ON THE COMPLEX OSCILLATION THEORY OF $f^{(k)}+A f=F$

by CHEN ZONG-XUAN

(Received 9th December 1991)

In this paper, we investigate the complex oscillation theory of

$$
f^{(k)}+A f=F(z), \quad k \geqq 1
$$

where $A, F \neq 0$ are entire functions, and obtain general estimates of the exponent of convergence of the zero-sequence and of the order of growth of solutions for the above equation.

1991 Mathematics subject classification: 34A20, 30D35.

1. Introduction and results

For convenience in our statement, we first explain the notation used in this paper. We will use respectively the notation $\lambda(f)$ and $\bar{\lambda}(f)$ to denote the exponent of convergence of the zero-sequence and of the sequences of distinct zeros of $f(z), \sigma(f)$ to denote the order of growth of $f(z), v_{f}(r)$ to denote the central index of the entire function $f(z)$. By the Wiman-Valiron theory, we have

$$
\sigma(f)=\varlimsup_{r \rightarrow \infty} \frac{\log v_{f}(r)}{\log r}
$$

In addition, other notation of the Nevanlinna theory is standard (e.g. see [4,5]). Other notation will be shown when it appears.

In 1982, S. Bank and I. Laine investigated the complex oscillation theory of homogeneous linear differential equation, and proved in [1]:

Theorem A. Let $A(z)$ be a nonconstant polynomial of degree n, and let $f(z) \neq 0$ be a solution of the equation

$$
\begin{equation*}
f^{\prime \prime}+A(z) f=0 \tag{1.1}
\end{equation*}
$$

Then
(a) the order of growth of f is $(n+2) / 2$,
(b) if n is odd, the exponent of convergence of the zero-sequence of f is $(n+2) / 2$,
(c) if n is even, and if f_{1} and f_{2} are two linearly independent solutions of (1.1), then at
least one of f_{1}, f_{2}, has the property that the exponent of convergence of its zero-sequence is $(n+2) / 2$.

Afterwards, I. Laine showed in [6].
Theorem B. Let $a_{0}, P_{0}, P_{1} \neq 0$ be polynomials such that $\operatorname{deg} a_{0}=n, \operatorname{deg} p_{0}<1+n / k$. Consider the equation

$$
\begin{equation*}
f^{(k)}+a_{0} f=P_{1} e^{P_{0}} \quad(k \geqq 2) . \tag{1.2}
\end{equation*}
$$

(a) If $\operatorname{deg} P_{1}<n$, then all solutions of (1.2) satisfy

$$
\begin{equation*}
\bar{\lambda}(f)=\lambda(f)=\sigma(f)=1+\frac{n}{k} . \tag{1.3}
\end{equation*}
$$

(b) If $\operatorname{deg} P_{1} \geqq n$, then, apart from one possible exception, all solutions satisfy (1.3). The possible exceptional solution is of the form $f_{0}=Q e^{P_{0}}$, where Q is a polynomial of degree $\operatorname{deg} Q=\operatorname{deg} P_{1}-n$.

Gao Shi-an [3] had earlier addressed the case when $n=2$ in Theorem B.
In this paper, we consider the differential equation (DE)

$$
\begin{equation*}
f^{(k)}+A f=F(z) \tag{1.4}
\end{equation*}
$$

where $A(z)$ and $F(z)$ are both entire functions of finite order, and where $A(z)$ is transcendental, or $A(z)$ is a polynomial, $F(z) \neq 0$ is an entire function of finite order with infinitely many zeroes.

We will prove the following theorems in this paper.
Theorem 1. Let A and $F(z) \neq 0$ be both entire functions of finite order, where A is transcendental. Then:
(a) All solutions f of (1.4) satisfy

$$
\begin{equation*}
\bar{\lambda}(f)=\lambda(f)=\sigma(f)=\infty \tag{1.5}
\end{equation*}
$$

except for at most one possible exceptional solution f_{0} of finite order.
(b) The exceptional solution f_{0} satisfies

$$
\sigma\left(f_{0}\right) \leqq \max \left\{\sigma(A), \sigma(F), \bar{\lambda}\left(f_{0}\right)\right\}
$$

Furthermore, if $\sigma(A) \neq \sigma(F), \bar{\lambda}\left(f_{0}\right)<\sigma\left(f_{0}\right)$, then $\sigma\left(f_{0}\right)=\max \{\sigma(A), \sigma(F)\}$.
Remark. If $\sigma(A)=\infty$, or $\sigma(F)=\infty$, then Theorem 1 does not hold.

Example 1. $f=e^{\sin z}$ solves

$$
f^{\prime \prime}+\sin z f=\cos ^{2} z e^{\sin z}
$$

and

$$
f^{\prime \prime}+\left(\sin z-\cos ^{2} z+e^{-\sin z+z}\right) f=e^{z}
$$

there $\lambda(f)=0, \sigma(f)=\infty$.
Theorem 2. Let $A(z)$ be a transcendental entire function with $\sigma(A) \neq 1, \sigma(A)<\infty$, let $F(z) \neq 0$ be an entire function with $\sigma(F)<\infty$, and $\alpha(>0), a$ constant, and let $f(z)$ be a solution of the DE

$$
\begin{equation*}
f^{(k)}+e^{-\alpha z} f^{\prime}+A f=F(z) \tag{1.6}
\end{equation*}
$$

Then:
(a) all solutions f of (1.6) satisfy (1.5), except for at most one possible exceptional solution f_{0} of finite order,
(b) the exceptional solution f_{0} satisfies

$$
\sigma\left(f_{0}\right) \leqq \max \left\{\sigma(A), \sigma(F), \bar{\lambda}\left(f_{0}\right), 1\right\}
$$

Furthermore, if $\sigma(A) \neq \sigma(F), \bar{\lambda}\left(f_{0}\right)<\sigma\left(f_{0}\right)$, then $\sigma\left(f_{0}\right)=\max \{\sigma(A), \sigma(F), 1\}$.
Theorem 3. Let $A(z)$ be a polynomial with $\operatorname{deg} A=n \geqq 1$, let $F(z) \neq 0$ be an entire function with infinitely many zeros, and let $f(z)$ be a solution of the $D E(1.4)$. If $(n+k) /$ $k<\sigma(F)=\beta<\infty$, then
(a) $\sigma(f)=\beta$,
(b) if $\lambda(F)=\beta$, then every solution satisfies $\lambda(f)=\beta$,
(c) if $\lambda(F)<\beta$, then all solutions f of (1.4) satisfy

$$
\bar{\lambda}(f)=\lambda(f)=\sigma(f)=\beta
$$

except for at most one exceptional one f_{0} with $\lambda\left(f_{0}\right)=\lambda(F)$.
Theorem 4. Let $A(z)$ be a nonconstant polynomial of degree n, and let $F(z) \neq 0$ be an entire function with infinitely many zeros and $\sigma(F)=\beta$. Then:
(a) if $\beta<(n+k) / k$, then all solutions f of (1.4) satisfy

$$
\bar{\lambda}(f)=\lambda(f)=\sigma(f)=\frac{n+k}{k}
$$

except for at most one exceptional one f_{0} with $\sigma\left(f_{0}\right)=\beta$,
(b) if $\beta=(n+k) / k$, then all solutions f of (1.4) satisfy $\sigma(f)=(n+k) / k, \lambda(f) \geqq \lambda(F)$.

2. Lemmas

Lemma 1. Let $A(z)$ be a transcendental entire function of finite order, Then every solution $g \neq 0$ to the $D E$

$$
\begin{equation*}
g^{(k)}+A g=0 \tag{2.1}
\end{equation*}
$$

satisfies $\sigma(g)=\infty$.
Proof. If $\sigma(g)<\infty$, then by $A=-g^{(k)} / g$, we have

$$
m(r, A)=m\left(r, \frac{g^{(k)}}{g}\right)=O(\log r)
$$

and this contradicts the hypothesis that $A(z)$ is transcendental.
Lemma 2. Let $A(z)$ be a transcendental entire function with $1 \neq \sigma(A)<\infty$ and let $\alpha(>0)$ be a constant. Then every solution $g \neq 0$ to the $D E$

$$
\begin{equation*}
g^{(k)}+e^{-a z} g^{\prime}+A(z) g=0 \tag{2.2}
\end{equation*}
$$

satisfies $\sigma(g)=\infty$.
Proof. Using the same proof as in the proof of Theorem 1 in [2], we have $\sigma(g)=\infty$.
Lemma 3 (Wiman-Valiron). Let $g(z)$ be a transcendental entire function and let z be a point with $|z|=r$ at which $|g(z)|=M(r, g)$. Then for all $|z|$ outside a set E of r of finite logarithmic measure, we have
(a) $\frac{g^{(k)}(z)}{g(z)}=\left(\frac{v_{g}(r)}{z}\right)^{k}(1+o(1)) \quad(k$ is an integer, $r \notin E)$,
(b) $\varlimsup_{\substack{r \rightarrow \infty \\ r \in[0, \infty)}} \frac{\log v_{g}(r)}{\log r}=\varlimsup_{\substack{r \rightarrow \infty \\ r \in\{0, \infty)-E}} \frac{\log v_{g}(r)}{\log r}$,
where $v_{g}(r)$ is the central index of $g(z)($ see $[5,7,8])$.
Proof. (a) This is the Wiman-Valiron theory (see [5, 7, 8]).
(b) We clearly have

$$
\varlimsup_{\substack{r \rightarrow \infty \\ r \in[0, \infty)}} \frac{\log v_{g}(r)}{\log r} \geqq \varlimsup_{\substack{r \rightarrow \infty \\ r \in[0, \infty)-E}} \frac{\log v_{g}(\gamma)}{\log r}
$$

On the other hand, from $v_{g}(r)$ is the central index of $g(z)$, we have that $v_{g}(r)>0$ and $v_{g}(r)$ is a nondecreasing function on $[0,+\infty)$. Setting $\int_{E} \mathrm{~d} r / r=\log \delta<\infty$ for a given $\left\{r_{n}^{\prime}\right\}$, $r_{n}^{\prime} \in[0,+\infty), r_{n}^{\prime} \rightarrow \infty$, there exists a point $r_{n} \in\left[r_{n}^{\prime},(\delta+1) r_{n}^{\prime}\right]-E$. From

$$
\frac{\log v_{g}\left(r_{n}^{\prime}\right)}{\log r_{n}^{\prime}} \leqq \frac{\log v_{g}\left(r_{n}\right)}{\log r_{n}^{\prime}} \leqq \frac{\log v_{g}(r)}{\log r_{n}+\log \frac{1}{\delta+1}}=\frac{\log v_{g}(r)}{\log r_{n} \cdot(1+o(1))}
$$

it follows that

$$
\begin{equation*}
\varlimsup_{r_{n}^{\prime} \rightarrow \infty} \frac{\log v_{g}\left(r_{n}^{\prime}\right)}{\log r_{n}^{\prime}} \leqq \varlimsup_{r_{n} \rightarrow \infty} \frac{\log v_{g}\left(r_{n}\right)}{\log r_{n}} \leqq \varlimsup_{\substack{r \rightarrow \infty \\ r \in[0, \infty)-E}} \frac{\log v_{g}(r)}{\log r} \tag{2.4}
\end{equation*}
$$

Since $\left\{r_{n}^{\prime}\right\}$ is arbitrary, we have

$$
\varlimsup_{\substack{r \rightarrow \infty \\ r \in[0, \infty)}} \frac{\log v_{g}(r)}{\log r} \leqq \varlimsup_{\substack{r \rightarrow \infty \\ r \in(0, \infty)-E}} \frac{\log v_{g}(r)}{\log r}
$$

This proves Lemma 3(b).
From Lemma 3, we can deduce the following:
Lemma 4. Let $A(z)$ be a nonconstant polynomial with $\operatorname{deg} A=n$. Then every solution $f \neq 0$ to the $D E$

$$
\begin{equation*}
f^{(k)}+A(z) f=0 \tag{2.5}
\end{equation*}
$$

satisfies $\sigma(f)=(n+k) / k$.
Lemma 5. Let $A(z)$ be a polynomial with $\operatorname{deg} A=n \geqq 1, F(z) \neq 0$ be an entire function with $\sigma(F)=\beta<\infty$. Let f be a solution of the $D E$

$$
\begin{equation*}
f^{(k)}+A f=F(z) \tag{2.6}
\end{equation*}
$$

Then
(a) if $\beta \geqq(n+k) / k$, then $\sigma(f)=\beta$,
(b) if $\beta<(n+k) / k$, then all solutions f of (2.6) satisfy $\sigma(f)=(n+k) / k$, except for at most one possible exceptional one f_{0} with $\sigma\left(f_{0}\right)=\beta$.

Proof. It is easy to see that $\sigma(f) \geqq \sigma(F)=\beta$ from (2.6). On the other hand we assume that $\left\{f_{1}, \ldots, f_{k}\right\}$ is a fundamental solution set of (2.5) that is the corresponding homogeneous differential equation of (2.6). By Lemma 4, we have $\sigma\left(f_{j}\right)=$ $(n+k) / k(j=1, \ldots, k)$.

By variation of parameters, we can write

$$
f=B_{1}(z) f_{1}+\cdots+B_{k}(z) f_{k}
$$

where $B_{1}(z), \ldots, B_{k}(z)$ are determined by

$$
\left\{\begin{array}{l}
B_{1}^{\prime} f_{1}+\cdots+B_{k}^{\prime} f_{k}=0 \\
B_{1}^{\prime} f_{1}^{\prime}+\cdots+B_{k}^{\prime} f_{k}^{\prime}=0 \\
\cdots \\
\cdots \cdots \\
B_{1}^{\prime} f_{1}^{(k-1)}+\cdots+B_{k}^{\prime} f_{k}^{(k-1)}=F
\end{array}\right.
$$

Noting that the Wronskian $W\left(f_{1}, \ldots, f_{k}\right)$ is a differential polynomial in f_{1}, \ldots, f_{k} with constant coefficients, it is easy to deduce that $\sigma(W) \leqq \sigma\left(f_{j}\right)=(n+k) / k$. Set

> (i)

$$
W_{i}=\left|\begin{array}{cc}
f_{1}, \ldots, O, \ldots, f_{k} \\
\vdots & \vdots \\
f_{1}^{(k-1)}, \ldots, F, \ldots, f_{k}^{(k-1)}
\end{array}\right|=F \cdot g_{i} \quad(i=1, \ldots, k) .
$$

where g_{i} are differential polynomials in f_{1}, \ldots, f_{k} with constant coefficients. So

$$
\sigma\left(g_{i}\right) \leqq \sigma\left(f_{j}\right)=\frac{n+k}{k}, B_{i}^{\prime}=\frac{W_{i}}{W}=\frac{F \cdot g_{i}}{W},
$$

and

$$
\begin{gathered}
\sigma\left(B_{i}\right)=\sigma\left(B_{i}^{\prime}\right) \leqq \max \left\{\sigma(F), \frac{n+k}{k}\right\} . \\
\sigma(f) \leqq \max \left\{\beta, \frac{n+k}{k}\right\} .
\end{gathered}
$$

Therefore,
(a) if $\beta \geqq \frac{n+k}{k}$, then $\sigma(f)=\beta$,
(b) if $\beta<\frac{n+k}{k}$, then $\beta \leqq \sigma(f) \leqq \frac{n+k}{k}$.

We affirm that the DE (2.6) can only possess at most one exceptional solution f_{0} with $\beta \leqq \sigma\left(f_{0}\right)<(n+k) / k$. In fact, if f^{*} is a second solution with $\beta \leqq \sigma\left(f^{*}\right)<(n+k) / k$, then $\sigma\left(f_{0}-f^{*}\right)<(n+k) / k$. But $f_{0}-f^{*}$ is a solution of the corresponding homogeneous equation (2.5) of (2.6). This contradicts Lemma 4.

Now we prove that the exceptional solution f_{0} satisfies $\sigma\left(f_{0}\right)=\beta$. We assume $\beta<\sigma\left(f_{0}\right)<(n+k) / k$. Let z be a point with $|z|=r$ at which $\left|f_{0}(z)\right|=M\left(r, f_{0}\right)$. From Lemma 3(a)

$$
\begin{equation*}
\frac{f_{0}^{(k)}(z)}{f_{0}(z)}=\left(\frac{v_{f_{0}}(r)}{z}\right)^{k}(1+o(1)) \quad r \& E . \tag{2.7}
\end{equation*}
$$

holds for all $|z|$ outside a set E of r of finite logarithmic measure. For sufficiently large $|z|$, we have $A=a z^{n}(1+o(1))(a \neq 0$ is constant). Substituting (2.7) into (2.6), we have

$$
\begin{equation*}
\left(\frac{v_{f_{0}}(r)}{z}\right)^{k}(1+o(1))+a z^{n}(1+o(1))=\frac{F(z)}{f_{0}(z)} \quad r £ E . \tag{2.8}
\end{equation*}
$$

Now for a given $\varepsilon\left(0<3 \varepsilon<\sigma\left(f_{0}\right)-\beta\right)$, there exists $\left\{\bar{r}_{m}\right\}\left(\bar{r}_{m} \rightarrow \infty\right)$ such that $M\left(\bar{r}_{m}, f_{0}\right)>$ $\exp \left\{\boldsymbol{r}_{m}^{\sigma\left(f_{0}\right)-\varepsilon}\right\}$. Setting $\int_{E} d r / r=\log \delta<\infty$, there exists a point $r_{m} \in\left[\bar{r}_{m},(\delta+1) \bar{r}_{m}\right]-E$. At such points r_{m}, we have

$$
M\left(r_{m}, f_{0}\right) \geqq M\left(\bar{r}_{m}, f_{0}\right)>\exp \left\{r_{m}^{\sigma}\left(f_{0}\right)-\varepsilon\right\}
$$

$$
\begin{aligned}
& \geqq \exp \left\{\frac{r_{m}^{\sigma\left(f_{0}\right)-\varepsilon}}{(\delta+1)^{\sigma\left(f_{0}\right)}}\right\}=\exp \left\{r_{m}^{\sigma\left(f_{0}\right)-2 \varepsilon} \cdot \frac{r_{m}^{\ell}}{(\delta+1)^{\sigma\left(f_{0}\right)}}\right\} \\
& \geqq \exp \left\{r_{m}^{\sigma\left(f_{0}\right)-2 \varepsilon}\right\} .
\end{aligned}
$$

In addition for sufficiently large r_{m}, we have

$$
|F(z)| \leqq M\left(r_{m}, F\right)<\exp \left\{r_{m}^{\beta+\varepsilon}\right\}
$$

So

$$
\left|\frac{F(z)}{f_{0}(z)}\right|=\frac{|F(z)|}{M\left(r_{m}, f_{0}\right)}<\exp \left\{r_{m}^{\beta+\varepsilon}-r_{m}^{a\left(f_{0}\right)-2 \varepsilon}\right\} \rightarrow 0\left(r_{m} \rightarrow \infty\right)
$$

Therefore, at such points $\left|z_{m}\right|=r_{m}\left(r_{m} \Varangle E,\left|f_{0}\left(z_{m}\right)\right|=M\left(r_{m}, f_{0}\right)\right.$), from (2.8) we have

$$
\begin{equation*}
\left(\frac{\nu_{f_{0}}\left(\gamma_{m}\right)}{z_{m}}\right)^{k}(1+o(1))+a z_{m}^{n}(1+o(1))=o(1) . \tag{2.9}
\end{equation*}
$$

From the Wiman-Valiron theory, we obtain

$$
\varlimsup_{r_{m} \rightarrow \infty} \frac{\log v_{f_{0}}\left(r_{m}\right)}{\log r_{m}}=\frac{n+k}{k}
$$

This contradicts that $\sigma\left(f_{0}\right)<(n+k) / k$. Hence $\sigma\left(f_{0}\right)=\beta$.
Lemma 6. Let $A_{k-j}(j=1, \ldots, k), B \neq 0$ be entire functions. If f is a solution of the $D E$

$$
\begin{equation*}
f^{(k)}+A_{k-1} f^{(k-1)}+\cdots+A_{0} f=B \tag{2.10}
\end{equation*}
$$

and $\max \left\{\sigma(B), \sigma\left(A_{0}\right), \ldots, \sigma\left(A_{k-1}\right)\right\}=\beta<\sigma(f)$, then $\bar{\lambda}(f)=\lambda(f)=\sigma(f)$.
Proof. We can write from (2.10)

$$
\begin{equation*}
\frac{1}{f}=\frac{1}{B}\left(\frac{f^{(k)}}{f}+A_{k-1} \frac{f^{(k-1)}}{f}+\cdots+A_{0}\right) \tag{2.11}
\end{equation*}
$$

If f has a zero at z_{0} of order $\alpha(>k)$, then B must have a zero at z_{0} of order $\alpha-k$. Hence,

$$
n\left(r, \frac{1}{f}\right) \leqq k \bar{n}\left(r, \frac{1}{f}\right)+n\left(r, \frac{1}{B}\right)
$$

and

$$
\begin{equation*}
N\left(r, \frac{1}{f}\right) \leqq k \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{B}\right) . \tag{2.12}
\end{equation*}
$$

From (2.11), we have

$$
\begin{equation*}
m\left(r, \frac{1}{f}\right) \leqq m\left(r, \frac{1}{B}\right)+\sum_{j=1}^{k} m\left(r, A_{k-j}\right)+O(\log T(r, f)+\log r) \quad r \notin E \tag{2.13}
\end{equation*}
$$

holds for all r outside a set E of r of finite linear measure (if $\sigma(f)<\infty$, then $E=\phi$). (2.12) and (2.13) give

$$
\begin{align*}
T(r, f) & =T\left(r, \frac{1}{f}\right)+O(1) \\
& \leqq k \bar{N}\left(r, \frac{1}{f}\right)+T\left(r, \frac{1}{B}\right)+\sum_{j=1}^{k} T\left(r, A_{k-j}\right)+O(\log T(r, f)+\log r) \\
& =k \bar{N}\left(r, \frac{1}{f}\right)+T(r ; B)+\sum_{j=1}^{k} T\left(r, A_{k-j}\right)+O(\log T(r, f)+\log r)(r \notin E) \tag{2.14}
\end{align*}
$$

and there exists $\left\{r_{n}^{\prime}\right\}\left(r_{n}^{\prime} \rightarrow \infty\right)$ such that

$$
\lim _{r_{n}^{\prime} \rightarrow \infty} \frac{\log T\left(r_{n}^{\prime}, f\right)}{\log r_{n}^{\prime}}=\sigma(f)
$$

Setting $m E=\delta<\infty$, then there exists a point $r_{n} \in\left[r_{n}^{\prime}, r_{n}^{\prime}+\delta+1\right]-E$. For such r_{n}, we have

$$
\frac{\log T\left(r_{n}, f\right)}{\log r_{n}} \geqq \frac{\log T\left(r_{n}^{\prime}, f\right)}{\log \left(r_{n}^{\prime}+\delta+1\right)}=\frac{\log T\left(r_{n}^{\prime}, f\right)}{\log r_{n}^{\prime}+\log \left(1+\frac{\delta+1}{r_{n}^{\prime}}\right)}
$$

So

$$
\lim _{r_{n} \rightarrow \infty} \frac{\log T\left(r_{n}, f\right)}{\log r_{n}} \geqq \lim _{r_{n}^{\prime} \rightarrow \infty} \frac{\log T\left(r_{n}^{\prime}, f\right)}{\log r_{n}^{\prime}+\log \left(1+\frac{\delta+1}{r_{n}^{\prime}}\right)}=\sigma(f) \quad\left(r_{n} \notin E\right)
$$

and

$$
\lim _{r_{n} \rightarrow \infty} \frac{\log T\left(r_{n}, f\right)}{\log r_{n}}=\sigma(f)
$$

For a given c such that $\beta<c<\sigma(f)$, we have

$$
T\left(r_{n}, f\right) \geqq r_{n}^{r}
$$

for sufficiently large r_{n}. On the other hand, for a given $\varepsilon(0<\varepsilon<c-\beta)$, we have

$$
T\left(r_{n}, B\right)<r_{n}^{\beta+\varepsilon}, T\left(r_{n}, A_{k-j}\right)<r_{n}^{\beta+\varepsilon} \quad(j=1, \ldots, k) .
$$

Therefore

$$
\begin{gather*}
T\left(r_{n}, B\right) \leqq \frac{1}{k+3} T\left(r_{n}, f\right), \tag{2.15}\\
T\left(r_{n}, A_{k-j}\right) \leqq \frac{1}{k+3} T\left(r_{n}, f\right) \quad(j=1, \ldots, k) \tag{2.16}
\end{gather*}
$$

hold for sufficiently large r_{n}. Since

$$
O\left\{\log T\left(r_{n}, f\right)+\log r_{n}\right\}=o\left\{T\left(r_{n}, f\right)\right\}
$$

for sufficiently large r_{n}

$$
\begin{equation*}
O\left\{\log T\left(r_{n}, f\right)+\log r_{n}\right\} \leqq \frac{1}{k+3} T\left(r_{n}, f\right) \tag{2.17}
\end{equation*}
$$

holds. (2.14) and (2.15), (2.16), (2.17) give

$$
T\left(r_{n}, f\right) \leqq(k+3) K \bar{N}\left(r_{n}, \frac{1}{f}\right)
$$

So

$$
\sigma(f)=\lim _{r_{n} \rightarrow \infty} \frac{\log T\left(r_{n}, f\right)}{\log r_{n}} \leqq \varlimsup_{r_{n} \rightarrow \infty} \frac{\log \bar{N}\left(r_{n}, \frac{1}{f}\right)}{\log r_{n}} \leqq \bar{\lambda}(f)
$$

Therefore $\bar{\lambda}(f)=\lambda(f)=\sigma(f)$.

Lemma 7. Let F be the same as in Theorem 3, let Q be the canonical product formed with the nonzero zeros of F, with $\sigma(Q)<\beta=\sigma(F)$, let $m(\geqq 0)$ be an integer, and let b_{k-r}, \ldots, b_{0} be polynomials with $\operatorname{deg} b_{k-i}=i(\beta-1)$. Then the $D E$

$$
\begin{equation*}
g^{(k)}+b_{k-1} g^{(k-1)}+\cdots+b_{0} g=z^{m} Q \tag{2.18}
\end{equation*}
$$

may have at most one exceptional solution g_{0} with $\lambda\left(g_{0}\right)=\sigma\left(g_{0}\right)=\sigma(Q)=\lambda(Q)$, and all the other solutions g of (2.18) satisfy

$$
\bar{\lambda}(g)=\lambda(g)=\sigma(g)=\beta .
$$

Proof. It is not difficult to see that all solutions of (2.18) and its corresponding homogeneous equation

$$
\begin{equation*}
g^{(k)}+b_{k-1} g^{(k-1)}+\cdots+b_{0} g=0 \tag{2.19}
\end{equation*}
$$

are entire functions. For the DE (2.19), from Lemma 3(a), we have basic formulas

$$
\begin{equation*}
\frac{g^{(j)}(z)}{g(z)}=\left(\frac{v_{g}(r)}{z}\right)^{j}(1+o(1)) \quad r £ E,(j=1, \ldots, k) \tag{2.20}
\end{equation*}
$$

where $|z|=r,|g(z)|=M(r, g), \int_{E} d r / r<\infty, v_{g}(r)$ denotes the central index of g. As $r \rightarrow \infty$ set $b_{k-i}=d_{k-i} i^{i(\beta-1)}(1+o(1)) d_{k-1}, \ldots, d_{0}$ are nonzero constants). Substituting them and (2.20) into (2.19), we have

$$
\begin{equation*}
\left(\frac{v_{g}(r)}{z}\right)^{k}(1+o(1))+d_{k-1} z^{\beta-1}\left(\frac{v_{g}(r)}{z}\right)^{k-1}(1+o(1))+\cdots+d_{0} z^{k(\beta-1)}(1+o(1))=0 \quad(r \& E) . \tag{2.21}
\end{equation*}
$$

By the reasoning in [7, pp. 106-108] for sufficiently large r, we have $v_{g}(r) \sim c z^{\alpha}$ ($|z|=r \notin E, c \neq 0$ a constant), substituting it into (2.21), it is easy to see that the degrees of all terms of (2.21) are respectively

$$
k(\alpha-1), j(\beta-1)+(k-j)(\alpha-1) \quad(j=1, \ldots, k-1), k(\beta-1) .
$$

From the Wiman-Valiron theory (see [5, pp. 227-229], [7, 8]), we see that $\alpha=\beta$ is the only possible value. Therefore, all solutions of (2.19) satisfy $\sigma(g)=\beta$.

Using the same proof (variation of parameters) as in the proof of Lemma 5, we have that all solution g of the DE (2.18) satisfy $\sigma(g) \leqq \beta$.

Using the same proof as in the proof of Lemma 5, it is easy to see that the DE (2.18) may have at most one exceptional solution g_{0} with $\sigma\left(g_{0}\right)<\beta$.

Next we are going to work out the order of the exceptional solution g_{0}. By the above proof and (2.18), we have $\sigma(Q) \leqq \sigma\left(g_{0}\right)<\beta$. We will now prove that $\sigma(Q)<\sigma\left(g_{0}\right)<\beta$ fails.

Suppose that $\sigma(Q)<\sigma\left(g_{0}\right)<\beta$. From the Wiman-Valiron theory, we have basic formulas

$$
\begin{equation*}
\frac{g_{0}^{(j)}(z)}{g_{0}(z)}=\left(\frac{v_{g_{0}}(r)}{z}\right)^{j}(1+o(1)) \quad r \xi E, j=1, \ldots, k \tag{2.22}
\end{equation*}
$$

where $\quad|z|=r, \quad\left|g_{0}(z)\right|=M\left(r, g_{0}\right), \quad \int_{E} d r / r<\infty$. As $\quad r \rightarrow \infty, \quad$ we set $b_{k-i}=$ $d_{k-i} z^{i(\beta-1)}(1+o(1))\left(d_{k-i} \neq 0\right.$ are constants). Substituting them and (2.22) into (2.18), and using the same proof as in the proof of Lemma 5(b), we can obtain a sequence $\left\{z_{n}\right\}$. The sequence $\left\{z_{n}\right\}$ satisfies $\left|z_{n}\right|=r_{n} \notin E,\left|g_{0}\left(z_{n}\right)\right|=M\left(r_{n}, g_{0}\right)$ and for sufficiently large r_{n}
$\left(\frac{v_{g 0}\left(r_{n}\right)}{z_{n}}\right)^{k}(1+o(1))+d_{k-1} z_{n}^{\beta-1}\left(\frac{v_{g 0}\left(r_{n}\right)}{z_{n}}\right)^{k-1}(1+o(1))+\cdots+d_{0} z_{n}^{k(\beta-1)}(1+o(1))=o(1)$.
Setting $\sigma\left(g_{0}\right)=\delta<\beta$, by the reasoning in [7, pp. 106-108], for sufficiently larger r_{n}, we have $v_{g 0}\left(r_{n}\right) \sim c_{1} z_{n}^{\delta}\left(\left|z_{n}\right|=r_{n} £ E, c_{1} \neq 0\right.$ a constant $)$. It is easy to see that the degrees of all terms of (2.23) are respectively

$$
k(\delta-1), j(\beta-1)+(k-j)(\delta-1)(j=1, \ldots, k-1), k(\beta-1) .
$$

Then there is only one term $d_{0} z_{n}^{k(\beta-1)}\left(d_{0} \neq 0\right)$ with the degree $k(\beta-1)$ being the highest one in (2.23). This is impossible. Therefore, the order of g_{0} can only be $\sigma\left(g_{0}\right)=\sigma(Q)$.

As $\sigma\left(g_{0}\right)=\sigma(Q)$, by [3], we have $\lambda\left(g_{0}\right) \geqq \lambda\left(z^{m} Q\right)=\sigma(Q)$. Hence

$$
\lambda\left(g_{0}\right)=\sigma\left(g_{0}\right)=\sigma(Q)=\lambda(Q)
$$

As $\sigma(g)=\beta>\sigma(Q)$, by Lemma 6, we have

$$
\bar{\lambda}(g)=\lambda(g)=\sigma(g)=\beta .
$$

3. Proof of theorems

Proof of Theorem 1. (a) Now assume f_{0} is a solution of (1.4) with $\sigma\left(f_{0}\right)<\infty$. If f^{*} is a second solution with $\sigma\left(f^{*}\right)<\infty$, then $\sigma\left(f^{*}-f_{0}\right)<\infty$. And $f^{*}-f_{0}$ is a solution of (2.1), that is the corresponding homogeneous differential equation of (1.4). But by Lemma 1, we have $\sigma\left(f^{*}-f_{0}\right)=\infty$.

Now assume f is a solution of (1.4) with $\sigma(f)=\infty$. Then $\max \{\sigma(A), \sigma(F)\}<\sigma(f)$. By Lemma 6, we have $\bar{\lambda}(f)=\lambda(f)=\sigma(f)=\infty$.
(b) Assume f is an exceptional solution of (1.4) with $\sigma\left(f_{0}\right)<\infty$. Using the same proof as in the proof of Lemma 6, we have

$$
\begin{equation*}
T\left(r, f_{0}\right) \leqq k \bar{N}\left(r, \frac{1}{f_{0}}\right)+T(r, F)+T(r, A)+O(\log r) \tag{3.1}
\end{equation*}
$$

Now set $\max \{\sigma,(A), \sigma(F)\}=\bar{\alpha}$. Then for sufficiently large r, we have

$$
T(r, F)<r^{\bar{\alpha}+\varepsilon}, T(r, A)<r^{\bar{\alpha}+\varepsilon} .
$$

By (3.1) we have

$$
T\left(r, f_{0}\right)<k \bar{N}\left(r, \frac{1}{f_{0}}\right)+2 r^{\overline{+}+\varepsilon}+O(\log r)
$$

Therefore

$$
\begin{equation*}
\sigma\left(f_{0}\right) \leqq \max \left\{\bar{\lambda}\left(f_{0}\right), \bar{\alpha}\right\}=\max \left\{\bar{\lambda}\left(f_{0}\right), \sigma(A), \sigma(F)\right\} . \tag{3.2}
\end{equation*}
$$

If $\sigma(A) \neq \sigma(F), \bar{\lambda}\left(f_{0}\right)<\sigma\left(f_{0}\right)$, then from (3.2), we get

$$
\sigma\left(f_{0}\right) \leqq \max \{\sigma(A), \sigma(F)\}
$$

and by $(1,4)$, we have $\sigma\left(f_{0}\right) \geqq \max \{\sigma(A), \sigma(F)\}$. Therefore,

$$
\sigma\left(f_{0}\right)=\max (\sigma(A), \sigma(F)\}
$$

Proof of Theorem 2. By Lemma 2, every solution $g \neq 0$ of (2.2), that is the corresponding homogeneous equation of (1.6), satisfies $\sigma(g)=\infty$. Using the analogous proof to that in Theorem 1, we can prove that Theorem 2 holds.

Proof of Theorem 3. (a) By Lemma 5, we have $\sigma(f)=\beta$.
(b) If $\lambda(F)=\beta$, then by [3] we have $\lambda(f) \geqq \lambda(F)$. Hence $\lambda(f)=\sigma(f)=\beta$.
(c) If $\lambda(F)<\beta$, set $F=Z^{m} Q e^{P},(Q$ is the canonical product formed with the nonzero zeros of F, P is a polynomial with $\operatorname{deg} P=\beta$). Set $f=g e^{P}$, then $\lambda(g)=\lambda(f), \bar{\lambda}(g)=\bar{\lambda}(f)$. Substituting $f=g e^{P}$ into (1.4), we have

$$
\begin{equation*}
g^{(k)}+d_{k-1} g^{(k-1)}+\cdots+d_{0} g=z^{m} Q \tag{3.3}
\end{equation*}
$$

To work out the degrees of d_{k-j} for $j=1, \ldots, k$, we need $d_{k-j}(j=1, \ldots, k)$ in more detailed form. It is easy to check by induction that we have for $k \geqq 2$ (see [6])

$$
\begin{equation*}
f^{(k)}=\left\{g^{(k)}+k p^{\prime} g^{(k-1)}+\sum_{j=2}^{k}\left[c_{k}^{j}\left(p^{\prime}\right)^{j}+H_{j-1}\left(p^{\prime}\right)\right] g^{(k-j)}\right\} e^{p} \tag{3.4}
\end{equation*}
$$

where $H_{j-1}\left(p^{\prime}\right)$ are differential polynomials in p^{\prime} and its derivatives of total degree $j-1$ with constant coefficients. It is easy to see that the derivatives of $H_{j-1}\left(p^{\prime}\right)$ as to z are of the same form $H_{j-1}\left(p^{\prime}\right) . C_{k}^{j}$ is the usual notation for the binomial coefficients. (1.4) and (3.4) give

$$
\begin{gathered}
d_{k-1}=k p^{\prime}, d_{k-j}=c_{k}^{j}\left(p^{\prime}\right)^{j}+H_{j-1}\left(p^{\prime}\right) \quad j=2, \ldots, k-1, \\
d_{0}=\left(p^{\prime}\right)^{k}+H_{k-1}\left(p^{\prime}\right)+A .
\end{gathered}
$$

So $\operatorname{deg} d_{k-j}=j(\beta-1)(j=1, \ldots, k-1)$. Since $\beta>(n+k) / k$, we have $\operatorname{deg} d_{0}=k(\beta-1)$. By

Lemma 7, the DE (3.3) may have at most one exceptional solution g_{0} with $\lambda\left(g_{0}\right)=$ $\sigma\left(g_{0}\right)=\sigma(Q)=\lambda(Q)$, and all the other solutions g of (3.3) satisfy $\lambda(g)=\lambda(g)=\sigma(g)=\beta$.

Therefore, the DE (1.4) may have at most one exceptional solution $f_{0}=g_{0} e^{p}$ with $\lambda\left(f_{0}\right)=\lambda(F)$, and all the other solutions $f=g e^{p}$ of (1.4) satisfy

$$
\bar{\lambda}(f)=\lambda(f)=\sigma(f)=\beta
$$

Proof of Theorem 4. (a) If $\beta<(n+k) / k$, then by Lemma 5 , the $\mathrm{DE}(1.4)$ may have at most one exceptional solution f_{0} with $\sigma\left(f_{0}\right)=\beta$, and all the other solutions f of (1.4) satisfy $\sigma(f)=(n+k) / k$. By Lemma 6 , all the other solutions f of (1.4) satisfy

$$
\bar{\lambda}(f)=\lambda(f)=\sigma(f)=\frac{n+\boldsymbol{k}}{\boldsymbol{k}}
$$

(b) If $\beta=(n+k) / k$, then by Lemma 5 , all solutions f of (1.4) satisfy $\sigma(f)=(n+k) / k$.

From [3], we have $\lambda(f) \geqq \lambda(F)$.

4. Examples of the exceptional solution

Example 2 (concerning the exceptional solution in Theorem 1). $f_{0}=e^{z^{2}}$ solves

$$
f^{\prime \prime}+\left(\sin z-4 z^{2}-2\right) f=e^{z^{2}} \sin z
$$

there $\sigma(A)<\sigma(F), \sigma\left(f_{0}\right)=\sigma(F), \lambda\left(f_{0}\right)=0<\sigma\left(f_{0}\right)$.
Example 3 (concerning the exceptional solution in Theorem 2). Let G be a given transcendental entire function with $\sigma(G) \neq 1, \sigma(G)<\infty$, Then $f_{0}=e^{3 z}$ solves

$$
f^{\prime \prime}+e^{-z} f^{\prime}-G f=e^{3 z}\left(9+3 e^{-z}-G\right)
$$

there $\sigma\left(f_{0}\right)=1, \bar{\lambda}\left(f_{0}\right)=0$.
Example 4 (concerning the exceptional solution in Theorem 3). The DE

$$
f^{\prime \prime}+(1-6 z) f=3 z^{2}\left(2 \cos z+3 z^{2} \sin z\right) e^{z^{3}}
$$

has exceptional solution $f_{0}=\sin z \cdot e^{z^{3}}$, there $\sigma(F)=3>(n+k) / k$, and $\sigma\left(f_{0}\right)=3, \lambda\left(f_{0}\right)=1$. Now we prove that $\lambda(F)=1$. For the real function $2 \cos x+3 x^{2} \sin x, \sin m \pi=0$ and $2 \cos m \pi+3(m \pi)^{2} \cdot \sin m \pi \neq 0(m= \pm 1, \pm 2, \ldots)$, the zeros of $2 \cos x+3 x^{2} \sin x$ are zeros of $\operatorname{ctg} x+\frac{3}{2} x^{2} . \quad \operatorname{ctg} x+\frac{3}{2} x^{2}$ has zeros $x_{m} \in(m \pi,(m+1) \pi)(m= \pm 1, \pm 2, \ldots)$. Hence λ $\left(2 \cos x+3 x^{2} \sin x\right)=1$. Therefore $\lambda(F)=1$.

Example 5 (concerning the exceptional solution in Theorem 4). $f_{0}=\sin z$ solves

$$
f^{\prime \prime}+\left(z^{2}+1\right) f=z^{2} \sin z
$$

there $(n+k) / k=2>\sigma(F)=1, \sigma\left(f_{0}\right)=\sigma(F)$.
Acknowledgement. The author would like to thank the referees for valuable suggestions to improve my paper.

REFERENCES

1. S. Bank and I. Laine, On the oscillation theory of $f^{\prime \prime}+A f=0$ where A is entire, Trans. Amer. Math. Soc. 273 (1982), 351-363.
2. G. Gundersen, On the question of whether $f^{\prime \prime}+e^{-z} f^{\prime}+B(z) f=0$ can admit a solution $f \neq 0$ of finite order, Proc. Roy. Soc. Edinburgh 102A (1986), 9-17.
3. Gao shi-an, On the complex oscillation of solutions of non-homogeneous linear differential equations with polynomial coefficients, Comment. Math. Univ. Sancti Pauli 38 (1989), 11-20.
4. W. Hayman, Meromorphic Functions (Clarendon Press, Oxford, 1964).
5. He $\mathrm{Y}_{\mathrm{u}-\mathrm{zan}}$ and $\mathrm{X}_{\mathrm{Iao}} \mathrm{X}_{\mathrm{IU}-\mathrm{zhI}, \text { algebraid Functions and Ordinary Differential Equations }}$ (Science Press, 1988, (in Chinese)).
6. I. Laine, A note on the complex oscillation theory of non-homogeneous linear differential equations, Results in Math. 18 (1990), 282-285.
7. G. Valiron, Lectures on the General Theory of Integral Functions (Cleisea, New York, 1949).
8. G. Valiron, Functions Analytiques (Presses Universitaires de France, Paris, 1954).

Department of Mathematics
Jiangxi Normal University
Nanchang
P.R. China

