BuLL. AusTRAL. MATH. Soc. 32430, 30Dp45
VoL. 54 (1996) [1-3]

ADMISSIBLE LIMITS OF BLOCH FUNCTIONS
ON BOUNDED STRONGLY PSEUDOCONVEX DOMAINS

Hu ZHANGJIAN

Let D C C* be a bounded strongly pseudoconvex domain with C? boundary 6D.
In this paper we prove that for a Bloch function in D the existance of radial limits
at almost all { € D implies the existence of admissible limits almost everywhere
on 8D.

Let D C C™ be a bounded strongly pseudoconvex domain with C? boundary 8D
(for the definition we refer to [1]). For z € D the Euclidean distance from z to 8D is
denoted by é(z) and for { € 8D the unit outward normal of 8D at ( is denoted by v;.
If { € 0D and a > 0 we define the admissible approach region ,({) with the vertex
¢ by
Ua(C) = {2 € D; (2 =€) - Bl < (1 + @)é¢(2), |z — (I < abe(2)}

where 6¢(z) = min{6(z), dist(z, T¢(0D))} and T¢(8D) is the real tangent space to D

at {. A function f on D is called to have an admissible limit at { if (ﬁmu o f(2)
z2—(,zCUy

exists for all & > 0.

Let B(D) be the space of all Bloch functions f which are holomorphic in D with
sup{|Vf(2)| - 6(z) : z € D} < co. It is well known that each function in H? has an
admissible limit at almost every ¢ € 8D. But for Bloch functions generally we can say
nothing on the existence of admissible limits. For example, Ullrich constructed a Bloch
function in the unit ball (a typical model of a strongly pseudoconvex domain) in C*
which has a radial limit at no point of the boundary (see [2]). On the other hand, Lehto
and Virtanen proved in [3] that the existence of radial limits implies the existence of
angular limits for Bloch functions in the unit disc D = {z € C: |z| < 1}.

The purpose of this paper is to extend this result to the setting of strongly
pseudoconvex domains. Qur approach will be very different from that of [3] and our
result also generalises [4].
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THEOREM. Let D C C* be a bounded strongly pseudoconvex domain with C?
boundary, and let f be a Bloch function in D. If the limit t]jn_zo F({ —tve) exists at

almost all ( € 3D, then f has admissible limits almost everywhere on 8D.

PROOF: First, we do some estimates on Un(() for {( € 3D. Without loss of the
generality we may assume that { is the origin, that v¢ is in the negative y; direction
(here z; = z; +y11) and thus the complex normal space ¢ and the complex tangential
space T¢ are

Ne={(21,0,...,0); 21 €C}, T ={(0, 22, ..., zn); z; €C, j =2, ..., n}.
For z = (21, ..., 2n) € Ua{(), by definition
lz1] = {2 = {, )| < (1 + @)y,
|z2* + - + |zml” < |2 - ¢ < ays.

Put 2’ = (1%, 0, ..., 0) and let P, (r1, r2) be the polydisc centred at z' with radius r;
in the complex normal direction and r, in each complex tangential direction {1, p.55].
Then we know from (1) that z € Ua(() implies z € P, (\/3_a Y1, \/a\/ﬁ) Notice
that Lemma 6 of [5] is still valid under the weaker assumption that D is a bounded
strongly pseudoconvex domain with C? boundary in C*, with the same proof to the

1)

case of C*™ boundary. By applying this lemma we can take a > 0 so small that
P, (v3ay1, \/E\/ﬁ) C{weD; p(, w) <1},

where 3(z', w) is the Kobayashi distance from z' to w. Hence, for z € Ua({) N {w :
|w — {| < €} with ¢ small enough we have

2) B(z', 2) < 1.

Now suppose f € B(D) and for almost all { € 3D the Limit tl—i»IEo F(¢ —toe)
exists. Set E = {¢ € 8D : tEI}f_lo f(¢ —tve) exists}. If ¢ € E, then f is bounded on
{¢{ —tve : 0 <t <€}, say

(3) IF((—toe)l <M te(0,¢].
Then for z € Us(¢)N{w : |w — {| < €}, from the estimate on [6, p.150] and (2), (3) we
obtain

If(2) < 1£(2) = F(Z') + £ ()]
<CB(,z)+ M < C+ M.

That f is bounded on Uy(¢) \ {w : jw — (] < €} is obvious. This means that f is
admissible bounded at { € E. Theorem 12 of [1] tells us that f has admissible limits
at almost all {( € 8D. The proof is complete. 1]
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(3]

Bloch functions 3

REMARK. We have actually proved the following: If E C D is measurable and f is a
Bloch function which has radial limits at each ¢ € E, then f has admissible limits at
almost all { € E.
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