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Abstract

Let £ be a lattice of subsets of a set X. Let MR(t) denote the set of all £-regular (finitely additive)
measures on the algebra generated by £. Under the assumption that £ is disjunctive, in the first part of
the paper, criteria are obtained for the a-smoothness, r-smoothness, and tightness of elements of
MR(t) in terms of the general Wallman remainder. In the second part of the paper, various
applications are given, and, in particular, extensions and refinements of the Yosida-Hewitt Decom-
position Theorem are obtained.

1980 Mathematics subject classification (Amer. Math. Soc): 28 A 60, 28 A 32.

Introduction

Let £ be a lattice of subsets of X, and 2l(£) the algebra generated by £. MR(t)
denotes the set of all £-regular (finitely additive) measures on 2t(£), and IR(£),
the set of all 0-1 valued measures in MR(t). The topological space
(IR(t),tW(t)), where W{£) is the Wallman lattice, is the general Wallman
space.

In the first part of this paper, we show that, in case £ is disjunctive, each
/i G MR(t) induces two measures £ and /I, defined on certain algebras of subsets
of IR(t). Then, we give criteria for a-smoothness, T-smoothness, and tightness in
terms of (L or /t, and the general Wallman remainder //?(£) — X.
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These results greatly generalize earlier work, [4], where it was necessary to
assume that £ was also S and normal in order that the Alexandroff Representa-
tion Theorem, [1], could be applied to induce the measures /I and ji. This
approach is now bypassed by using general measure extension theorems. We note
that this earlier work had already generalized the work of Knowles, [10], and
Gould and Mahowald, [8], in which X was a Tychonoff space and £ the lattice of
its zero sets.

We can now systematically apply our general criteria to important lattices
which may not be S or normal, such as the lattice of clopen sets in a T2,
O-dimensional space, or the lattice of closed sets in a T, topological space, and for
these special cases the results can be expressed in terms of subsets of fS0X — X,
where fi0X is the Banaschewski compactification of X, [6], and uX — X, where
uX is the Wallman compactification of X, [17], respectively. Thus, beside the
well-known case of BX — X, we can develop, by this abstract approach, a unified
treatment of certain aspects of topological measure theory, in terms of / /?(£) — X,
which will include all the important topological lattices.

However, beyond this, the general approach leads to new measure extension
theorems, as well as to new criteria for lattice repleteness.

In the second part of the paper, various special measures are introduced, such
as purely finitely additive, purely 0-additive, purely T-additive, strongly a-addi-
tive, and so on and, again, utilizing the induced measures jti and jS and certain
subsets of the general Wallman space, we obtain various decomposition theorems
which are extensions and refinements of the well-known Yosida-Hewitt Decom-
position Theorem, [18].

1. Terminology and notation

Let £ be any lattice of subsets of a set X. We shall assume, without loss of
generality for this paper, that 0 , X G £. We say that £ is

1) S if £ is closed under countable intersections;
2) complemented if for every L G £, L' G £;
3) T, or separating if for all x, y G X, x ¥= y implies there exists an A G £ such

that x G A and y £ A;
4) T2 if for all x, y G X, x ^ y implies there exist A, B G £ such that x G A\

y G B', and A' n B' = 0 ;
5) disjunctive if for every x E X and every A G £, x $. A implies there exists a

B G £ such that xEBandAnB=0;
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6) regular if for every x G X and every A G £, x & A implies there exist B,
C G £ such that x £ B ' , / f C C", and B' n C = 0 ;

7) normal if for all A, B G £, A n B = 0 implies there exist C, Z) e £ such
that A <ZC',B C D', and C" n D' = 0 ;

8) Lindelof if any family of sets in £ with the countable intersection property
has a non-empty intersection;

9) compact if any family of sets in £ with the finite intersection property has a
non-empty intersection.

Similarly, one defines £ is countably compact. £ is countably paracompact if for
any decreasing sequence (An) in £ with limn An = 0 , there exists a decreasing
sequence <£„'> in £' with limn 5^ = 0 and /4n C B'.

Next, let £, and £2 be any lattices of subsets of X. £, separates £2 if for all
4 , B G £2, ̂  D B = 0 implies there exist C, D G £, such that A C C, B C D,
and C n £> = 0 .

iV designates the set of natural numbers. S£ is the 8 lattice generated by £, and
tt the lattice of arbitrary intersections of £-sets. A function from XtoR U {±00}
is ^-continuous if the inverse image of every closed set is in £. The set of
£-continuous functions is denoted by C(£), and the set of bounded £-continuous
functions by Cfc(£). %(£) is the set of zero sets of £. The algebra generated by £ is
9t(£), and the generated a-algebra is a(£).

M(&) denotes the set of all measures on 2l(£); that is, those real-valued,
bounded, finitely additive set functions on 3t(£). (See [1], page 567.) An element
/ i6W(E) is called:

1) ^-regular if for each A G A(t) and every e > 0, there exists an L G £ such
thatL GA and\ft(A) - ju(L)|<e;

2) &-(o-smooth) if for every decreasing sequence <^ n ) in9 t (£) with limn An =

3) Sr(T-smooth) if for every decreasing net (La) in £ with limaLa = 0 ,
lima]u(Z,a) = 0(see[i6]);

4) Srtight if /x 3* 0, /i is £-(a-smooth), and for every e > 0, there exists an
£-compact set K such that /t*(*"') < « (see [10]).

MR{£) is the subset of M(£) of all £-regular measures. M(a, £) is the subset of
Af(£) of all £-(a-smooth) measures; while M(T, £) is the set of all £-(r-smooth)
measures, and M(t, £) the set of all £-tight ones.

Forne M(t)-with n>0, the support oifi is S(n)= H{L G £|JU(^) = /*(*)}•
The set of all 0-1 valued elements of M(£) will be denoted by / (£ ) .£ is replete if
for every n G IR(a, £), S(/x) =£ 0 .

Since every element of M(£) is the difference of nonnegative measures, in the
sequel we shall work exclusively with nonnegative measures.
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2

In this section we work with an arbitrary set X and a fairly arbitrary lattice £ of
subsets of X; with this pair we associate the general Wallman space / /?(£) (see
below), and, for the general element of MR(t), we investigate how the properties
of a-smoothness, r-smoothness, and tightness reflect over to / /? (£) and con-
versely. The resulting theorems are not only intrinsically interesting, but they are
also useful throughout the present paper.

2.0. Preliminaries, (i). Let £ be any lattice of subsets of X such that £ is
separating and disjunctive. It is known that the topological space (IR(t), tW(t))
is compact and Tx; it is T2 if and only if £ is normal. (See, for example, [2] and
[13].) Consider the map tf>: X -> / /? (£) , where <j>(X) = nx, the measure con-
centrated at x. <j> is a (tt, tW(£) n <j>(X) = /</>(£))-homeomorphism. For this
reason, <!>(X) is topologically identifiable with X. Moreover, <t>(X) is dense in
/ /?(£) . Consequently, / /? (£) is a compactification of A" if A' carries the tt
topology; it is known as the general Wallman compactification of X. In case §(X)
is identified with X, we say that X is embedded in / /?(£) .

For A E A(t), let W{A) = {/x <E IR(t)\n(A) = 1}, and Wa(A) = {ju E
IR(o, £)|ju(/l)= 1}. The following statements are true:

1. If A G 9I(£), then W(A)' = W(A').
2. If A, BE «(£), then a) W(A U J ) = W(A) U W(B); $) W{A n B) =

W(A) Pi W(B)\ y)ADB, if and only if W(A) D W(B); S) A = B, if and only
if W(A) = W{B).

3. 3l(W(£)) = W(2l(£)).
(Proofs omitted. Note all these statements are true, if £ is simply disjunctive.)

Next, let n G M(£), and define /x on %(W(t)) = W(3l(£)), by (i(W(A)) =
H(A), where A G 3t(£). Then, ju G M{W(t)) and, if ja E MR(t), then jtt G

Conversely, let v G M(W(£)), and define /u on 9t(£) by ju(/l) =
). Then, fi G JV/(£), ^ = (i, and if»- G M/?(^(£)), then /x E M/?(£).

Note, since W( £) is compact,

M*(W(£)) = M/?(o, W(£)) = MR(T, W{£)) = MR(t, W(t)).

Now let juGM/?(£). Then, ju E MR(fV(t)) = MR(a, W(t)). Hence, n is
uniquely extendible to the a-algebra of /i*-measurable sets and the extension is
SW^Ej-regular. We will continue to use ju for this extension.

We note that 2r(Wo(£)) = Wo(2l(£)) (proof omitted). Now, let jti G M(£) and
define n' on 3l(Wo(£)) by /x'(»;(fi)) = fi(B), where fi E 9l(£). Then ju' E
M(WO(£)) and, if /i E M/?(£), then /x' G M/?(^o(£)). Conversely, let p G
M(Wa(£% and define it on 3l(£), by ju(5) = p(Wa(B)). Then, fi E A/(£), p = /x',
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and, if p E MR( Wa(£)), then ju e MR(£). The following statement is also true: If
fiEMR(£), then /x E MR(a, £), if and only if p' E MR(o, Wo(t)). (Proof
omitted.)

2.1. On o-smoothness.

THEOREM 2.1. Let £ be any lattice of subsets of X such that £ is (separating) and
disjunctive. Ifn E MR(£), then the following statements are equivalent:

\.[i<EMR(o, £).
2. / / <L,-; / £ TV) K m £ W <L,-> is decreasing and CY W(L,) C /«(£) - X,

then(i(ni W(L,)) = 0 .
3. / / <L,.; iGN) is in £ am* <L,> w decreasing and fl, ff(L,) C / « ( £ ) -

(
4./
5. (i*(IR(a, £)) = /!(//?(£)).

PROOF, a). Assume 1 and let (Lt) be a decreasing sequence in £ with
PI, W(L,) C /#(£) - X. We have /x(n, »f(L,)) = lim,/l(^(L,)) = lim,ju(L,)
= /i(D.L,) = 0 since D(.L,, = 0 . Hence, 2 follows. Conversely, assume 2 and
let (L,-) be a decreasing sequence in £ with lim, L, = 0 . Then, D. ^(L,) C
//?(£) — X, for, if not, there exists an x G X with M*(^;)

 = ^ f°r aH '> which is
absurd. It now follows that /x E MR(o, £).

/?). The proof that 1 and 3 are equivalent is similar and will be omitted.
y). Since (L*(X) + /!*(//?(£) - A") = /!(/«(£)) and £»(//?(£) ~ *") =

sup{/t(A:)|A: E «H^(£), A: C //*(£) - X}, it follows readily that 2 and 4 are
equivalent.

5). To show 3 and 5 are equivalent, the same type argument as in y) is used.

REMARK. The part of the assumption "£ is separating" is not needed, in case
4>( X) is not identified with X. Whenever we wish to indicate this in a theorem, we
shall enclose the word " separating" in parentheses.

OBSERVATION. 4 and 5 are equivalent to
4'. X is jd-thick;
5'. IR(o, £)is/i-thick

(see [9], pages 74, 75).
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2.2. On T-smoothness.

LEMMA 2.1. Let £, and £2 be any lattices of subsets of X such that £, C £2. If
fi G MR(tx), then ju can be extended to a v £ MR(t2), and, //"£, separates £2, r/ie
extension is unique. (See [5] and [11].)

Now, let £ be any lattice of subsets of X, and let ju e MR(t). Then, /I G
M/?(JF(£))» and, therefore, by the lemma, (i can be extended to a /Z G Mi?(W(£)).
Moreover, since W(£) is compact, W(t) separates tW(t), and, therefore, the
extension is unique. Also, since MR(tW(t)) = MR(a, tW(t)), ft is uniquely
extendible to the a-algebra of /Immeasurable sets and the extension is also
fW(£)-regular. We continue to use (L for this extension.

LEMMA 2.2. Let £ be any lattice of subsets of X which is 8. The following
statements are equivalent:

\.H<EMR(T, £) .

2. / / (La; a E. A) (net) is in £ and (La) is decreasing, then ii*(OaLa) =

3. / / {La; a(EA} C £ and {La; a G A} is a filter base, then n*(DaLa) =

We can now establish, quite analogously to the proof of Theorem 2.1, the
following:

THEOREM 2.2. Let £ be any lattice of subsets of X such that £ is (separating) and
disjunctive. Ifp G MR(t), then the following statements are equivalent:

1. fie MR(T, £) .
2. / / (La; a G A) (net) is in £ and (La) is decreasing and Da W(La) C IR(t)

-X,thenil(naW(La))=O.
3. fi*(X)

OBSERVATION. Statement 2 is equivalent to the statement: If K G tW(t) and
K C IR(t) - X, then fi(K) = 0.

THEOREM 2.3. Let £ be any lattice of subsets of X such that £ is separating and
disjunctive. Ifn G MR(T, £), then /i can be extended to a v G MR(r, tt) such that
v is ^regular on (tfc)', and v is unique in the sense that if p £ MR(tt) and p also
extends /i, then p = v.
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PROOF, (i). Existence. Since p £ MR(r, £), by Theorem 2.2, /i*( X) = /!(//?(£));
that is, X is /I-thick, and the projection of /I on A(t£), denoted by v, is defined.
Then, for A £ A(tt), there exists an A* £ 3l(W(£)) such that /I = >4* Pi * and
I>(J4) = fi(A*). It is readily seen that v extends n, and v £ MR{T, tt).

(ii). Now, we show that v is ^regular on (r£)'. Let B £ (f£)', and e > 0. Then,
B = G n X, where G £ (t\V(t))'. By the regularity of /I, there exists a A: £ f W(£)
such that KCG and / l ( G - # ) < £ • However, K = r i a JF(LJ , La £ £, so
(naW^(Lo)) n G' — 0, and, by compactness, there exist finitely many of the
Lo,say,La i , . . . ,La such that (n?= iW(La i)) n G'= 0.Thus, W(L) n G' = 0 ,
where L = DJL, La( £ £. Hence, K C ^ ( L ) C G, and W(L) HXCGD X =
B, so L C B. Finally, K^ ~ £) = "((<? ~ ^ ( ^ ) ) H X) = fL(G - W(L)) <
ji(G — K) < e, which completes (ii).

(iii) (We omit the proof of uniqueness.)

REMARK. For a related type of extension involving content see [ 15].

We will also need the following theorem, the proof of which is in the same
spirit as that of Theorems 2.1 and 2.2, and will be omitted.

THEOREM 2.4. Let £ be any lattice of subsets of X such that £ is disjunctive. If
/i £ M/?(£), then the following statements are equivalent:

2. / / <W(La); a<=A) (net) is in £ and (W(Ltt)) is decreasing and
C 7/1(6) - 7/l(o, £), then fi{naW(La)) - 0.

3. ji*UR(o, £)) =

OBSERVATION. Clearly, statement 2 is equivalent to the statement: If K £ tW(t)
and K C //?(£) - IR(o, £), then ji(K) = 0.

2.3. On tightness.

THEOREM 2.5. Let £ be any lattice of subsets of X such that £ is separating,
disjunctive, and normal, //ft £ A//?(£), then the following statements are equiva-
lent:

2. fi*(X) = /!(//?(£)) and X is ft*-measurable.

PROOF. Assume 1 and let e > 0. Then, there exists an £-compact set K such that
^ ' ) < e- S i n c e M G MR(t, £), it follows that jn £ MR(r, £), and, therefore, by
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Theorem 2.3, there exists a unique v £ MR(T, tt) extending fi and Irregular on
(r£) ' . Also, by the hypothesis, it follows that K G tt, so A"' £ (?£) ' . Let /t be
extended to a(£) and v to o{tt). Then,

p(K') = sup{v(L)\L G £, L C A"}

(since P is £-regular on (/£)')• Thus,

a(£), £ C A'}

= sup{»-(£)|£ e a(£), £ C A"'}

£ a{tt), E C AT'}

Therefore, KAT') = sup{jn(£)|£ £ a(£), £ C A"'} = ^{K'). Also, AT' = X - K
= (//?(£) - K)D X and, since AT is fW(£)-compact and tW(t) is T2 (by the
normality of £), K G tW{t). Then,

p,*(IR(t) - X) *£ fi(lR(t) - K) = V((IR(£) - AT) n X)

Consequently, /!*(//?(£) - Z) = 0, and 2 follows.
Conversely, assume 2 and let e > 0. Since X is /I*-measurable and /I is

fjf(£)-regular on the a-algebra of /Immeasurable sets, jii*(Ar) = sup{/x(AT)| AT G
tW(t\ K C X). Thus, there exists a AT G tW(£), K C ^Tsuch that ji(K) > ji*(X)
— e. K is, of course, £-compact; also, K G tt, and, as above, v(K') — /t%(AT'), so
KAT) = n*(K); but, ̂ A") = v(K (1 X) = fi(K). Hence, /x*(AT) > (i*(X) - e =
/!(//?(£)) — e = JU(A') — e, which establishes 1. Note, in this part the normality
of £ is not needed.

In this section we introduce two important sets of measures and establish
certain lemmas critical for the subsequent development.

Consider any disjunctive lattice £ of subsets of X.
The set MR'(t): n G MR'(t) if n G MR(£)andju' G MR(T, Wa(t)).
The set MR~(£): neMR~(£) if jti e MR(£) and for any p G / / ? ( £ ) -

IR(a, £), there exists a G G (tW(t))' such that p G G and fi(G) = 0.
By a compactness argument, it clearly follows that MR (£) C MR (£).
The following two theorems indicate the importance of these sets concerning

repleteness.
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THEOREM 3.1. (On MR (£).) The following statements are true:
\.MR\t) CMR(o, £).
2. IR(a, £) C M/?"(£).
3. £ « replete, if and only if MR.\t) C MR(T, £).

PROOF. 1. The proof of 1 is clear.
2. If n e 7/?(a, £), then S(jS) = {ft}, and 2 follows directly.
3. Assume £ is replete, and let p G M/f (£). Then, ft' G MR(T, Wa(t)), and, by

Theorem 2.4, it follows that ft(AT) = 0 for A: G fW(£) and # C IR(t) - X.
Hence, by Theorem 2.2, ft G MK(T, £), so M/T(£) C M7?(T, £). Conversely,
assume M/?'(£) C MR(r, £). If 77*(a, £) ¥= X, let jti G IR(o, £) - A'; then, n G
MR(T, £), and, by Theorem 2.2, we get that jS({ju}) = 0, a contradiction. Hence,
IR(a, £) = X, and £ is replete.

THEOREM 3.2. (On MR (£).) The following statements are true:
l.IR(a,t) CMR~(t).
2. 7//i G MR(t), then ft G MR~(£), if and only ifS(ji) C IR(a, £).
3. £ is replete, if and only if whenever ft G MR (£) , //iew S(/I) C X
4. £ is replete, if and only ifMR~{£) C MR{T, £).

PROOF. 1. Let /x G 7fl(a, £) and p G 7#(£) - IR(o, £). Then, p ^ ft. Hence,
there exists a G G (fW(£))' such that p G G and ft £ G. Thus, ft(G) = 0, and 1
holds.

2. Let ft G MR(Z) and assume /x G MR~(Z). If 5(/i) ^ IR(a, £), then there
exists a p G IR(£) such that p G S(/i) and p ^ IR(a, £). But, ft G Af7T(£), SO
there exists a G G (tW(t))' with p G G and ft(G') = ft(77?(£)). Hence, since
p G S(ft), p G G', a contradiction. Conversely, assume 5(/t) C IR(a, £), and let
p G 77*(£) - IR(a, £). Then, p ^ S(fl); therefore, there exists a G G (tW(t))'
such that ft(G') = /H^(£) ) and p ^ G'. Thus, p G G and /Z(G) = 0, so ft G

3. The proof of 3 is clear.
4. Assume £is replete. Then, by Theorem 3.1, MR\£) C A/TT(£) C MR(r, £).

The proof of the converse is not difficult and will be omitted.

REMARK. We note, although we will not make use of it, that if £ is also normal
and countably paracompact, then MR (£) = MRl(t), where MRI(t) is the set
of all ju G A//?(£) which integrate all / G C(£). (See [4].)
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LEMMA 3.1. Let £ be any lattice of subsets of X such that £ is (separating) and
disjunctive. If X G MR(tW(t)) and X*(X) = X(//?(£)), then there exists a n G
MR(t) such that X = ji and n B MR(T, £).

PROOF. Consider A|3t(Pf(£)), and denote it by X again. Then, there exists a
H G A/(£) such that X = fL. Since W(t) separates tW(t), X G MR(W(t)), so
fieMR(t); also, clearly we must have X = (i. Hence, fi*(X) = X*(X) =
X(//?(£)) = /!(//?(£)), and, by Theorem 2.2, /i G MR(T, £).

LEMMA 3.2. Let £ fee a«^ /a/rtce of subsets of X. Let /x G MR(t) (such that ju > 0)
consider the measures (i on a(W(t)) and ju on a(?fF(£)). (Recall (L is

8W(£)-regular and ju is t W(£)-regular.) Next, let H be any subset of IR(£). Then,
1. There exists a countably additive measure p on a(W(t)) such that 0 < p < p., p

is 8W(t)-regular, andp*(H) = p(IR(£)) = £*(#)•
2. There exists a countably additive measure p on a(tW(t)) such that 0 < p < j5,

p w tW(t)-regular, and p*(H) = p(//?(£)) = fi*(H).

PROOF. (For 1.) Since ju is 5fF(£)-regular, there exists a decreasing sequence
</!„>, ^B E (aW(£))\ /1 O D/ / for all n, and limnfx(^n) = /x*(i/). Then, A =
nnAnea(W(t)). Now, define p on a(W(£)) by p(E) = (L(E n A), where
£ G a(ff(£)). Clearly, p is a countably additive measure on a(W(t)) and
0 < p =s ju. Also, since /i is 8W(£)-regular, so is p. Now, for all n, p*(H) < p(^B)
= /!(/(„ D A) = fL(A) = limB M(^n) = ju*(/f). Hence, p*(//) < (L(A) =
p( //?(£)) < £*(#). But, if G G (8W(t))' and CDtf, then,

p(G) = (L(G HA)= lim/I(G D An) > /1

and the SW^fiVregularity of p implies that p*(H)> (i*(H). Combining this with
the above gives p*(H) = p(//?(£)) = /

A similar proof holds for Case 2.

OBSERVATION. p\W(8W(£)) E MR(a, 8W(t)\ and, since H^(£) separates
tW(£), p|3t(^(£)) G MR(a, W(t)). We will continue to use p for this restric-
tion.

REMARK. This lemma generalizes a result of Knowles ([10], page 143).
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4

In this section we define a purely finitely additive measure (p.f.a.), a purely
a-additive measure (p.o.a), and a purely T-additive measure (p.r.a), and for each
type of measure we give a characterization theorem.

Let £ be any lattice of subsets of X.

DEFINITION 4.1. /X G MR{£) is p.f.a. if

y G M(o, £ ) and 0 < y < ju implies y = 0.

THEOREM 4.1. Let tbe any lattice of subsets of X such that £/\s {separating) and
disjunctive. If ft. £ MR{Q,), then the following statements are true:

1. Ifn is p.f.a., then fi*{X) = 0.
2. / / £ is S and a(£) C *(£), and (i*{X) = 0, then /x is p.f.a.

PROOF. 1. Assume /x is p.f.a., and (1*{X) ¥= 0. By Lemma 3.2(1), there exists a
p G MR{a, W{£)) such that 0 < p =£ /x and p*{X) = p(//?(£)) = A*(^)- Then,
p = P, where P S M/?(£), SO 0 < v < (I, and 0 < »» < ja. But, P*(Ar) = »>(/#(£));
therefore, by Theorem 2.1, v G MR{a, £). Thus, since ju is p.f.a., »» = 0; but,
v(X) = P{IR{&)) = p(//?(£)) = /**(*) ^ 0, a contradiction.

2. Suppose £ is S and o(£) C s(£), and (i*{X) = 0. Let y G A/(a, £) and
0 < y « /i. Then, 0 < f < £, so 0 < f* < (i*. Hence, ?*(A') = 0. Now, by the
assumptions on £, y G M/?(a, £). Therefore, by Theorem 2.1, y*{X) = y{IR{£)),
so y = 0. Hence, /x is p.f.a.

DEFINITION 4.2. /x G MR{a, £) is p.a.a. if y G Af(a, £), 0 < y < fi, and y is

T-smooth implies y = 0.

Analogously to Theorem 4.1 we have the following:

THEOREM 4.2. Let £ be any lattice of subsets of X such that £ is {separating) and
disjunctive. Ifn G MR{a, £), then the following statements are true:

1. If fi is p.o.a., then fL*{X) = 0.
2. Iftis 8ando{£)<Z s{£), and (L*{X) = 0, then ju is p.a.a.

PROOF. 1. The proof of this part is quite similar to the proof of the first part of
Theorem 4.1. Here, we use Lemma 3.2, Case 2, and Lemma 3.1, and, structurally,
the proof is the same as in Theorem 4.1.
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2. The proof of this par t is also similar to the proof of the corresponding part of
Theorem 4.1 , so we will be brief. Let y G M(o, £ ) , 0 < y < ft, and y be T-smooth.
Then, 0 < y < /X on W(W(£)). One can then show that 0 < y < /I on %(tW(t)),
by using the fact that /I e MR(T, tW(£)) and that y G MR(T, tW(£)\ since £ is
8 and a(£) C J ( £ ) , in conjunction with Lemma 2.2. Then, 0 ̂  y* < jS*, and,
since fi*(X)-0, we get that f*(A') = 0; but, y G M/?(T, £); therefore, by
Theorem 2.2, y(//?(£)) = 0, and y - 0, so n is p.a.a.

DEFINITION 4.3. ju e MR(r, £) is p.T.a. if y £ Af(a, £), 0 «£ y < fi, and y is
tight implies y = 0.

THEOREM 4.3. Let £ be any lattice of subsets of X such that £ is separating,
disjunctive, and normal. / / | i £ MR(T, £), then the following statements are true:

1. If (i isp.r.a., then ji*(IR(£) - X) = /!(/#(£)).
2. / / £ is 6 and a(£) C .?(£), am* fi*(IR(£) - X) = £(/#(£)), tfu?« /x w />.T.a.

PROOF. 1. Suppose n is p.r.a. and ji*(IR(£) - X) </!(//?(£)). Then, there
exists a G e (tW(t))' such that G D /«(£) - X and /I(G) < (i(IR(t)). Thus,
//?(£) - G G /W(£). Let F = IR(£) - G. Then, Fis /H^(£)-compact and F C X.
Consequently, F is £-compact and F G f£. Since n e MR(T, £), by Theorem 2.3,
/i can be extended uniquely to a y G MR(T, tt); y can be uniquely extended to
a(tt) and is ?£-regular there also. Now, define X on a(£) by X(E) = y(E n F).
Clearly, X G M(a, £) and 0 < X < ju. Let e > 0. Since F G tt, F= DaLa,
La G £. Using Lemma 2.2, it is not difficult to see that X*((laLa) -
y{(naLa) n F).But,y{(naLa) D F) = y(F) = X(X) > X(X) - e, so X is
tight. Thus, X - 0; however, X(A') = y(F) = /Z(F) = /!(//?(£)) - j£t(G) > 0, a
contradiction.

2. Suppose £ is 5 and o ( £ ) C s ( £ ) , and fi*(IR(£) - X) = /!(//?(£)). Let
y G Af(a, £), 0 =s y < ju, and y be tight. Then, y G MR(a, £), 0 < f < / i o n
%(tW(t)), and, by regularity, 0 < y < / I on a(tW(t)). Hence, 0<y ] ( , (A r )<
/i^(A'), so y*(Ar) = 0. Now, y G MR(t, £), and using Theorem 2.5, we get that
also y*(X) = 0, so y(//?(£)) = 0, y = 0, and p is p.T.a.

In this section we define a strongly a-additive measure (s.a.a.) and a strongly
T-additive measure (s.r.a.), and, for each of these types, we also give a characteri-
zation theorem.
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Again, let £ be any lattice of subsets of X.

DEFINITION 5.1. ft G MR(o, £) is s.a.a. if for y G M(£), 0 < y < ft, y' G

Af(a, Jfa(£)), and y' is T-smooth implies y = 0.

LEMMA 5.1. Let £ be any lattice of subsets of X such that £ is disjunctive. If
X G MR(tW(£)) and X*(IR(a, £)) = X(//?(£)), tfie« tfim? <?*«/.* an element ft o/
Af«(£) such that X = ft and ft' G M / ? ( T , W O ( £ ) ) (that is, /t G M/?"(£)).

PROOF. Consider \ |2 l (W(£)) , and denote it by the same symbol. Then, X — /i,
where ju e A//?(£), and \ = /I (see Lemma 3.1); hence, fi*(IR(a, £)) = /!(//?(£)),
and, by Theorem 2.4, /x' e M « ( T , » ; (£)) .

REMARK, ft need not belong to MR(T, £). For this to be true, fi*(X) = /!(//?(£))
must hold.

THEOREM 5.1. Let £ be any lattice of subsets of X such that £ is disjunctive. If
ft G MR(a, £), then the following statements are true:

1. //ft is s.a.a., then fi*(IR(a, £)) = 0.
2. / / Wo(t) is 8 and a(Wa(t)) C s{Wa(t)), and ji*{IR(o, £)) = 0, then ft is

s.a.a.

OUTLINE OF PROOF. 1. Suppose /t is s.a.a. and p.*(IR(o, £)) ^ o. By Lemma
3.2, Case 2, there exists a p e MR(o, tW(£)) such that 0 < p < ju and
P*(IR(a, £)) = p(//?(£)) = ii*(IR(a, £)). Denote p| 21 (W(t)) by p again. Then,
p = v, where »> € A/(£), and 0 < »»< ft, so 0 < v < p. By Lemma 5.1, p = v and
v' G MR(T, Wo(t)). Thus, j» = 0; but, v(X) = P(IR(t)) = p(//?(£)) =
ji*(IR(a, £)) =̂ 0, a contradiction.

2. Just imitate the proof of the corresponding part of Theorem 4.2 using
Theorem 2.4 instead of Theorem 2.2.

REMARK. Note that the condition o(Wa(£)) C s(Wo(t)) is satisfied, for exam-
ple, when a(Wa(t)) = p(Wo(£)). Hence, in particular, when £ is complement
generated, in which case, Wa(t) is complement generated.

EXAMPLE. Let X be a T3. topological space and £ = %, the lattice of zero sets.
In this case, IR{a, %) = vX, the real compactification of X.
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OBSERVATION 1. Let £ be a disjunctive lattice of subsets of X. Let p E
M(a, Wo(£)) . Then, p = v', where v E M(a, £ ) , and, consequently, the following
is true: If £ is 6 and a(£) C s(t), and ji*(IR(o, £)) = 0, then n is s.a.a. (The
details will be omitted.)

OBSERVATION 2. If £ is (separating), disjunctive, 8 and a(£) C s(t), then fi is
s.a.a. implies ju is p.a.a., for, by Theorem 5.1, Part 1, ji*(IR(o, £)) = 0. Hence,
jS*(Ar) = 0, and, by Theorem 4.2, Part 2, /x is p.a.a.

DEFINITION 5.2. it E M/?(T, £) is s.T.a. if for y E M(£), 0 < y «s ju, y' E

M(a, Wo(£)), and y' is tight implies y = 0.

By imitating the proof of Theorem 2.5, we can establish the following:

LEMMA 5.2. Let £ be any lattice of subsets of X such that £ is separating,
disjunctive, and normal. If fi E MR(£,), then the following statements are equiva-
lent:

2. jx*(IR(a, £)) = /!(/#(£)) and IR(a, £) is /I*-measurable.

COROLLARY 1. / / £ is also replete and ii E MR(t), then JU' E MR(t, Wa(t)), if
and only if n E MR(t, £).

PROOF. Use Lemma 5.2 and Theorem 2.5.

Note, if £ is disjunctive and replete and n E MR(t), then /x E MR~(£), if and
only if jti' E MR(r, Wa(t)), if and only if /x E MR(T, £).

COROLLARY 2. //JU E M/*(£), tfien ju E A/fl(/, £) implies /x' E M/?(/, **;(£)).

PROOF. By Theorem 2.5, fl*(X) = /!(//{(£)) and X is /x*-measurable. Clearly,
then ji*(IR(o, £)) = /t(//*(£)). Hence, /i^(Ar) < /x*(/^(a, £)) < fi*(IR(o, £)) <
A*( A"), so //?(a, £) is /x*-measurable, and, by Lemma 5.2, tt' E M/?(r, Wo(t)).

COROLLARY 3. Let it E MR(t). Then, it' E Mrt(<, »;(£)), // a«</ o«/y ;/ there
exists a Gs-set, H, of //?(£) SMC/I //iar H D / # (£ ) - //?(a, £) and fi(H) = 0.

PROOF. Just use Lemma 5.2 and the fW(£)-regularity of jit.
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Note, if every Gs-set of IR(t) is open, then /*' e MR(t, Wa(t)) implies
H G MR~(t).

Finally, by imitating the proof of Theorem 4.3, we can establish the following:

THEOREM 5.2. Let £ be any lattice of subsets of X such that £ is separating,
disjunctive, and normal. Iffi G MR(T, £), then the following statements are true:

1. Ifn is s.r.a., then /!*(//?(£) - IR(o, £)) = £(/«(£)).
2. / / Wa(t) is S and o(Wa(t)) C s(Wa(t)), and (i*(IR(t) - IR(a, £)) =

£(//?(£)), then ju is s.r.a.

In this section we give a characterization of repleteness in terms of p.a.a. and
s.a.a. measures; we also present a relationship between p.o.a. and s.a.a. measures,
under repleteness, and a relationship between p.T.a. measures, under repleteness.

THEOREM 6.1. Let £ be any lattice of subsets of X such that £ is (separating),
disjunctive, 8 and a(£) C s(t). Then, £ is replete, if and only if for any n G
MR(a, £), fi is p.a.a. implies ju is s.a.a.

PROOF, a). Suppose £ is replete, and JU. G MR(o, £) is p.a.a. Then, by Theorem
4.2. Part 1, ji*(X) = 0. But, IR(a, £) = X; therefore, fi*(IR(a, £)) = 0. Also,
Wa(t) = £, and, by Theorem 5.1, Part 2, ju is s.a.a.

0). Assume the condition holds. If IR(a, £) ^ X, let /x £ /#(a, £) - X Then,
S(fi) = {ju}, and, since fi is rW(£)-regular, it follows that fi*(X) = 0, and,
Theorem 4.2, Part 2, implies that /x is p.a.a. Hence, by the assumption, /x is s.a.a.
Thus, by Theorem 5.1, Part 1, fi*(IR(a, £)) = 0, a contradiction since /x({ju}) = 1.

APPLICATION. Let X be a T3i topological space and £ = %, the lattice of zero
sets. Then, by the preceding theorem, £is replete, that is, Xis realcompact, if and
only if, for every /* G MR(a, %), p is p.a.a. implies n is s.a.a.

THEOREM 6.2. Let £ be any lattice of subsets of X such that £ is separating,
disjunctive, normal, 6 and o(£) C s(£). The following statement is true: If fi is
s.r.a., then fi is p.T.a.

PROOF. By Theorem 5.2, Part 1, jtt*(//?(£) - IR(a, £)) = £(//*(£)); hence,
ft*(IR(t) - X) = /!(//?(£)), and, using Theorem 4.3, Part 2, completes the
proof.
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OBSERVATION. Assume that £ is also replete. Then, for n E MR(T, £), ju. is
s.r.a., if and only if JX is p.r.a. (Proof omitted.)

In this section, as a result of our previous development, we extend the
well-known Yosida-Hewitt Decomposition Theorem go more general lattices than
the complemented ones (that is, algebras) and we even obtain further refinements.

THEOREM 7.1. Let £ be any lattice of subsets of X such that £ is separating,
disjunctive, normal, S and a (£) C s(£). The following statement is true: if ju E
MR(t), then there exist four elements of MR(t), ju0, /*,, n2, ft3 such that
H = n0 + /i, + ju2 + /i3, andn0 isp.f.a., ju, isp.a.a., fi2 is p.r.a., and n3 is tight;
moreover, such a representation of ft is unique.

PROOF. Existence, a). Consider jd. By Lemma 3.2, Case 1, there exists a
p e MR(a, W(t)) such that 0 < p < (i and p*(X) = p(IR(t)) = /i*(A). Now,
p = v, where v G MR(£). Then, 0 < v < (L, so 0 *£ v < ju. Also, >»*( A") =
P(IR(t)); hence, P e Mfl(a, £). Now, let /i0 = n - v; then, ju0 > 0 and /i0 e
Af/?(£). Since /i = /i0 + v, /x = ju0 + v. Thus, jii* = /ij + P* (see [19], page 33).
Consequently, (LftX) - JJ.*(X) - P*(X) = 0, and, by Theorem 4.1, Part 2, JU0 is
p.f.a. Hence, /x = n0 + v, where ju0 is p.f.a. and v e MR(a, £).

p). Next, consider v. By Lemma 3.2, Case 2, there exists a A G MR(tW(H))
such that 0 < \ < i? and A*(A) = A(//?(£)) = ?*(A). Then, A = f, where T G
M / ? ( T , £), by Lemma 3.1. It follows that 0 < f < v, so 0 < T < j ' . Now, let
Hx — v — T, then, /LI, > 0 and JU, G MR(o, £). Since »» = /*, + T, i> = /I, + f, and
j»* = /it + f *, and it follows that /*?( A") = 0. Part 2 of Theorem 4.2 implies that
/t, is p.o.a. Consequently, /* = /i0 + /i, + T, where /x0 is p.f.a., JU, is p.a.a., and
T G M / ? ( T , £).

y). Next, consider f. Since f is f JP(£)-regular, there exists a sequence (if,,) in
rfF(£) such that Kn C A for all n, <A:M> is increasing, and limn f(Kn) = f»(A).
Let /f = U n ATn G a(tW(t)). Then, f ( / / ) = f , (A) . Now, define u on a(tW(t))
by w(£) = f ( £ — H). Consider w 12l(rfP(£)), and denote it by the same symbol;
clearly, u G MR(tW(t)).

Also, if A" £ r^(£) , K C //?(£) - A, then u(K) = T(K - H) < f(A") = 0,
since r G A//?(T, £) (see Theorem 2.2). Hence, « , ( /£(£) - A) = 0, so w*(A) =
w(//?(£)). Then, Lemma 3.1 implies that w = /i2, where ju2 E MR(T, £). Also,
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since w is t\V(t)-regular, it is easy to see that «„,(*) = 0, so u*(IR(t) - X) =
u( /* (£ ) ) . Therefore, /!$(//?(£) - X) = /I2(//?(£)), and Theorem 4.3, Part 2,
implies that n2 is p.T.a.

5). Define e on 9l(£) by e(£) = r(W(E) D # ) • Let <£„> be any decreasing
sequence in 2l(£) such that limn En = 0 . Then, DnW(En) C IR(£) - X, and
limne(£J = limn f(W(En) D H) = f{iln(W(En) n #)) < f(f\ W{En)). If
f (Pln W{En)) > 0, then, since f is ?W(£)-regular, there exists a ^ e r ^ E ) such
that KG (1 nW(EJ and T(K) > 0. But, T G MR(T, £), and, therefore, we have a
contradiction (see Theorem 2.2). Thus, e G M(a, £), and, since £ is 8 and
a(£) C s(t), e e M/?(a, £). Now, we show that c is tight. Let S > 0. Then, there
exists a K e fW(£) such that AT C X and f(AT) > f^X) - 8. K is, of course,
/W(£)-compact. Hence, since K C X, K is £-compact. Also,

£„,(#') = e^X- K) = sup{e(L)|LG £, L CX- K]

(since e is £-regular and £ is 8)

H ) | L 6 £ , L C l - K)

n ̂ )|L e£, W{L) nxcx- K)

However, f^X) > f^K) + fm(X - K) = f(K) + f*(X - K). Thus,
f „,(X — K) < 8. Consequently, e is tight. Let ju3 = e.

e). We have: ju = /i0 + ju, + /x2 + JU3, where ju0 is p.f.a., ju, is p.a.a., n2
 ls P-T.a.,

and ju3 is (£-regular) and tight.
Uniqueness. Consider any two representations of p. of the type obtained above,

namely, n — ju0 + ju.t + n2 + fi3 and p = vo + vx + t>2 + v3, with ;u0 and v0 p.f.a.,
ju, and vx p.a.a., n2 and v2 p.r.a., and ju3 and v3 (£-regular) and tight. Denote
Hi + fi2 + n3 by \ and v] + v2 + v3 by p. Then, n0 + X — vQ + p, and j ^ 0 and v0

are p.f.a., and X e MR(o, £) and p G MR(o, £). Then, X — p = v0 — /x0. Hence,
since n0 > 0, A — p ̂  »<0. Also, since vo> 0, 0 < ( \ — p ) + < J'Q and 0 <
- ( X - p)"< p0. Thus, since (X - p ) + G M(o, £) and -(X - p)"G M(a, £), and
ô is p.f.a., (X — p ) + = 0 and -(X — p ) ~ = 0 . Therefore, X — p = 0. Conse-

quently, ji0 = v0 and /i, + /x2 + ju3 = vx + v2 + v3.
One can proceed similarly to show jx, = vx, then /x2 = v2, and then ju3 = v3.

REMARK. The decomposition theorem just proved is applicable, for example, to
any T3i space, with £ = %, or to any normal analytic space, with £ the collection
of its closed sets.
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COMMENT. If £is complemented, that is, if £is an algebra, then M(£) = MR(£).
Hence, in this case, we can dispense with the condition £ is o and a(£) C j(£).
Also, in this case, £ is disjunctive, and since in the first part of the decomposition
theorem it is not required that £ be either separating or normal, we obtain the
following:

COROLLARY, ///X G Af(£), then there exist ju0, v G Af(£) such that /x = no + v,
and n0 is p.f.a. and v G M(a, £); moreover, such a representation of ju is unique.

This special case is the well-known Yosida-Hewitt Decomposition Theorem,
[18].

OBSERVATION. Let n G MR(a, £) be p.a.a. By Theorem 4.2(1.), jx*(X) = 0. By
Lemma 3.2, Case 2, there exists a p G MR(tW(£)) such that 0 < p < ji and
p*(IR(oy £)) = p(//?(£)) = fl*(IR(a, £)). Consider p|3l(W(£)), and denote it
by the same symbol. Then, p = v, where v G A/(£). Clearly, 0 < v < ji, so
O ^ K f i . By Lemma 5.1, p = v and r' G MR(T, Wa(£)). Let A = /i - P. Then,
A > 0 and, since /*, v G A//?(a, £), A G MR(a, £). Clearly, /I* = X* + ?*, and it
follows that X*(IR(o, £)) = 0. Hence, since £ is 8 and a(£) C s(£), by Theorem
5.1, Observation 1, A is s.a.a. However, since 0 < v < ji, we get that 0 < >'*(Ar) <
ji*(X) = 0, and, by Theorem 4.2, Part 2, v is p.a.a. Consequently, JU = X + v,
where A is s.a.a. and v is p.a.a.

One can proceed similarly to obtain a further decomposition of the general
p.T.a. measure and hence a further refinement of the decomposition obtained in
the theorem.
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