∪ · · · ∪ Ht = Z1 ∪ · · · ∪ Zr = F0. Let us consider the
sequence of graphs H̄j := H1 ∪ · · · ∪ Hj for j = 1, . . . , t − 1. Let ρ̄j and v̄j denote the number
of components and the number of vertices of H̄j. Let v′

j denote the number of vertices of Hj.
We use the observation that

v̄j ≤ v̄j−1 + v′
j + ρ̄j − ρ̄j−1 − 1, j = 2, . . . t − 1. (18)

Indeed, ρ̄j−1 = ρ̄j means that the vertex set of (the connected graph) Hj intersects with exactly
one component of H̄j−1. Consequently, Hj and H̄j−1 have at least one common vertex and
therefore (18) holds. Similarly, ρ̄j−1 − ρ̄j = y > 0 means that the vertex set of Hj intersects
with exactly y + 1 different components of H̄j−1. Consequently, Hj and H̄j−1 have at least
y + 1 common vertices and (18) holds again. The remaining case, ρ̄j−1 − ρ̄j = −1, is realised
by the configuration where the vertex sets of Hj and H̄j−1 have no common elements. In this
case (18) follows from the identity v̄j = v̄j−1 + v′

j.
By summing the inequalities in (18), we obtain, using ρ̄1 = 1, that v̄t−1 ≤ v′

1 + · · · + v′
t−1 +

ρ̄t−1 − t + 1. Note that, given H̄t−1 with ρ̄t−1 components, the vertex set of Ht must inter-
sect with each component in two or more points in order to make the union H̄t−1 ∪ Ht = F0
2-connected. Consequently, we have v̄t ≤ v̄t−1 + v′

t − 2ρ̄t−1. Finally, we obtain vF = v̄t ≤ v′
1+ · · · + v′

t − ρ̄t−1 − t + 1. The claim follows from the identity v′
1 + · · · + v′

t = v1 + · · · + vr

and the inequality ρ̄t−1 ≥ 1.
To prove statement (i), given (B̃, ĩ), we obtain from (11) and (17) (recall the notation bj =

|Bj|) that

h(B̃, ĩ) ≤ 1

nv1+···+vr

r∏
j=1

E
(
X̃vjQbj

)≤ 1

nvF+ρ1+···+ρr

r∏
j=1

E
(
X̃vjQbj

)
.

Given B̃ = (B1, . . . , Br), we estimate the sum over all possible colourings (there are (m)r of
them):

∑
ĩ

h(B̃, ĩ) ≺ (m)r

nvF+ρ1+···+ρr

r∏
j=1

E
(
X̃vjQbj

)� n−vF

r∏
j=1

E
(
X̃vjQbj

)
nρj−1

= n0.5−vF

r∏
j=1

E
(
X̃vjQbj

)
nρj−1+(bj/(2eF))

= o
(
n0.5−vF

)
.
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In the second-last identity we used b1 + · · · + br = eF , while the last bound follows by the
chain of inequalities

n1−ρjE
(
X̃vjQbj

)≤E
(
X̃vj+1−ρjQbj

)≤E
(
X̃vj+1−ρjQvj−ρj

)
= o

(
n(vj−ρj)/(2eF))= o

(
nbj/(2eF)).

Here, in the first step we used X̃ ≤ n; in the second step we used Q ≤ 1 and bj ≥ vj − ρj

(the latter inequality is based on the observation that any graph with vj vertices and ρj compo-
nents has at least vj − ρj edges); the third step follows by (16) from the moment condition (1)
applied to s = vj − ρj; and the last step follows from the inequality bj ≥ vj − ρj.

Finally, we conclude that

hF =
∑

B̃

∑
ĩ

h(B̃, ĩ) = o
(
n0.5−vF

)
, (19)

because the number of partitions B̃ of the edge set of a given graph F is always finite. �

Before showing an upper bound for hF , F =Kk, we introduce some notation. Given an
integer b ≥ 1, let b� be the minimal number of vertices that a graph with b edges may have.
Let Hb be such a graph. It has a simple structure described below. Let kb ≥ 2 be the largest
integer satisfying b ≥ (kb

2

)
. Then b = (kb

2

)+ 
b for some integer 0 ≤ 
b ≤ kb − 1. For 
b = 0
we have b� = kb and Hb =Kb� (clique on b� = kb vertices). For 
b > 0, graph Hb is a union of
Kkb and a star K1,
b such that all the vertices of the star except for the central vertex belong
to the vertex set of Kkb . In this case, b� = kb + 1. In other words, we obtain Hb from Kkb+1
by deleting kb − 
b edges sharing a common endpoint. The next two lemmas establish useful
properties of the function b → b�.

Lemma 2. For integers s ≥ t ≥ 1,

s� + t� ≥ (s + t − 1)� + 2. (20)

Proof. We consider graphs Hs and Ht that have disjoint vertex sets so that the union Hs ∪ Ht

has s� + t� vertices.
Note that for t = 1 both sides of (20) are equal. In order to show (20) for s ≥ t ≥ 2 we

consider the chain of neighbouring pairs

(s, t) → (s + 1, t − 1) → · · · → (s + t − 1, 1). (21)

In a step (x, y) → (x + 1, y − 1) we remove an edge from Hy and add it to Hx. A simple analysis
of the step (Hx, Hy) → (Hx+1, Hy−1) shows that

(x + 1)� + (y − 1)� = x� + y� + 1 whenever 
x = 0, 
y �= 1; (22)

(x + 1)� + (y − 1)� = x� + y� − 1 whenever 
x �= 0, 
y = 1; (23)

(x + 1)� + (y − 1)� = x� + y� in the remaining cases. (24)

We call a step (x, y) → (x + 1, y − 1) positive (respectively negative or neutral) if (23)
(respectively (22) or (24)) holds. Therefore, as we move in (21) from left to right, every positive
(negative) step decreases (increases) the total number of vertices in the union Hx ∪ Hy.

Let us now traverse (21) from right to left. We observe that the first non-neutral step encoun-
tered is positive (if we encounter a non-neutral step at all). Furthermore, after a negative step
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the first non-neutral step encountered is positive. Note that it may happen that the last non-
neutral step encountered is negative. Therefore, the total number of positive steps is at least as
large as the number of negative ones. This proves (20). �

Lemma 3. Let k ≥ 3 and r ≥ 2. Let B1 ∪ · · · ∪ Br be a partition of the edge set of the clique
Kk. Write bi = |Bi|, 1 ≤ i ≤ r, and κ = (k

2

)
. Then

b�
1 + · · · + b�

r ≥ (κ − (r − 1))� + 2(r − 1) ≥ k + r.

Proof. The first inequality follows from (20) and the identity b1 + · · · + br =κ. The
second inequality is simple. Indeed, for r ≥ k the inequality follows from 2(r − 1) ≥ k +
r − 2 and (κ − (r − 1))� ≥ 2. For r ≤ k − 1 we have κ − (r − 1) ≥ (k−1

2

)+ 1 and therefore
(κ − (r − 1))� ≥ k. �

Now we are ready to bound hF for F =Kk.

Lemma 4. Let k ≥ 3, 0 < α ≤ 2, and A > 0. Let n, m → +∞. Assume that m ≤ An. Let F =Kk.
Then (5) implies the bound hF = o

(
n(1/α)−k

)
. Note that for α = 2 condition (5) is the same

as (2).

Proof. For F =Kk we have eF = (k
2

)
. We observe that (5) implies

E
(
Xb�−b/(α eF)Qb)< ∞ for each 1 ≤ b <

(
k

2

)
. (25)

Note that ŝ = (s−1
2

)+ 1 is the smallest integer t such that t� = s. In particular, for any b with
b� = s we have b ≥ ŝ. Therefore, given 2 ≤ s ≤ k, the moment condition E

(
Xs−ŝ/(α eF)Qŝ

)
< ∞

implies E
(
Xs−b/(α eF)Qb

)
< ∞ for any b satisfying b� = s. In this way, (5) yields (25).

Let us bound hKk from above. Given a partition B̃ = (B1, . . . , Br) of the edge set E0 of
Kk = ([k], E0), let vj be the number of vertices incident to the edges from Bj and let bj = |Bj|.
For any vector ĩ = (i1, . . . , ir) of distinct colours,

h(B̃, ĩ) ≤
r∏

j=1

E
(
X̃vjQbj

)
nvj

≤
r∏

j=1

E
(
X̃b�

j Qbj
)

nb�
j

≤ 1

nk+r

r∏
j=1

E
(
X̃b�

j Qbj
)
.

Here, the first inequality follows from (X̃)t/(n)t ≤ X̃t/nt, since X̃ ≤ n. The second inequality
follows from the obvious inequality b�

j ≤ vj and the fact that X̃ ≤ n. The last inequality follows
from the inequality b�

1 + · · · + b�
r ≥ k + r of Lemma 3.

For each r-partition B̃ as above we bound the sum over all possible colourings ĩ (there are
(m)r of them):

∑
ĩ

h(B̃, ĩ) ≤ (m)r

nk+r

r∏
j=1

E
(
X̃b�

j Qbj
)≤ Ar

nk

r∏
j=1

E
(
X̃b�

j Qbj
)= o(n(1/α)−k). (26)

In the very last step, with eF = b1 + · · · + br = (k
2

)
, we used the bounds E

(
X̃b�

j Qbj
)=

o
(
nbj/αeF

)
that follow from the moment conditions E

(
Xb�

j −(bj/α eF)Qbj
)
< ∞; see (25), via (16).

Finally, proceeding as in (19), we obtain the desired bound hF = o
(
n(1/α)−k

)
from (26). �
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2.4. Power-law tails

Recall that, given a graph F = (VF, EF), we denote by vF = |VF| the number of vertices and
by eF = |EF| the number of edges. Let �F = �F(n, p) = nvF peF , and define �F = �F(n, p) =
minH⊂F, eH≥1 �H , mF = maxH⊂F, eH≥1 (eH/vH). Here, the minimum/maximum is taken over
all subgraphs H ⊂ F with eH ≥ 1. Recall that F is called balanced if mF = eF/vF . For a bal-
anced F we have, for any H ⊂ F with eH ≥ 1, �H = (

npeH/vH
)vH ≥ (npeF/vF

)vH = �
vH/vF
F .

Hence,
�F ≥ min

{
�

2/vF
F , �F

}
. (27)

Lemma 5. Let a > 0 and 0 < α < 2. Assume that F is balanced, connected, and vF ≥ 2. Assume
that (3) holds. Then

P{NF > t} = (a + o(1))t−α as t → +∞. (28)

We remark that, for 0 < α < 2, the tail asymptotics (28) implies that NF belongs to the
domain of attraction of an α-stable distribution. Indeed, the left tail of NF vanishes since
P{NF ≥ 0} = 1. Therefore, the conditions of [9, Theorem 2, §35, Chapter 7] are satisfied.

Proof. With a little abuse of notation we shall denote the conditional expectation and
probability given (X, Q) by E

∗ and P
∗. Furthermore, we write k = vF and 
∗

F = NF − N∗
F .

To prove (28), we show that the contribution of 
∗
F to the sum NF = N∗

F + 
∗
F is negligible

compared to N∗
F and, therefore, the tail asymptotic (28) is determined by (3). For this purpose

we apply exponential large-deviation bounds for subgraph counts in Bernoulli random graphs
[14, 15] (for F =K2, we can apply Chernoff’s bounds).

Given large t > 0 and small ε > 0, introduce the event H= {− εN∗
F ≤ 
∗

F ≤ εt
}

and split
P{NF > t}:

P{NF > t} = P{NF > t,H} + P
{
NF > t, 
∗

F < −εN∗
F

}+ P
{
NF > t, 
∗

F > εt
}

=: P1 + P2 + P3. (29)

We first consider P1. Replacing 
∗
F by its extreme values (on H) yields the inequalities

P
{
(1 − ε)N∗

F > t,H}≤ P1 ≤ P
{
N∗

F > t(1 − ε),H}.
We note that the right-hand side of this is at most P

{
N∗

F > t(1 − ε)
}
, and the left-hand side is

at least P
{
(1 − ε)N∗

F > t
}− P′

2 − P′
3, where

P′
2 := P

{
(1 − ε)N∗

F > t, 
∗
F < −εN∗

F

}
, P′

3 := P
{
(1 − ε)N∗

F > t, 
∗
F > εt

}
.

Hence, we have

P
{
(1 − ε)N∗

F > t
}− P′

2 − P′
3 ≤ P1 ≤ P

{
N∗

F > t(1 − ε)
}
. (30)

Invoking the simple inequalities P2 ≤ P′
2 and P′

3 ≤ P3, we obtain, from (29) and (30), that

P
{
(1 − ε)N∗

F > t
}− P′

2 ≤ P{NF > t} ≤ P
{
N∗

F > t(1 − ε)
}+ P′

2 + P3. (31)

We show below that, for any 0 < ε < 1,

P′
2 = o(t−α) and P3 = o(t−α) as t → +∞. (32)

Note that (3) and (31) together with (32) imply (28). It remains to show (32).
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To illustrate the argument for doing so, we first examine the simplest case, where F =
K2. We apply Chernoff’s inequalities [14, (2.5), (2.6)] to 
∗

F conditionally given (X, Q).
We have

P′
2 =E

(
1{(1−ε)N∗

F>t}P∗{
∗
F < −εN∗

F

})≤E

(
1{(1−ε)N∗

F>t}e−(ε2/2)N∗
F

)
≤ exp

{
−1

2

ε2

1 − ε
t

}
= o(t−α);

P3 ≤E
(
P

∗{
∗
F > εt

})≤E exp

{
− ε2t2

2
(
N∗

F + εt/3
)}

≤ P

{
N∗

F > t3/2
}

+ exp

{
− ε2t2

2(t3/2 + εt/3)

}
= o(t−α).

In the last inequality we used the fact that

exp

{
− ε2t2

2
(
N∗

F + εt/3
)}≤ exp

{
− ε2t2

2(t3/2 + εt/3)

}

for N∗
F ≤ t3/2.

Now we assume that vF ≥ 3. In this case the proof of (32) is much more involved. In the
proof we use often the fact [14, Lemma 3.5] that

E
∗(
∗

F

)2 �
(
N∗

F

)2
�F(X, Q)

(1 − Q). (33)

We also use the simple relation N∗
F � aF�F(X, Q).

To prove P′
2 = o(t−α), given (X, Q) with 0 < Q < 1 (cases 0 and 1 are trivial), we apply

Janson’s inequality [14, Theorem 2.14] to p∗
ε := P

∗{
∗
F < −εN∗

F

}
. In what follows, we assume

that the random graph G(X, Q) and complete graph KX are both defined on the same vertex set
of size X, and that X ≥ 1. Let

δ :=E
∗(N2

F

)− δ, δ :=
∑

F′⊂KX

∑
F′′⊂KXEF′∩EF′′=∅

E
∗(1F′1F′′ ).

Here, the sum runs over ordered pairs (F′, F′′) of subgraphs of KX such that F′ and F′′ are
copies of F and their edge sets EF′ and EF′′ are disjoint. Furthermore, 1F′ stands for the indicator
of the event that F′ is present in G(X, Q). Janson’s inequality implies

P
∗{
∗

F < −ηN∗
F

}≤ e−
(
ηN∗

F

)2
/δ̄ for all η ∈ (0, 1). (34)

Next, we bound δ̄ from above. The (variance) identity E
∗(N2

F) − (
N∗

F

)2 =E
∗(
∗

F

)2 implies
that

δ =E
∗(
∗

F

)2 + (
N∗

F

)2 − δ. (35)

Furthermore, using the observation that VF′ ∩ VF′′ = ∅ implies EF′ ∩ EF′′ = ∅, and that the latter
relation implies E∗(1F′1F′′ ) = (E∗1F′ )(E∗1F′′ ) = Q2eF , we bound δ from below:

δ ≥
∑

F′⊂KX

∑
F′′⊂KX

VF′∩VF′′=∅

E
∗(1F′1F′′ ) = a2

F

(
X

k

)(
X − k

k

)
Q2eF = (X − k)k

(X)k

(
N∗

F

)2.
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Then, we lower bound the fraction

(X − k)k

(X)k
≥
(

1 − k

X − k

)k

≥ 1 − k2

X − k
for X ≥ 2k,

and obtain that δ ≥ (N∗
F

)2(1 − k2(X − k)−1
)
. Invoking this bound in (35) we obtain δ̄ ≤

E
∗(
∗

F

)2 + (
N∗

F

)2
k2(X − k)−1. Hence, the ratio in the exponent of (34) satisfies

(
N∗

F

)2
δ̄

≥
(
N∗

F

)2
2 max

{
E∗(
∗

F

)2
,
(
N∗

F

)2
k2(X − k)−1

} = 1

2
min

{ (
N∗

F

)2
E∗(
∗

F

)2 ,
X − k

k2

}
. (36)

We will show below that there exists ck > 0 (independent of t) such that N∗
F > t implies

(
N∗

F

)2
E∗(
∗

F

)2 > ckt2/k. (37)

We also note that N∗
F > t implies X > (t/aF)1/k, using aF

(X
k

)≥ aF
(X

k

)
QeF = N∗

F). Therefore, on
the event N∗

F > t the right-hand side of (36) is at least

1

2
min

{
ckt2/k,

(t/aF)1/k − k

k2

}
, (38)

and this quantity scales as t1/k as t → +∞. Finally, from (34), (36), and (38) we obtain that,
on the event N∗

F > t, p∗
ε ≤ e−ε2�(t1/k) = o(t−α) as t → +∞. We conclude that P′

2 = o(t−α).
It remains to show (37). We observe that the inequalities N∗

F ≤ aF�F(X, Q) and N∗
F > t

imply �F(X, Q) > t/aF > 1, where the last inequality holds for t > aF . Then, (27) implies
�F(X, Q) ≥ (�F(X, Q))2/k, and (33) implies

(
N∗

F

)2
E∗(
∗

F

)2 � �F(X, Q)

1 − Q
≥ �F(X, Q) ≥ �

2/k
F (X, Q) ≥ (t/aF)2/k.

To prove P3 = o(t−α) we apply exponential inequalities for upper tails of subgraph counts
in Bernoulli random graphs [15]. For the reader’s convenience, we state the result from [15]
that we will use. Let 
F be the maximum degree of F. Let

MF(n, p) =

⎧⎪⎨
⎪⎩

1 if p < n−1/mF ,

minH⊂F
(
�H(n, p)

)1/α∗
H if n−1/mF ≤ p ≤ n−1/
F ,

n2p
F if p ≥ n−1/
F .

Here, α∗
H is the fractional independence number of a graph H [15]. We do not define the frac-

tional independence number here as we only use the upper bound α∗
H ≤ vH − 1 that holds

for any H with eH > 0 [15, (A.1)]. Let ξF be the number of copies of F in G(n, p). By [15,
Theorems 1.2 and 1.5], for any η > 0 there exists cη,F > 0 such that, uniformly in p and n ≥ k
(recall that k = vF is the number of vertices of F),

P
{
ξF ≥ (1 + η)EξF

}≤ e−cη,FMF(n,p). (39)
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We will apply (39) to the number NF of copies of F in G(X, Q) conditionally given X, Q;
see (43).

We write, for short, s = εt and estimate P3 ≤ P
{

∗

F > s
}
. Let η > 0. We split

P
{

∗

F > s
}= P

{

∗

F > ηN∗
F, 
∗

F > s
}+ P

{

∗

F ≤ ηN∗
F, 
∗

F > s
}=: P31 + P32

and estimate the probabilities P31 and P32 separately. The second probability,

P32 ≤ P
{
N∗

F > s/η
}= ηα(a + o(1))s−α, (40)

can be made negligibly small by choosing η arbitrarily small.
Now we upper bound the remaining probability P31. Introduce the events

A1 = {
Q ≤ X−1/mF

}
, A21 = {

X−1/mF < Q < X−1/
F
}
, A22 = {

Q ≥ X−1/
F
}
,

and put A2 =A21 ∪A22 (note that 
F ≥ 2mF = 2eF/vF). We split

P31 = P̃1 + P̃2, P̃i := P
{

∗

F > ηN∗
F, 
∗

F > s, Ai
}
,

and estimate P̃1 and P̃2 separately.
We first consider P̃1. The inequality Q ≤ X−1/mF implies �F(X, Q) ≤ 1. Consequently, (27)

implies �F(X, Q) ≥ �F(X, Q). The latter inequality, together with (33), imply E
∗(
∗

F

)2 ≤
ck�F(X, Q) ≤ ck for some ck > 0. Hence, on the event A1 we have E

∗(
∗
F

)2 ≤ ck. Finally,
by Markov’s inequality,

P̃1 ≤ P{
∗
F > s,A1} =E

(
1A1E

∗1{
∗
F>s}

)≤E
(
1A1E

∗(
∗
F)2s−2)≤ cks−2. (41)

Second, we consider P̃2. The inequality X−1/mF < Q implies �F(X, Q) > 1. For balanced F
this yields �H(X, Q) > 1 for every H ⊂ F with eH > 0. Then, by using α∗

H ≤ vH − 1 we obtain

min
H⊂F: eH>0

(�H(X, Q))1/α∗
H ≥ min

H⊂F: eH>0
(�H(X, Q))1/vH = (�F(X, Q))1/vF .

In the last step we used the fact that F is balanced once again. Hence, on the event A21 we
have (recall that vF = k)

MF(X, Q) ≥ (�F(X, Q))1/k. (42)

We observe that (42) holds on the event A22 as well. Indeed, the inequality Q ≥ X−1/
F yields
MF(X, Q) ≥ X2Q
F ≥ X. Now the inequality XvF ≥ �F(X, Q) implies (42).

From (39) and (42) we obtain the exponential bound

P
∗{
∗

F > ηN∗
F

}≤ e−cη,FMF(X,Q) ≤ e−cη,F(�F(X,Q))1/k
. (43)

Let us bound P̃2 from above. We fix a (large) number B > 0 and introduce the events
B1 = {

�F(X1, Q1) > B lnk s
}

and B2 = {
�F(X1, Q1) ≤ B lnk s

}
. We then split P̃2 = P̃21 + P̃22,

P̃2i = P
{

∗

F > ηN∗
F, 
∗

F > s,A2,Bi
}
, and bound P̃21 from above, using (43):

P̃21 ≤ P
{

∗

F > ηN∗
F,A2,B1

}=E
(
1B11A2P

∗{
∗
F > ηN∗

F

})
≤E

(
1B1 exp

{−cη,F(�H(X1, Q1))1/k})≤ e−cη,FB1/k ln s. (44)
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It remains to upper bound P̃22. The inequality �F(X, Q) > 1, which holds on the event
A2, implies (see (27)) �F(X, Q) ≥ (�F(X, Q))2/k. Furthermore, (33) implies E

∗(
∗
F

)2 ≤
cF(�F(X, Q))2−(2/k)(1 − Q), where cF > 0 depends only on F. Note that on the event B2 the
right-hand side is upper bounded by cF(B lnk s)2−(2/k). Hence, by Markov’s inequality,

P
∗(
∗

F > s) ≤ s−2
E

∗(
∗
F

)2 ≤ cFB2−(2/k)s−2 ln2k−2 s.

Finally, we obtain

P̃22 ≤ P
{

∗

F > s,A2,B2
}=E

(
1A2 1B2P

∗{
∗
F > s

})≤ cFB2−(2/k)s−2 ln2k−2 s. (45)

We complete the proof by showing that, for any 0 < ε < 1, the probability P3, which
depends on ε, satisfies P3 = o(t−α) as t → +∞. Recall that s = εt. We have, for any η > 0,

lim sup
t→+∞

tαP3 ≤ lim sup
t→+∞

tαP
{

∗

F > εt
}= ε−α lim sup

s→+∞
sα
P
{

∗

F > s
}

≤ ε−α lim sup
s→+∞

sα
(
P̃1 + P̃21 + P̃22 + P32

)≤ (η/ε)αa.

Hence, lim supt→+∞ tαP3 = 0. The last inequality above follows from (40), (41), (44),
and (45). Indeed, given η > 0, we choose B = B(η) (in (44) and (45)) large enough that
cη,FB1/k > 2. Then P̃21 ≤ s−2 and lim sups sαP̃21 = 0. We also mention the obvious relations
lim sups sαP̃1 = 0 and lim sups sαP̃22 = 0. �

Funding information

JK was supported by the Magnus Ehrnrooth Foundation and Academy of Finland grant
346311 – Finnish Centre of Excellence in Randomness and Structures.

Competing interests

There were no competing interests to declare which arose during the preparation or
publication process of this article.

References

[1] AMBROISE, C. AND MATIAS, C. (2012). New consistent and asymptotically normal parameter estimates for
random-graph mixture models. J. R. Statist. Soc. B 74, 3–35.

[2] BENSON, A. R., GLEICH, D. AND LESKOVEC, J. (2016). Higher-order organization of complex networks.
Science 353, 163–166.

[3] BHATTACHARYA, B. B., CHATTERJEE, A. AND JANSON, S. (2021). Fluctuations of subgraph counts in
graphon-based random graphs. Preprint, arXiv:2104.07259.

[4] BLOZNELIS, M. AND JAWORSKI, J. (2018). The asymptotic normality of the global clustering coefficient in
sparse random intersection graphs. In Algorithms and Models for the Web Graph – 15th International Workshop,
WAW 2018 (Lect. Notes Comp. Sci. 10836), eds A. Bonato. P. Prałat and A. Raigorodskii. Springer, New York,
pp. 16–29.

[5] BLOZNELIS, M. AND KURAUSKAS, V. (2016). Clustering coefficient of random intersection graphs with
infinite degree variance. Internet Math. doi: 10.24166/im.02.2017.

[6] BLOZNELIS, M. AND LESKELÄ, L. (2023). Clustering and percolation on superpositions of Bernoulli random
graphs. Random Structures Algorithms 63, 283–342.

[7] BLOZNELIS, M., KARJALAINEN, J. AND LESKELÄ, L. (2022). Assortativity and bidegree distributions on
Bernoulli random graph superpositions. Prob. Eng. Inf. Sci. 36, 1188–1213.

[8] EIKMEIER, N., RAMANI, A. S. AND GLEICH, D. (2018). The HyperKron graph model for higher-order
features. In Proc. 2018 IEEE International Conference on Data Mining. IEEE, Piscataway, NJ, pp. 941–946.

https://doi.org/10.1017/jpr.2023.48 Published online by Cambridge University Press

https://arxiv.org/abs/2104.07259
https://doi.org/10.24166/im.02.2017
https://doi.org/10.1017/jpr.2023.48


Normal and stable approximation to subgraph counts 419

[9] GNEDENKO, B. V. AND KOLMOGOROV, A. N. (1954). Limit Distributions for Sums of Independent Random
Variables. Addison-Wesley, Cambridge.

[10] GODEHARDT, E. AND JAWORSKI, J. (2001). Two models of random intersection graphs and their applications.
Electron. Notes Discrete Math. 10, 129–132.

[11] GRÖHN, T., KARJALAINEN, J. AND LESKELÄ, L. (2019). Clique and cycle frequencies in a sparse random
graph model with overlapping communities. Preprint, arXiv:1911.12827.

[12] HLADKÝ, J., PELEKIS, CH. AND ŠILEIKIS, M. (2021). A limit theorem for small cliques in inhomogeneous
random graphs. J. Graph Theory 97, 578–599.

[13] HONEY, C. J., KÖTTER, R., BREAKSPEAR, M. AND SPORNS, O. (2007). Network structure of cerebral cortex
shapes functional connectivity on multiple time scales. Proc. Nat. Acad. Sci. USA 104, 10240–10245.
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