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The kinetic–magnetohydrodynamic (MHD) hybrid simulation approach for macroscopic
instabilities in plasmas can be extended to include the kinetic effects of both thermal ions
and energetic ions. The new coupling scheme includes synchronization of the density
and parallel velocity between thermal ions and MHD, in addition to pressure coupling,
to ensure the quasineutrality condition and avoid numerical errors. The new approach
has been implemented in the kinetic-MHD code M3D-C1-K, and was used to study
the thermal ion kinetic effects and Landau damping in fishbone modes in both DIII-D
and NSTX. It is found that the thermal ion kinetic effects can cause an increase of the
frequencies of the non-resonant n = 1 fishbone modes driven by energetic particles for
qmin > 1, and Landau damping can provide additional stabilization effects. A nonlinear
simulation for n = 1 fishbone mode in NSTX is also performed, and the perturbation on
magnetic flux surfaces and the transport of energetic particles are calculated.
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1. Introduction

The kinetic effects of thermal ions can become more important for physics studies
targeting fusion reactors, given the large ion temperature (Ti > 10 keV) and the presence
of high-energy alpha particles. In recent DIII-D experiments, it was observed that thermal
ions can drive both high-frequency chirping modes (Du et al. 2021) and beta-induced
Alfvén-acoustic eigenmodes (BAAEs)/low-frequency Alfvén modes (Gorelenkov et al.
2009; Choi et al. 2021; Ma et al. 2022). These modes can lead to degradation of plasma
confinement or even minor disruption. It is therefore necessary to incorporate these effects
in numerical simulation models for ITER and future reactors.

Although kinetic–magnetohydrodynamic models have been proposed before with
thermal ions (Cheng & Johnson 1999; Park et al. 1999), it is challenging to include the
thermal ion kinetic effects in hybrid simulation models (Todo & Sato 1998; Fu et al. 2006;
Kim 2008), which combine particle-in-cell (PIC) and magnetohydrodynamics (MHD)
simulations. These models were developed for simulating the physics of enegetic particles
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(EPs) or fast ions, which come from neutral beam injection or ion cyclotron resonance
heating (ICRH). The EPs can have a pressure or perpendicular current that is comparable
to the thermal ions or electrons, but their density or momentum is often relatively small
compared with the thermal ions. Their kinetic effects can then be included in the MHD
framework through pressure or current coupling by adding corresponding terms in the
momentum equation.

There are two major issues when extending this approach to thermal ions. First, since the
MHD density and momentum equations are derived by taking moments of ion and electron
kinetic equations, when thermal ion kinetic equations are calculated separately, these
MHD equations become redundant and the error between the two approaches can lead
to numerical issues or even parasitic modes. Second, as ions and electrons are calculated
separately (one as kinetic particles and one as a fluid component), the parallel electric
force between them must be calculated as a connection, which is often missing in ideal
MHD calculations or treated as a high-order two-fluid effect. These issues can be mitigated
by using a fully implicit or predictor–corrector method for particle pushing and MHD
equation calculation (Barnes, Cheng & Parker 2008), with a cost of computation time.

In this paper, we describe a new kinetic–MHD coupling scheme, which is similar to the
one used in the MEGA code for studying thermal ion kinetic effects in Large Helical
Device (LHD) plasmas (Sato & Todo 2019, 2020). In this scheme, in addition to the
coupling terms in the MHD momentum equation, we have two more equations to connect
the MHD and kinetic parts. One is the synchronization of the parallel velocity between the
kinetic ions and the MHD, and the other is the synchronization of ion density. These two
new equations are introduced to ensure quasineutrality and to avoid parasitic modes.

In this kinetic–MHD model, all the ions, including the thermal ones and the fast ones,
are modelled as kinetic particles using the PIC method. The MHD equation is in charge
of calculating the evolution of fields and the electron pressure and temperature. The
parallel electric field caused by separation of electrons and ions is also added in the ion
kinetic equations. This scheme is implemented in the kinetic–MHD code M3D-C1-K (Liu
et al. 2022), which is based on the finite-element MHD code M3D-C1 (Ferraro & Jardin
2009; Jardin et al. 2012). It is found that the semi-implicit method introduced for solving
the MHD equations (Jardin et al. 2012) is helpful for stabilizing numerical instabilities
after including ion kinetic terms, and the simulation can run with large timesteps to save
computation time.

Using this new model, we investigate the kinetic effects of thermal ions, especially
Landau damping, in kinetic MHD simulations. We first tested the new simulation model in
an ion acoustic wave (IAW) simulation, and achieved good agreement of mode frequency
and damping rate with the theory. We then studied n = 1 (n is the toroidal mode number)
fishbone modes using DIII-D and NSTX equilibrium with qmin (the minimum safety factor)
slightly larger than 1. This fishbone mode, which is connected to the non-resonant (1,1)
kink mode, has been studied before using kinetic–MHD simulation without thermal ion
kinetic effects (Brennan, Kim & Haye 2012; Wang et al. 2013; Shen et al. 2017, 2020).

We find that, for simulation with only fast ions treated kinetically, the dominant n = 1
mode has a transition from a classical fishbone mode to a Alfvén eigenmode (AE)
like mode as qmin increases, with a significant increase of mode frequency, which is
consistent with the NIMROD simulation results (Brennan et al. 2012). After adding a
kinetic treatment of the thermal ions, the frequencies of the fishbone modes increase and
the growth rates decrease. The AE-like mode branch becomes stable. These simulation
results indicate that both of the two modes are strongly affected by the Landau damping
effect from thermal ions, which was not considered in previous kinetic–MHD simulations.
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In addition, we undertook a nonlinear simulation for the fishbone mode to study the mode
saturation and the effects on particle transport.

The paper is organized as follows. In § 2 we discuss the kinetic–MHD coupling scheme
including the thermal ions, with density and parallel velocity synchronization. In § 3 we
present the simulation results of IAWs using the new scheme, and compare the Landau
damping rates with theoretical results. In § 4 we show the numerical simulation of n = 1
fishbone modes in a DIII-D equilibrium without and with the thermal ion kinetic effects.
In § 5 we describe similar simulations in NSTX scenarios, using a more realistic EP
distribution. In § 6 we show the results of a nonlinear simulation of fishbones in NSTX,
focusing on the mode saturation behaviour. Finally, the summary is given in § 7.

2. Kinetic–MHD model with thermal ion kinetic effects

In this section we present the kinetic–MHD model implemented in the M3D-C1-K
code. The code was initially developed as a kinetic module for the extended MHD code
M3D-C1 (Jardin et al. 2012) using a pressure coupling scheme, which is similar to other
kinetic–MHD codes like M3D-K (Fu et al. 2006) and NIMROD (Kim 2008). The particle
equation of motion, particle weight equations and coupling scheme are described in Liu
et al. (2022). In the new version of M3D-C1-K, we treat both the thermal ions and fast
ions as kinetic particles and calculate their dynamics using the PIC method, and electrons
are treated using a fluid model. The MHD equations with kinetic coupling are as follows:

ρ

[
∂v⊥
∂t

+ (
v⊥+v‖b

) · ∇v⊥

]
= J × B − ∇⊥pe − ∇⊥ · [

Pi‖bb + Pi⊥ (I − bb)
]

−∇⊥ · [
Pf ‖bb + Pf ⊥ (I − bb)

] + ν∇2v⊥, (2.1)

J = 1
μ0

∇ × B, (2.2)

∂B
∂t

= −∇ × E, (2.3)

E = −v⊥×B + ηJ . (2.4)

Here, ρ is the total ion mass density, v‖ and v⊥ are the MHD velocity parallel and
perpendicular to the magnetic field B, J is the plasma current density, E is the electric
field, ν and η are the viscosity and resistivity coefficients, P‖ and P⊥ are the parallel and
perpendicular components of the ion pressure tensor and the subscripts i and f represent
thermal ions and fast ions. The electron pressure pe can either be calculated with the
convection and diffusion terms

∂pe

∂t
+ (

v⊥+v‖b
) · ∇pe = −γepe∇ · [(

v⊥+v‖b
)] + ne∇ · [

κ⊥I + κ‖bb
] · ∇

(
pe

ne

)
,

(2.5)

or as a product of density and electron temperature (pe = neTe). The temperature can be
calculated separately

∂Te

∂t
+ (

v⊥+v‖b
) · ∇Te = − (γe − 1)Te∇ · [(

v⊥+v‖b
)] + ∇ · [

κ⊥I + κ‖bb
] · ∇Te,

(2.6)

where γe is the electron specific heat ratio and κ‖ and κ⊥ are the parallel and perpendicular
heat transport coefficients.
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The kinetic ion orbit follows the guiding-centre equation of motion

dX
dt

= 1
B�

[
V‖B�−b ×

(
E − μ

q
∇B

)]
, (2.7)

m
dV‖
dt

= 1
B�

B� · (qE − μ∇B) , (2.8)

where

B�=B + mV‖
q

∇ × b, (2.9)

B�=B� · b, (2.10)

E�=E − 1
nee

∇‖pe. (2.11)

Here, X is the particle guiding-centre location, V‖ the particle parallel velocity, m is the
ion mass, μ = mV2

⊥/2B is the magnetic moment and b = B/B. Note that the electric field
E� has an additional term in the parallel direction, −∇‖pe/nee. This term is obtained by
ignoring the inertial term in the electron momentum equation in the parallel direction.

Assuming that the ion distribution is given as a function of location X , energy E =
(1/2)mV2 and pitch angle ξ = V‖/V , the weight equation for δf calculation is obtained
from drift kinetic equations

dw
dt

= −α
[(

dX
dt

)
1
· ∇ +

(
dE
dt

)
1

∂

∂E +
(

dξ
dt

)
1

∂

∂ξ

]
ln f0, (2.12)

where

(
dX
dt

)
1
= E × B

B2
+ V‖δb, (2.13)

(
dE
dt

)
1
=

[
V‖b + mV2

‖
qB

b · ∇ × b + μ

qB
b × ∇B

]
· qE�, (2.14)

(
dξ
dt

)
1
= 1

V
dV‖
dt

− 2V‖
mV3

dE
dt
, (2.15)

(
dV‖
dt

)
1
=

[
b + mV‖

qB
∇ × b

]
· q

m
E�+δb ·

(
−μ

m
∇B

)
, (2.16)

and α = 1 for linear calculations and α = 1 − w for nonlinear calculations. Alternatively,
one can calculate the difference between the results of the equations of motion with
equilibrium and perturbed fields to obtain these (· · · )1 terms.

Finally, the density, parallel velocity and pressure for thermal (subscript i) and fast
(subscript f ) ions used in the MHD equations are calculated from particle deposition on
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fields

δni,f (x) =
∑
ki,f

(
wki,f + δB‖

B�0

)
S

(
x − xki,f

)
, (2.17)

δρ = miδni + mf δnf , (2.18)

δne = Ziδni + Zf δnf , (2.19)

δv‖(x) = 1
ne0 + δne

⎡
⎣∑

ki

ZiV‖,ki

(
wki +

δB‖
B�0

)
S (x − xk)− Zini0v‖i,0

+
∑

kf

Zf V‖,kf

(
wkf + δB‖

B�0

)
S (x − xk)− Zf nf 0v‖f ,0

⎤
⎦ , (2.20)

δP‖i,f (x) =
∑
ki,f

mi,f V2
‖,ki,f

(
wki,f + δB‖

B�0

)
S

(
x − xki,f

)
, (2.21)

δP⊥i,f (x) =
∑
ki,f

μki,f B0

(
wki,f + δB‖

B�0
+ δB‖

B0

)
S

(
x − xki,f

)
. (2.22)

Here, S is the particle shape function, ki,f are indices of particles, mi and mf are the
ion mass, Zi and Zf are ion effective charge, and v‖0 is the parallel velocity of the ion
equilibrium distribution f0. The details of the implementation of the particle deposition
calculation can be found in Liu et al. (2022). For simulations with finite Larmor radius
(FLR) effects, both the field evaluation and the particle deposition need to take into
account average along the gyro-orbit.

The kinetic–MHD scheme here is similar to that implemented in MEGA (Sato & Todo
2019, 2020), except that we use pressure coupling while MEGA uses current coupling.
As pointed out in Liu et al. (2022), the two kinds of coupling schemes are equivalent
for calculating v⊥. Comparing with the pressure coupling scheme with thermal ions in
Park et al. (1999), we have additional equations for synchronization of the ion density
and parallel velocity with MHD fields, whereas in Park et al. (1999) these quantities are
calculated by the MHD equations. For example, the parallel velocity is solved as

ρ

[
∂v‖
∂t

+ (
v⊥+v‖b

) · ∇v‖

]
= −∇‖ · [

Pi‖bb + Pi⊥ (I − bb)
]

− ∇‖ · [
Pf ‖bb + Pf ⊥ (I − bb)

] − ∇‖pe. (2.23)

If assuming small ion energy and ignoring the gradient and curvature drifts, one can verify
that (2.23) can be obtained by taking the moment of the kinetic equations. Here, ∇‖pe is
derived from the parallel electric field term in (2.11), which is used in particle weight
equations. In principle, the pressure coupling scheme in Park et al. (1999) is equivalent to
our coupling scheme and the simulation results should agree with each other, although the
calculations of the ion density and v‖ in the MHD equations are redundant.

However, we find that, in M3D-C1, due to the fact that the fluid equations and kinetic
equations are solved subsequently in one timestep, in the simulation using the scheme of
Park et al. (1999), the difference between δn and δv‖ from the fluid and kinetic equations
can increase with time, which violates the quasineutrality condition and leads to parasitic
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modes that overwhelm the numerical result. We thus replace the two MHD equations with
the synchronization schemes instead to avoid these issues. The perpendicular momentum
equation (2.1) of MHD is kept as it provides additional information for kinetic simulation.
In fact, (2.1) can be regarded as a decomposition of the plasma perpendicular current,
in which the ρ∂v⊥/∂t term represents the polarization current, and the pressure terms
represent the drift and magnetization current.

The ions’ parallel velocity is used in the electron pressure (2.5) and temperature
equation (2.6), assuming that the electrons and ions are moving together. However, when
considering two-fluid effects, there is a difference between the electron and ion velocities
due to the parallel current. This difference can lead to correction terms in (2.5) and (2.6)
that are proportional to di/L (di is the ion skin depth), and thus can be considered as
a two-fluid term. These two-fluid terms are ignored in the current simulation model as
we are dealing with long-wavelength modes. The additional parallel electric field used in
(2.11) is not included in Ohm’s law (2.4) for the same reason. These two-fluid effects can
be important for small-wavelengh modes like kinetic Alfvén waves (KAWs), and will be
studied in future.

3. Numerical simulation of IAWs

In this section we test the new version of M3D-C1-K in an IAW simulation. The
oscillation of IAWs can be easily simulated using a MHD code. However, for Ti ∼ Te,
IAWs will be strongly damped due to parallel Landau damping, which can only be
simulated by including the kinetic effects of thermal ions.

In the simulation we treat thermal ions as kinetic particles and electrons as a fluid
component. Since IAW is an electrostatic mode, we only keep the MHD equation (2.5)
and ignore the v⊥ terms. The MHD equation and the particle equation of motion are
limited to being one-dimensional along the wave vector. For the electron pressure we
choose the electron heat capacity ratio γe = 1 assuming they are isothermal. The parallel
velocity is initialized like a sinusoidal function with a fixed wavenumber k, which can drive
perturbations on pe and pi and lead to a standing wave. The electron and ion densities are
the same assuming Zeff = 1, and the ion temperature is set to be a fraction of the electron
temperature.

For MHD-only simulation, we find that IAW gives oscillations of δp and δv‖ with
little damping. With ion kinetic effects, the oscillation experiences damping, as shown
in figure 1. We find that the mode damping rate is consistent with the theoretical Landau
damping rate of IAW, which is shown as the red line. Note that, for Ti/Te > 0.1, the Landau
damping rates γLD of IAWs become comparable to ω and the perturbative calculation is
not accurate. In these cases γLD should be solved numerically from the plasma dispersion
function Z(ζ ). Here, we use the empirical formula from Chen (2013) to obtain the
frequencies and the Landau damping rates of IAWs for 0.1 < Ti/Te < 1

ω = ω0

√
1 + 3Ti

Te
(3.1)

γLD

ω
= 1.1 ∗

(
Ti

Te

)7/4

exp

[
−

(
Ti

Te

)2
]
, (3.2)

where ω0 = k
√

kBTe/mi and kB is the Boltzmann constant. Equation (3.1) is calculated
by assuming the ion heat capacity ratio γi = 3 since they only suffer one-dimensional
compression (McKinstrie, Giacone & Startsev 1999; Chen 2013).
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FIGURE 1. Blue line is the time signal of δpe from IAW simulation with Ti = 0.2Te. Red line
shows a mode damping trend with a rate calculated from (3.2). The time unit τ0 = 1/ω0.

(a) (b)

FIGURE 2. Frequencies (a) and damping rates (b) from IAW simulation for different values of
Ti/Te. The dashed lines are the theoretical results calculated from (3.1) and (3.2).

Figure 2 shows the results of IAW frequencies and damping rates from the M3D-C1-K
simulation for different values of Ti/Te. For small Ti/Te, the damping rate is zero and the
frequency is close to the MHD-only result ω0. For Ti/Te > 0.3, the damping rate becomes
comparable to the frequency, indicating IAWs are strongly damped. Both ω and γLD are
close to the theoretical results, indicating that the new kinetic–MHD model successfully
captures the Landau damping physics.

We find that, for large Ti/Te, the mode can have echoes after being significantly damped,
as shown in figure 3. This phenomenon is a typical nonlinear behaviour for the Landau
damped mode, which is different from dissipative damping (Kadomtsev 1968). This effect
indicates that, although the mode is damped due to phase mixing, the particles still retain
some ‘memory’ of the preceding oscillation, which can be reflected as echoes at later
times.

4. Linear simulation of fishbone modes in DIII-D

In this section we discuss the linear n = 1 fishbone mode simulation using M3D-C1-K
without and with thermal ion kinetic effects. We use an equilibrium from the DIII-D
tokamak experiment, obtained from hybrid discharge #125476, which has been studied
before for n = 1 MHD instabilities using NIMROD (Brennan et al. 2012). In the
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FIGURE 3. Time evolution of δpe from IAW simulation with Ti = 0.3Te, showing echoes of
oscillation after the mode is damped.

(a) (b)

FIGURE 4. (a) Profiles of q and total pressure of the equilibrium used in the DIII-D
simulation. (b) Flux contours and mesh boundary used in the simulation.

experiment, both a (1,1) kink mode and (2,1) and (3,2) tearing modes are present (La
Haye et al. 2010). We use a single equilibrium reconstruction from the EFIT code (Lao
et al. 1990) including motional Stark effect profile data, by choosing a time (3425 ms)
during the stationary phase of the discharge with benign tearing mode excitation. Toroidal
flow is not included in the simulation. The equilibrium profiles of q and total pressure, and
the shape of flux contours, are shown in figure 4. For this equilibrium the safety factor has
a minimum qmin = 1.06 located at ψ/ψ0 = 0.0625, inside which there is a slightly reverse
shear near the core. To study the effect of the q profile on the stability of fishbone modes,
we apply the Bateman scaling method (Bateman 1978) to the equilibrium, which means
that we add a constant value to F2 (F = RBφ) to change the toroidal field while keeping
the pressure and the toroidal current fixed and the Grad–Shafranov equation satisfied.

Both thermal ions and fast ions from neutral beam injection are included in the
kinetic–MHD simulation. Both of the populations are deuterium. The thermal ions are
initialized with a Maxwellian distribution, with density ni = ne − nf (nf is the fast ion
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FIGURE 5. Growth rates (solid lines) and frequencies (dashed lines) as functions of qmin of the
n = 1 mode from M3D-C1 linear simulations with DIII-D equilibrium. The blue line shows the
MHD-only result. The red lines show the kinetic–MHD results with only fast ions. The green
lines show the results with both thermal and energetic ions.

density) and temperature Ti = Te. The fast ions have a slowing-down distribution in energy
with an isotropic distribution in pitch angle

f0 = nf (ψ)

E3/2 + E3/2
c
, (4.1)

where Ec = 10 keV is the critical energy; f0 has a cutoff energy Emax = 50 keV. Both Ec and
Emax are constants in the simulation domain. The density of the fast ions nf has the same
profile as the total pressure, so that the fraction of fast ion pressure to the total pressure is
fixed (16 %) at different flux surfaces.

For linear simulations, we use a two-dimensional finite element mesh and a spectral
representation of the MHD fields in the toroidal direction. The two-dimensional
unstructured mesh has 5495 triangular elements which are uniformly distributed. For
the kinetic–MHD simulation we use 8 × 106 particle markers, half of which are for the
simulation of fast ions and the other half for the thermal ions.

The simulation results of mode growth rates and frequencies are summarized in figure 5,
with qmin varying from 1.0 to 1.2. The MHD-only result (blue line) shows that the
n = 1 kink mode is unstable for qmin < 1.06. After including the fast ion kinetic effects
(red lines), the mode growth rates decrease for qmin < 1.04, and the modes have finite
frequencies due to the wave–particle resonances, which increase with qmin. For qmin > 1.1,
there is still a weakly unstable n = 1 mode which is driven by fast ions, with frequencies
significantly larger than those of the qmin < 1.06 cases. The manifest change of frequencies
indicates that the dominant n = 1 mode changes from a fishbone-like branch to a AE-like
branch with distinct frequencies. This mode can be beta-induced Alfvén eigenmode (BAE)
or BAAE, and is coupled with the reversed shear Alfvén eigenmode (RSAE) given the
reversed shear of q profile near the core. The results of the mode frequencies and growth
rates are close to the NIMROD results in Brennan et al. (2012), except that the growth rate
for qmin > 1.1 keeps dropping to zero as qmin increases, whereas in Brennan et al. (2012)
the growth rate is almost a constant for large qmin.

The mode growth rates and frequencies including both fast ions and thermal ions are
shown as green lines in figure 5. For the low-frequency fishbone-like branch, there is a
significant drop of the mode growth rate compared with the results with only fast ions,
and an increase of the mode frequency. It is known that the fishbone mode is driven by
the trapped ions which can have resonances with the mode through precession motion.
Therefore, the kinetic effects of thermal trapped ions can provide additional drive of the
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(a) (b)

FIGURE 6. Two-dimensional structure of δφ (a) and δψ (b) from DIII-D n = 1 linear
simulation of the qmin = 1.04 case with thermal ions.

fishbone mode rotation and raise the mode frequency. On the other hand, the precession
motion of trapped ions can weaken their response to the MHD mode and thus lower the
mode growth rate (Sato & Todo 2019). In addition, the parallel electric field is only turned
on in these thermal ion simulations, and the Landau damping can further stabilize the
modes.

The two-dimensional structure of the fishbone mode for qmin = 1.04 including thermal
ions is summarized in figures 6–9. Figure 6 shows the mode structure of the perturbed
velocity streamfunction (δφ) and magnetic flux (δψ). Here, δφ is dominated by m = 1
near the core and m = 2 at the outer region, and δψ is dominated by m = 2. Figure 7
shows the structure of the electron and ion pressures, which is similar to the δφ structure.
The similarity between δpe and δpi indicates that the quasineutrality condition is satisfied.
Figure 8 shows the structure of the fast ion pressure, including parallel and perpendicular
components in (2.21) and (2.22). The non-adiabatic response (δp⊥ − δp‖) is mostly located
in the low-field side, as it comes from the resonant trapped particles (Fu et al. 2006; Kim
2008; Liu et al. 2022). Figure 9 shows the comparison of δv‖ from the kinetic–MHD
simulation using parallel velocity synchronization (2.20), with the result of the simulation
with only fast ions and no synchronization. The two results are close and both are
dominated by m = 2, showing that the kinetic equations successfully capture the parallel
dynamics of the MHD system.

According to the simulation results, we find that both the fishbone branch and the
AE-like branch of the n = 1 mode are susceptible to Landau damping of thermal ions.
The parallel wavenumber can be estimated as follows:

k‖≈ 1
R

(
n − m

qmin

)
. (4.2)

Using the mode frequency obtained from the simulation with fast ions and m = 1, for
qmin = 1.04 we have ω/k‖ = 2.3vth, and for qmin = 1.15 we have ω/k‖ = 2.68vth, where
vth = √

Ti/mi. Therefore, the Landau damping effects are important for both branches,
which explains the stabilization of the mode by thermal ions for the qmin > 1.06 cases
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(a) (b)

FIGURE 7. Two-dimensional structure of perturbed electron pressure δpe (a) and thermal ion
pressure δpi (b) from the linear simulation of the qmin = 1.04 case with thermal ions.

(a) (b) (c)

FIGURE 8. Two-dimensional structure of perpendicular (a) and parallel (b) fast ion pressure
from the linear simulation of the qmin = 1.04 case with thermal ions, and the difference between
the two (c).

providing their small growth rates without thermal ions. It is necessary to include the
thermal ion kinetic effects and Landau damping in those cases to avoid false positive
results.

In the above study we scan the value of qmin by varying the toroidal field and keeping
the plasma pressure fixed. This can lead to changes in both qmin and the plasma β at the
same time, as discussed in Brennan et al. (2012). To separate the two effects, we rerun the
reconstruction of the equilibrium by fixing the toroidal field and q profile while scaling
the total pressure, by varying Te, Ti and the fast ion energy. The results of MHD-only
simulations and simulations with fast ions and thermal ion kinetic effects are summarized
in figure 10, with qmin = 1.04. The results indicate that, although the (1,1) mode bears the
name ‘non-resonant kink mode’ in some of the literature (Wang et al. 2013), its growth
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(a) (b)

FIGURE 9. (a) Structure of v‖ from the linear simulation of the qmin = 1.04 case with thermal
ions and synchronization of v‖ (2.20). (b) Structure of v‖ from the linear simulation with only
fast ions using the MHD equation (2.23).

FIGURE 10. Growth rates (solid lines) and frequencies (dashed lines) of the n = 1 mode with
different plasma β (β0 is the experimental value) and a fixed q profile. The blue line shows the
MHD-only result. The green lines show the kinetic–MHD results with fast and thermal ions.

rate has a strong dependence on the plasma beta value, especially for the MHD-only
simulations, which is similar to pressure-driven modes. After including ion kinetic effects,
the dependence of the growth rate on β weakens, and the mode frequency is almost
independent of β.

With the Landau damping effect included, the n = 1 mode is stable for qmin > 1.06. For
the original equilibrium from EFIT, qmin = 1.06, the mode is at the stability boundary,
which may be the result of nonlinear evolution of the fishbone mode and the flattening
of the current profile near the core. The fishbone-like mode in the simulation with
qmin = 1.04 has a frequency of approximately f = 6.13 kHz. In the DIII-D experiment, the
dominant n = 1 mode is identified to have a frequency of 18 kHz in the laboratory frame,
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(a) (b)

FIGURE 11. (a) Profiles of q and pressure of different particle species of the equilibrium used
in the NSTX simulation. (b) Flux contours and mesh boundary used in the simulation.

and the toroidal rotate frequency is approximately 21 kHz. Therefore, the simulation of the
fishbone-like mode is consistent with the measured frequency in the plasma frame.

5. Linear simulation of fishbone modes in NSTX

We did a similar study for the n = 1 mode under a NSTX experimental condition.
The equilibrium q profile is obtained from NSTX shot #134020 at 700 ms. The density
and temperature profiles are from the TRANSP (Ongena et al. 2012) calculation result.
The Grad-Shafranov (G-S) equation was solved using these profiles in a M3D-C1
two-dimensional mesh with 7199 elements. We ignore the contribution of high-Z
impurities and assume all the ions are deuterium. The profiles used in the simulation and
the shape of the flux contours are shown in figure 11. The q profile has the same shape
as the EFIT q profile, with qmin located at

√
ψnorm = 0.2. The core electron density is

1.04 × 1020 m−3 and the core electron and ion temperature is approximately 0.74 keV. The
ratio of EP beta to the total beta at the core is βEP/β = 17.3 %. Note that a key difference
from the DIII-D equilibrium is that NSTX has much larger plasma β (βon-axis = 50.8 % vs.
DIII-D βon-axis = 12.4 %). In the NSTX simulation we use the Spitzer resistivity calculated
from the local electron temperature, and apply a large value of the parallel heat conduction
coefficient κ‖.

For EP we use an anisotropic distribution from the NUBEAM calculation. The
NUBEAM code provides three-dimensional (r, λ = V‖/V , energy) information of injected
beam ions from Monte Carlo calculation (Pankin et al. 2004), which is called the classical
fast ion distribution. The NUBEAM distribution near the magnetic axis (figure 12a) shows
that the lower-energy EPs (E < 40 keV) are mostly co-passing with V‖/V ≈ 1, and the
higher-energy EPs have a peak distribution at V‖/V ≈ 0.4. This initial distribution is quite
noisy, making it difficult to calculate the gradients of f0 in the phase space. In order to
use it for δf calculation, we apply a Gaussian smoothing operator to obtain a smoothed
distribution, as shown in figure 12(b). This new distribution is then read into M3D-C1-K
as f0 and used for both particle initialization and δf calculation. The radial profile of EP
pressure is shown in figure 11, which is consistent with the TRANSP output.

In terms of the shortcomings of the Bateman scaling method, and the sensitive
dependence of the n = 1 mode growth rate on β, as discussed in § 4, for NSTX we apply
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(a) (b)

FIGURE 12. (a) The original EP distribution of energy and pitch angle near the magnetic axis
from NUBEAM. (b) The smoothed EP distribution that was used in M3D-C1-K simulations.

FIGURE 13. Growth rates γ (solid lines) and frequencies f (dashed lines) as functions of qmin
of the n = 1 modes from M3D-C1 linear simulation with NSTX equilibrium with fixed β. The
blue line shows the MHD-only result. The red lines show the kinetic–MHD results with only fast
ions. The green lines show the results with both thermal and energetic ions.

a new method to scan the value of qmin, by fixing the toroidal field and changing the
plasma current to fit the new q profile. This method ensures that β is almost fixed when
scanning qmin. The results of kinetic–MHD and MHD-only n = 1 linear simulations are
summarized in figure 13. The threshold value of qmin for n = 1 mode excitation is higher
than the DIII-D results, thanks to the larger β. For kinetic–MHD simulations with only
fast ions (red lines), the growth rates decrease slightly from the MHD-only results, and the
fishbone mode frequencies are almost constant (∼0.4 kHz) as qmin changes. The AE-like
modes do not show up in the NSTX simulations.

After including the thermal ion kinetic effects, the frequencies of fishbone-like modes
increase significantly, while the growth rates decrease because of the precession motion
of trapped ions and Landau damping. As shown in figure 12, the population of trapped
particles (λ ≈ 0) in fast ions is relatively small compared with the co-passing ions, which
leads to the low frequency of the fishbone-like modes. The thermal ions, on the other hand,
have an isotropic distribution and can provide a large population of trapped ions to drive
the fishbone-like mode. The mode structure of the fishbone-like mode for qmin = 1.08 is
shown in figure 14. For qmin > 1.14, the Landau damping effect stabilizes the AE-like
mode, which is similar to the DIII-D results.
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(a) (b)

FIGURE 14. Two-dimensional structure of δφ (a) and δψ (b) from NSTX n = 1 linear
simulation of the qmin = 1.08 case with thermal ions.

In the NSTX experiment, both the kink (m = 1) and tearing (m = 2) modes have been
identified using soft X-ray diagnostics, and the synergy effect of the two modes can lead to
fast ion transport (Yang, Podestà & Fredrickson 2021). It is believed that the m = 2 mode
is mainly a neoclassical tearing mode which is affected by the current associated with EPs.
The m = 1 mode is marginally unstable in the M3D-C1-K simulation with thermal ions
under experimental conditions (1.1 < qmin < 1.2), similar to the DIII-D case, which may
be a result of pressure and current relaxation due to the nonlinear saturation of the fishbone
mode. The frequency observed in the experiment is less than 5 kHz after subtracting the
Doppler frequency of toroidal rotation, which is close to the simulation frequency with
qmin = 1.1. Note that the oscillation frequency after nonlinear saturation can be lower than
the linear result due to the downchirping of the fishbone mode.

6. Nonlinear simulation of the fishbone-like mode in NSTX

Based on the linear simulation, we conduct a nonlinear simulation of the n = 1
fishbone-like mode including the thermal ion kinetic effects in NSTX. We use the same
MHD equilibrium and EP distribution as in § 5, with qmin = 1.08. The simulation utilized
a three-dimensional finite element mesh, and nonlinear terms are included in the MHD
and δf equations. The mesh has 8 toroidal planes connected by Hermite finite elements in
the toroidal direction, which is good enough to resolve the n = 1 perturbation, as we focus
on the growth and saturation of the n = 1 mode and its nonlinear coupling with the n = 0
mode in this simulation. The mesh structure of each plane is the same as in the linear
simulation. We use 16 × 106 particle markers for the PIC simulation.

The nonlinear simulation was conducted at the Perlmutter cluster at NERSC. For each
nonlinear simulation we use 8 nodes with 64 AMD cores and 4 NVIDIA Tesla A100 GPUs
on each node. The GPUs are used to do the MHD equation matrix element calculation and
particle pushing. The CPU was used to solve the matrix by calling PETSC library, and
calculate the particle moments.
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(a) (b)

FIGURE 15. Time evolution of kinetic energy (a) and magnetic energy (b) of different toroidal
harmonics from NSTX nonlinear simulation of the qmin = 1.08 case with thermal ions.

(a) (b)

FIGURE 16. (a) Poincaré plot of magnetic flux surfaces at t = 1.2 ms. The (1,1) and (2,1) islands
are marked as red. (b) Change of fast ion density profile in the nonlinear simulation of qmin =
1.08 due to mode excitation.

The time evolution of the kinetic and magnetic parts of the MHD energy in the
nonlinear NSTX fishbone simulation is shown in figure 15. We find that the n = 1 mode
reaches a saturation point at approximately t = 0.5 ms. The peak δB/B0 at this point is
approximately 2.0 × 10−2, and the perturbed electron temperature has a maximum of
approximately 86 eV (10 % of the equilibrium on-axis Te). There is also an n = 0 mode
excited due to the nonlinear mode–mode coupling. After saturation, the magnetic energy
of the n = 1 mode has some oscillations at a high level, and the energy of the n = 0 mode
keeps growing, meaning that the change to the magnetic field topology does not decay.
The Poincaré plot of the magnetic flux after mode saturation (t = 1.2 ms) is shown in
figure 16(a). There is a clear shift of the magnetic axis due to the excitation of (1,1) mode.
The kink boundary overlaps with the flux contour of q = qmin, meaning that most of the
magnetic perturbation happens in the reversed shear region. Although the equilibrium has
q0 > 1.08, the excited mode creates a (1,1) island near the magnetic axis, and makes the

https://doi.org/10.1017/S0022377822000952 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000952


Thermal ion kinetic effects and Landau damping in fishbone modes 17

magnetic fields near the q = qmin flux surface stochastic. It also creates small (2,1) islands
near the q = 2 surface.

The growth of the n = 1 mode can lead to transport of EPs. Figure 16(b) shows the
flux-averaged profiles of EP density before and after mode saturation. This result shows
that, although the n = 1 mode can provide a large δB field, it only leads to a slight drop
of EP density (approximately 10 %) near the radial location at q = qmin (ρ = 0.2). The
profile gradient does not drop to zero after saturation because the mode is susceptible to
Landau damping, which means that is requires a finite radial gradient to excite. However,
figure 16(b) is a flux-averaged result and does not show the change of gradient along the
mode’s resonance line in phase space, which may be more significant.

Note that the nonlinear saturation results depend sensitively on the value of qmin just
like the linear growth rates. We have also done the nonlinear simulation for NSTX with
qmin = 1.1, using the same plasma and EP β. We find that, in this case, the mode can
saturate at a much lower level. The saturation value of δB/B0 is approximately 3.3 × 10−3,
and the maximum δT_e is approximately 20 eV. The perturbed fields are too small to create
magnetic islands or drive noticeable transport of EPs. Given that this small change of qmin
can be within the error bar of the q measurement in experiments, it is difficult to give a
definite answer on the nonlinear behaviour of the fishbone mode using current diagnostics
through numerical simulation.

7. Summary

The new kinetic–MHD simulation approach in this paper includes all the ions as kinetic
particles, which is different from the classical approach that only deals with kinetic
effects of fast ions. To implement this, part of the MHD equations, the density equation
and the parallel velocity equation, are replaced by synchronization from kinetic particle
simulation, to avoid redundant calculation and parasitic modes caused by numerical errors.
The rest of the MHD equations can still be solved using a semi-implicit method with a
large timestep, which is different from the fully kinetic or gyrokinetic simulation approach.
The inclusion of thermal ion kinetic effects is important for macroscopic instability
simulations targeting ITER and fusion reactors with a large ion temperature.

The new simulation method has been used to study the thermal ion Landau damping
of IAWs and fishbone modes. It is found that the n = 1 fishbone modes driven in an
equilibrium with qmin > 1, or non-resonant fishbone modes, can be strongly affected by
the Landau damping effects, since the mode phase velocity in the parallel direction is
of the same order as the ion thermal velocity. In the linear simulation using a DIII-D
and NSTX equilibrium, it is found that the n = 1 AE-like modes driven by fast ions can
be stabilized by the thermal ions. Therefore it is necessary to revisit those non-resonant
fishbone simulations done by kinetic–MHD codes, and add the thermal ion kinetic effects.
Further analysis of the AE-like modes in the large qmin cases can be done using an
eigenvalue code like NOVA, which will be conducted in the future.

In developing the kinetic–MHD method, we include the parallel electric field calculated
from the electron pressure in the kinetic equations, which is essential for the IAW
simulation. This term, however, is not included in Ohm’s law in the MHD equations.
The two-fluid terms, including the parallel and perpendicular electric fields driven by Hall
terms and electron pressure, can be important for the calculation of plasma waves with
wavelengths comparable to the ion skin depth, such as KAWs and whistler waves. The
two-fluid terms have been developed in M3D-C1 and used to calculate their effects on
magnetic reconnection (Beidler et al. 2016), but simulation with them requires further
testing and improvement of the matrix solver. We plan to do simulations with electric
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fields in both fluid and kinetic equations, to study the two-fluid effects self-consistently in
future work.
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