
Publications of the Astronomical Society of Australia (2024), 41, e033, 16 pages

doi:10.1017/pasa.2024.32

Research Article

Galaxy 3D shape recovery using mixture density network
Suk Yee Yong1,2 , K.E. Harborne3,2, Caroline Foster4,2, Robert Bassett5,2, Gregory B. Poole6,5 and Mitchell Cavanagh3
1CSIRO Space and Astronomy, Epping, NSW, Australia, 2ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Canberra,
Australia, 3International Centre for Radio Astronomy (ICRAR), M468, The University of Western Australia, Crawley, WA, Australia, 4School of Physics, University of New
South Wales, Sydney, NSW, Australia, 5The Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Hawthorn, VIC, Australia and 6Astronomy
Data and Computing Services (ADACS), Swinburne University of Technology, Hawthorn, VIC, Australia

Abstract
Since the turn of the century, astronomers have been exploiting the rich information afforded by combining stellar kinematic maps and
imaging in an attempt to recover the intrinsic, three-dimensional (3D) shape of a galaxy. A common intrinsic shape recovery method relies
on an expected monotonic relationship between the intrinsic misalignment of the kinematic and morphological axes and the triaxiality
parameter. Recent studies have, however, cast doubt about underlying assumptions relating shape and intrinsic kinematic misalignment.
In this work, we aim to recover the 3D shape of individual galaxies using their projected stellar kinematic and flux distributions using a
supervised machine learning approach with mixture density network (MDN). Using a mock dataset of the EAGLE hydrodynamical cosmo-
logical simulation, we train the MDN model for a carefully selected set of common kinematic and photometric parameters. Compared to
previous methods, we demonstrate potential improvements achieved with the MDN model to retrieve the 3D galaxy shape along with the
uncertainties, especially for prolate and triaxial systems. We make specific recommendations for recovering galaxy intrinsic shapes relevant
for current and future integral field spectroscopic galaxy surveys.
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1. Introduction

The intrinsic, three-dimensional (3D) shape of a galaxy is a funda-
mental property that has been shown to closely relate to a variety
of other physical parameters (e.g. Ryden 2006; Weijmans et al.
2014; van de Sande et al. 2018). Indeed, projected visual shape
has been a key discriminator of galaxy type since the early clas-
sification schemes of Hubble (1926). A key challenge in linking
observed galaxy shapes with other physical properties, however, is
the reliable translation of two-dimensional (2D) projected infor-
mation into intrinsic shape properties (e.g. Padilla & Strauss 2008;
Weijmans et al. 2014; Foster et al. 2016). Under the simplifying
assumption that all galaxies can be reasonably approximated as 3D
ellipsoids, a galaxy with any particular 3D shape can be projected
into a wide range of 2D elliptical shapes. A perfectly axisymmetric
disc galaxy, for example, may appear as circular when viewed face-
on, or highly elliptical when viewed edge-on (with the axis ratio
limited only by the disc’s intrinsic thickness). Due to this degen-
eracy, the problem of inferring the intrinsic shape of galaxies has
long vexed astronomers.

Throughout this work, and as is common in the literature (e.g.
Contopoulos 1956; Binggeli 1980; Franx et al. 1991; Lambas et al.
1992; Weijmans et al. 2014; Foster et al. 2017), we assume that a
galaxy’s 3D shape can be described by an ellipsoid and that its 2D
projection can similarly be estimated as an ellipse. The projected
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ellipse shape can be fully described with the lengths of its principal
axes as follows:

x2

A2 + y2

B2 = 1, (1)

where the semi-major and semi-minor axes, A and B, are aligned
with the x- and y-directions, respectively. Similarly, an ellipsoid
can be fully described as follows:

x2

a2
+ y2

b2
+ z2

c2
= 1, (2)

where a, b, and c are the lengths of the principal semi-axes
aligned with the associated Cartesian directions (x, y, z) such that
a> b> c. In galaxy shape studies, we are typically interested in the
axis ratios rather than the absolute length of any axis and can thus
reduce the parameterisation of shape down to one or two values
for an ellipse and an ellipsoid, respectively. Without loss of gener-
alisation, we may thus quantify 2D shapes through the axis ratio,
B/A, and ellipsoidal shapes via two axis ratios p= b/a and q= c/a.
As A and a represent the longest axis, in both the 2D and 3D cases,
axis ratios are constrained to <1 by definition.

Since observations of individual galaxies provide a single mea-
sure of the projected shape, 3D shape inferences may be obtained
through statistical methods applied to galaxy samples (e.g. Binney
1978; Vincent & Ryden 2005; Padilla & Strauss 2008). The simplest
methods rely on a comparison between the observed axis ratio
distributions of a given galaxy sample and the expected distribu-
tion for projections of randomly oriented ellipsoids (e.g. Sandage
et al. 1970; Fasano 1991; Kimm & Yi 2007). Using this method
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one can infer the 3D shape distribution of a given galaxy sam-
ple by varying the assumed underlying shape distribution of the
randomly oriented ellipsoids until the resultant 2D shapes are well
matched to the observations. There remains a significant degen-
eracy underlying such methods since a 2D shape distribution may
be produced by a variety of underlying 3D shapes due to projec-
tion effects. Axisymmetry (i.e. a= b) may be assumed to break this
degeneracy.

Resolved galaxy kinematics represent a hopeful avenue to break
longstanding degeneracies (e.g. Binney 1985; Franx et al. 1991;
Statler 1994). Early attempts at utilising kinematic maps in shape
recovery relied on radio interferometry, a technique that is lim-
ited to very nearby galaxies (e.g. Bak & Statler 2000). Detailed
computationally intensive modelling of the kinematics and flux
distribution is often required to constrain the intrinsic shape of
individual galaxies (e.g. Statler 1994; van den Bosch & van de Ven
2009). These usually require expert know-how and assumptions to
break degeneracies.

With the more recent proliferation of integral field spectro-
scopic (IFS) instruments, resolved kinematics now exist for large
samples of galaxies covering a broad range of galaxy properties
(e.g. Cappellari et al. 2011; Croom et al. 2012; Sanchez et al. 2012;
Foster et al. 2021). Indeed, data from IFS surveys have been used
to infer 3D shape distributions from a variety of samples (e.g.
Weijmans et al. 2014; Foster et al. 2017; Li et al. 2018a; Ene et al.
2018).

One major difficulty in testing the reliability of such efforts,
however, is that the intrinsic shape distributions of observational
samples is not known a priori. In this sense, the results of 3D
shape recovery must place their faith in the dependability of the
theoretical underpinning of the kinematics based methods when
presenting the resulting 3D shape distributions. One can, however,
provide meaningful tests of the method by performing a series of
mock observations of galaxies drawn from large scale, cosmologi-
cal simulations from which the true, 3D shapes are already known.
Such a test was performed on the methods of Franx et al. (1991) in
Bassett & Foster (2019), who found that while q can be recovered
reasonably well for most galaxy types, p is poorly recovered with
the output distribution strongly favouring p= 1 in all cases.

The reason for the disproportionate recovery of p= 1 in
Bassett & Foster (2019) was identified to be the assumed relation-
ship between the intrinsic kinematic misalignment angle (ψint)
and underlying galaxy shape (Weijmans et al. 2014). To reduce
the number of unknown parameters within the fitted model, it
was assumed that ψint was solely determined by the underlying
3D shape of the galaxy, something that was not borne out in the
simulations, and thus need not be true in nature. We are free
from making such assumptions when using a non-linear, machine
learning approach. Using a variety of photometric and kinematic
measurements commonly derived for IFS observations of galaxies,
we can probe the shape information locked into various parame-
ters, and quantify their shape-determining ‘power’ relative to one
another.

In recent works, we have seen an increased uptake in the
use of machine learning to explore astrophysical questions. For
example, the primary drivers for individual cosmological parame-
ters is being explored with the Cosmology and Astrophysics with
MachinE Learning Simulations (CAMELS; Villaescusa-Navarro
et al. 2021); for studies of hierarchical accretion histories and
unlocking the un-observable merger history of a given galaxy
(e.g. Bottrell et al. 2022); and for classifying morphology in large

astronomical data sets in efficient ways (e.g. Cavanagh et al.
2021). The machine learning approach is particularly useful when
combined with large cosmological models of galaxy evolution,
providing ground truth for labels that can then be applied to
real data.

In this work, we revisit the findings of Bassett & Foster (2019)
and attempt to use machine learning to recover the underlying 3D
shape of individual galaxies without underlying assumptions. As
was done by Bassett & Foster (2019), we use galaxy simulations,
in which the true underlying shapes of galaxies are known, and
mock IFS observations of these objects, such that commonly used
kinematic measurements can be derived. With these data, we train
a neural network model, called a mixture density network (MDN),
to recover the underlying axis ratios, and hence the 3D shape, of
an observed system.

In this paper, we describe the construction of the training set in
Section 2, outline the development of the machine learning algo-
rithm in Section 3, highlight our results in Section 4, discuss the
ability of the algorithm to recover p and q and future directions in
Section 5, and provide a summary in Section 6.

2. Construction of the training dataset

We perform post-processing of z = 0 subhalo particle data from
the EAGLE cosmological, hydrodynamic simulation (Schaye et al.
2015; Crain et al. 2015) to produce both 3D measurements and
2D mock-IFS observations. Mock observations of this simulation
are produced using the open-source code, SIMSPIN (Harborne
et al. 2023), for 2 519 galaxies extracted from EAGLE. We mea-
sure common kinematic and photometric observables from these
mocks, which are then used along with their ground truth 3D
measurements, to train, validate and test the machine learning
model. A schematic diagram of our pipeline is illustrated in
Fig. 1.

Below, we begin by describing the methodology of comput-
ing the 3Dmeasurements (Section 2.1) and constructing the mock
observations (Section 2.2). We discuss how we have controlled for
bias in our training data (Section 2.3) and how the individual kine-
matic and photometeric properties have been calculated for the
training data set (Section 2.4). We then outline the selection of
parameters to be used for the MDN that have been chosen using a
principal component analysis (PCA) technique (Section 2.5).

2.1 3Dmeasurements

We perform 3D shape measurements following the method
described in Bassett & Foster (2019), which is based on Bak &
Statler (2000). Under the assumption that galaxies are well
described by a 3D ellipsoid, we determine the axes lengths of
each galaxy by calculating the eigenvectors and eigenvalues of the
reduced inertia tensor (similar to e.g. Allgood et al. 2006; Li et al.
2018b). The reduced inertia tensor, I, is defined as:

Iij ≡
∑
n

xi,nxj,n
r̃n

, (3)

where the tensor sum is performed for each combination of
orthogonal axis directions, ij, and r̃n is the 3D, ellipsoidal radius
measured for stellar particle n,

r̃n =
√
x2n + (yn/p)2 + (zn/q)2, (4)
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Figure 1. Flowchart of the intrinsic shape determination pipeline. For each simulated galaxy,mock IFS images are constructed fromwhich the kinematic and photometric features
are extracted. Principal component analysis is applied for feature selection to choose a number of important features (those not selected are in grey). These are then fed to the
mixture density network with 3 dense hidden layers of 128 nodes each. In the last layer, the MDN outputs a linear combination of Gaussian mixture parameters given by the
weights αi , standard deviations σi , and meansμi to predict the p and q distributions.

where the major, intermediate, and minor axes are aligned with
the x, y, and z directions, respectively. The axis ratios p= b/a
and q= c/a are computed as the ratios of the corresponding
eigenvalues.

In practice, we must exclude particles at large radii, which
can skew measurements of p and q. We therefore measure the
shapes of galaxies only using particles within the ellipsoidal half
mass radius, r̃e, for consistency with previous works (e.g. Bassett &
Foster 2019) and for fair comparison with the radius at which the
kinematic and photometric properties will be measured within the
mock observations.

This requires us to measure the 3D shapes as an iterative pro-
cess because the ellipsoidal half mass radius must be determined
prior to measuring the eigenvalues of the reduced inertia tensor.
As an initial guess, we assume that each galaxy is spheroidal and
measure the galaxy shape within the spherical half mass radius.We
determine the new set of particles within the ellipsoidal half mass
radius defined by this shapemeasurement. This process is repeated
until the shapemeasurement has converged, giving the final values
of p and q for each galaxy. The resulting range of galaxy shapes, as
measured for the systems extracted from EAGLE, are shown in
Fig. 2.

2.2 EAGLEmock observations

The EAGLE simulation suite is a set of hydrodynamical cos-
mological simulations designed to explore the necessary physical
ingredients to form the galaxies we observe in the Universe today.
A full description of these simulations can be found in Crain
et al. (2015) and Schaye et al. (2015). Individual galaxies have
been extracted from snapshot 28 (z = 0) of the publicly avail-
able RefL0100N1504 simulation box, a medium-resolution run
of the ‘reference’ model within a 1003 comoving Mpc box. Using
the EAGLE database (McAlpine et al. 2016), we have selected a

sample of 3 638 galaxies above a stellarmass limit ofM∗ ≥ 1010M�.
For each of these galaxies, we begin by measuring their shapes as
described in Section 2.1.

The sample of galaxies is trimmed to remove any objects prob-
lematic for the algorithm design. Galaxies marked as ‘spurious’ or
those which contain less than 50% of the total stellar mass of the
galaxy within a 50 kpc-radius sphere are also removed, leaving 3
626 objects. Of these, we further restrict our sample to systems
that have not experienced a major or minor merger (where we
consider merger ratios ≥ 0.1) in the previous 5 Gyr of lookback
time in order to avoid objects with significant disturbed features
(Morales et al. 2018), leaving us with a sample of 3 199 galax-
ies. As in Bassett & Foster (2019), we find that disturbed systems
predominantly have low measured q parameters and evenly dis-
tributed p values, as shown in Fig. 2, and hence are more often
interpreted as overly flat objects. Finally, following the methodol-
ogy of Bassett & Foster (2019), we remove any barred galaxies from
the sample as the shapes of these systems within 1 Reff will often be
mistaken for prolate structures. To find these systems, we measure
the radial shape profiles for each galaxy and flag any systems whose
shape changes from prolate or spherical to triaxial with increas-
ing radius. Flagged galaxies are then visually inspected for any
strong internal stellar features, such as bars or spiral arms. This
leaves us with a sample of 2 519 galaxies. The distributions of these
barred and disturbed systems are demonstrated in the histograms
in Fig. 2.

Mock IFS observations of the remaining EAGLE galaxies are
performed using the publicly available code SIMSPIN.a While the
methodology behind this code is outlined in Harborne et al.
(2023), we summarise the necessary details followed to construct
each mock IFS observation here.

aSIMSPIN is an open-source R-package at https://github.com/kateharborne/SimSpin.
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Figure 2. The distribution of galaxy shapes measured from the RefL0100N1504 box of the EAGLE simulation. In dark grey squares we show galaxies that have undergone amajor
orminormerger within the last 5 Gyr, which we class as ‘disturbed’. Light gray outline triangles show systemswith significant bar structures. The histograms show the distribution
of these barred and merger systems in p and q in light and dark grey respectively. Coloured circles represent galaxies that we have selected for our investigation. Each colour
demonstrates the shape of the system, with spherical objects in yellow, prolate objects in orange, triaxial objects in pink and oblate objects in blue.

We begin by initialising an observing telescope with proper-
ties equivalent to the SAMI survey (Croom et al. 2012). We have
selected SAMI for comparison with the work presented in Foster
et al. (2017) and Bassett & Foster (2019). This is a predefined
telescope type within the SIMSPIN code. The spatial pixels of a
SAMI observation are 0.5” in width, with a equivalent velocity
bin width of 1.04 Å (Green et al. 2017). The field-of-view of a
SAMI observation is circular with a diameter of 15”. For kinemat-
ics, observations from the blue arm of the AAOmega Spectrograph
are used. The line spread function for this is well-approximated by
a Gaussian of size 2.65 Å measured at full-width at half-maximum
(van de Sande et al. 2017).

With the telescope defined, each galaxy is placed at a specified
distance from the observer. A mass-weighted LOSVD is built for
each spaxel dependent on the underlying velocity distribution of
the particles at that pixel position. This information is then used to
generate mock images of the projected mass, line-of-sight velocity
and velocity dispersion in the style of a SAMI observation. From
these maps, we measure a series of parameters in order to train
themodel.

To complement the kinematic maps, we also produce a series
of mock r-band images using SimSpin. This is done by associating

stellar population templates with star particles of a given age and
metallicity and computing the received flux through an r-band
filter. These images are constructed with a spatial resolution equiv-
alent to KiDS with 0.2”/pixel. Photometric properties, such as the
observed half-light radii, ellipticity and Sérsic index, are measured
from each of these images.

2.3 Building the unbiased training set

Using the defined sample of 2 519 unique galaxies extracted from
EAGLE, we take a number of observations for each system from
different orientation angles using this ‘mock’ SAMI instrument in
order to train and validate our algorithm. There are 13 265 inde-
pendent observations, of which 85 percent are used in the training
set and the remaining 15 percent are reserved for the validation
set. A further 9 599 observations of EAGLE galaxies are later used
to test the algorithm. No unique galaxy appears in more than one
of these sets (training, validation, or testing) in order to avoid
confirmation bias.

In each case, we wish to uniformly sample the p− q parame-
ter space so as not to bias our machine learning algorithm to one
specific shape. If we provide a non-uniform distribution of galaxy
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Figure 3. Demonstrating the equal sampling of p− q space within the training set.
Each point shows an individual EAGLE galaxy within the full sample. Coloured points
show galaxies selected for the training and validation sets, while grey points demon-
strate galaxies that have been left for the testing phase. The colour of each point
denotes the number of times that galaxy is observed in order to keep that p− q region
equally sampled. The number in the corner of each p− q region demonstrates the total
number of observations within that region.

shapes within the training set, the algorithm is likely to prefer-
entially assign a new observation to an over-sampled parameter
due to its prevalence in the training data, rather than due to its
similarity with a specific shape’s kinematic properties. Hence, we
must ensure that the training set includes a uniformly distributed
density of galaxies in the p− q parameter space.

However, galaxy shapes are not equally prevalent in the
Universe, or our simulations, as evident from Fig. 1. The majority
of systems are oblate, while spherical systems are comparatively
rare. In order to uniformly sample the parameter space, we have
divided the p− q space into 16 regions. We take repeat obser-
vations from different angles of galaxies in lower density p− q
regions in order to have a large enough data set to sufficiently train
the algorithm. No two observations of the same galaxy are from
the same angle.

In Fig. 3, we demonstrate how we have sampled each region
within p− q space uniformly. It is noted that the p− q space
regions are equal sized triangles in the region q> 0.4 only, as in the
lower q< 0.2 regime, particularly for prolate objects, we have sig-
nificantly fewer available galaxies to sample. Objects that exist in
the region q< 0.2 have been combined with a neighbouring region
above as demonstrated in Fig. 3.

Further, we need to consider how the kinematic and photomet-
ric properties we measure for a given 3D shape is impacted by the
chosen mock observational set up. With a simulated system, we
have the flexibility to re-orient the system in angle, projected dis-
tance and we can change the level of atmospheric seeing, in hope
of recreating a reasonable range of mocks that reflect a real sur-
vey. We must take care that these choices do not introduce biases

into the end result. In a follow up paper, we will demonstrate
the importance of this unbiased sampling to produce a success-
ful machine learning algorithm that uses kinematics from mock
observations as input. For the sake of brevity, we present the
optimal parameters over which to sample here.

We create an unbiased kinematic training set by controlling
‘raw’ observational parameters including: (1) the orientation from
which the galaxy is viewed, (2) spatial scales (adjusted by ‘moving’
simulated galaxies closer and further away), and (3) the level of
blurring caused by seeing conditions. These raw observation prop-
erties are cross-correlated with the observed kinematics and one
another, such that it is necessary to perform multiple observations
in a series of ordered steps to produce one unbiased element of
training data.

It is important that these cross-correlated properties, the ‘rel-
ative’ observational parameters, are fairly sampled. Of course,
within observational surveys, such properties cannot be controlled
making it difficult to train such an algorithm with observations
alone. In reality, the ground truth properties are also expensive
and difficult to acquire. For this reason, our simulations and
SIMSPIN are incredibly useful.

We select these parameters within reasonable limits based on
the SAMI survey. By ‘reasonable limits’ we mean that we restrict
our parameter space to values that would be considered reliable by
the survey, rather than the full possible range of the instrument.

Projected orientation The observing angle for each run is ran-
domly selected from the uniformly sampled surface of a sphere
within each p-q region. No unique galaxy will be observed from
the same observation angle more than once. Within SIMSPIN, this
is controlled using two parameters: the inclination about the x-axis
of the projection, and the twist about the y-axis of the projection.
We ensure that the combination of these parameters uniformly
samples the surface of a sphere such that we are not biased towards
a single observing angle in regions where more re-observations of
single galaxies are necessary. This also ensures that all possible 2D
projections are evenly sampled within the training set.

Spatial scales Physical spatial scales, i.e. the width of each spatial
pixel in units of kpc, are varied by moving each galaxy to different
distances. This distance is selected to sample a uniform distribu-
tion of pixels per measurement radius (otherwise called the ‘spatial
pixel scale’). This is a ‘relative’ observational property that we need
to consider in relation to the projected angle above. If we were to
require a uniform distribution of distances (the ‘raw’ property) for
each galaxy shape, we would inadvertently cause the distribution
of spatial pixel scales to be lower for oblate systems (which, when
viewed edge on have far fewer pixels within their measurement
radius than an edge-on elliptical). The spatial pixel scale is known
to correlate with the uncertainty of observed kinematic parameters
such as the spin parameter λR (see Appendix C in Harborne et al.
2020). We know that galaxy shape is correlated with the effects
of seeing conditions on the observed kinematics, and the size of
this effect in turn is dependent on the number of pixels within
the measurement radius. We do not want to train our algorithm
to learn that oblate systems are characterised solely in this way,
else any observation with poor seeing and low spatial pixel sam-
pling may be labelled ‘oblate’. Hence, once a projected orientation
is chosen for a galaxy, we adjust the projected distance to that
object to recover a given spatial pixel scale selected from a uniform
distribution.
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Figure 4. (Top left) Considering the raw distributions of tuneable observation properties controlled in each mock observation using a corner plot. The relationship between each
property is demonstrated in purple. By ‘raw’ we mean the values modified per observation i.e. viewing angle, size of the PSF and projected distance to the object. (Bottom right)
Considering the relative distributions of the important tuneable observation properties to ensure mock observations are uniform in the important ratios, as shown in the blue
corner plot. These ratios, i.e. the size of the PSF relative to the size of the object, and the number of pixels within themeasurement radius, are important for measuring observable
kinematics to produce an unbiased training set. The approximately uniformdistribution shown in blue demonstrates that our sample selection is not biasing our algorithm results.

In the lower right-hand corner of Fig. 4, there is a slight remain-
ing trend with pixel sampling and very low p. This is due to the
field of view limit of the SAMI observations. There is a limit to
how large a flat, edge on disc can be projected within a circular
aperture. However, to remedy this, we have successfully flattened
the distribution of pixel sampling with respect to the observational
seeing conditions. As a result, the effect on the observed kinematic
parameters is minimised.

Seeing conditions Seeing conditions are uniformly sampled
between 0.2 and 0.5 σPSF/Rmaj, where we have chosen to define the
size of the PSF relative to the measurement radius of the obser-
vation across a similar range to SAMI observations. Again, it has
been shown in a number of works that the impact of seeing con-
ditions on the observed kinematics of a galaxy is significant and
varies with galaxy shape (Harborne et al. 2020; Graham et al. 2018;
Greene et al. 2018; van de Sande et al. 2017; D’Eugenio et al. 2013).
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We use a Latin Hypercube Sampling (LHS)b procedure (Stein
1987; McKay et al. 1979) to ensure that we do not introduce a cor-
relation between these properties. We demonstrate the success of
this approach in the relative distributions on the right-hand side
of Fig. 4.

Of course, while this careful selection produces a uniform dis-
tribution in the chosen ‘relative’ parameters of importance to
kinematic parameter recovery, this does result in skewed distri-
butions for certain ‘raw’ observed parameters, as shown by the
distributions on the left-hand side in Fig. 4. We must put flatter
objects with lower p values closer to the observer (as shown by
Distance, Mpc in the final column). These closer objects see higher
σPSF values as a result.

However, it is the relative relationship between σPSF and the
half-light radius of the galaxy that has impact on the measured
kinematics and so it is this relative parameter that we must uni-
formly sample. Throughout the course of developing this MDN,
several runs with different input training sets demonstrated how
these biases propagate through the predictions of the network.
This final set of relative distribution controls were found to best
reflect reality of the shape distributions.

2.4 Computing the training parameters

Using these unbiased mock IFS observations, we measure com-
mon kinematic and photometric parameters used in IFS surveys.
For each parameter, we demonstrate the ability of this term to dis-
tinguish unique 3D shapes using a histogram in Fig. 5. The reason
for selection and method of measuring each of these parameters
is discussed below. While this is a comprehensive list of all the
parameters explored, we note that the list of features used within
the MDN model is trimmed down using PCA. Only a selected
number of key parameters are eventually used that best describe
the features required to recover the intrinsic 3D shape distribu-
tion. A list of the explored parameters as well as those selected for
the MDN is summarised in Table 1.

2.4.1 Ellipticity, ε

The ellipticity, ε, of a galaxy in projection is the first parameter
considered. Franx et al. (1991) demonstrated how the observed
ellipticity of a projected density distribution depends primarily on
the intrinsic underlying galaxy shape and the viewing angle. For
each intrinsic 3D shape, however, the mapping to a projected ε

is not unique. This is seen in the first panel of Fig. 5 where all
3D shapes may be projected to low apparent ellipticities (ε ≤ 0.3).
Conversely, spherical systems cannot be projected to high elliptici-
ties regardless of the inclination angle. This suggests that apparent
ellipticity is likely to be a useful feature for certain regions of the
p-q parameter space.

To measure ε, each mock KiDS r-band observation is fit using
PROFOUND (Robotham et al. 2018). We extract isophotal ellipses
for each projection. Photometric and kinematic measurements are
computed within the average ellipse that contains 50% of the total
light of the galaxy, at which point the ellipticity of the object is also
quoted. The ellipticity of this region is measured,

ε = 1− (b/a), (5)

where the axis ratio (b/a) is computed by diagonalising the iner-
tia tensor for all pixels within the half-light isophotal ellipse. The

bWe use the lhs R-package for this process, which can be found at https://bertcarnell.
github.io/lhs/index.html.

error on this parameter, �ε, is computed by taking the standard
deviation of the ellipticity of concentric isophotes within 40–60%
of the total flux, as in Bassett & Foster (2019). This is done for every
inclination at which the galaxy is measured, hence why a disc may
appear with a low ellipticity when viewed nearly face-on.

It is worth noting that we see very few highly elliptical objects
from this sample of EAGLE galaxies. This is not unexpected. As
shown in Lagos et al. (2018) and Sande et al. (2019), EAGLE does
not produce the observed high ellipticity objects we may expect.
This is due in part to the temperature cooling floor imposed in cos-
mological hydrodynamical simulations that sets a minimum disc
scale height of 1 kpc. There is also the effect of numerical heating
(Ludlow et al. 2019, 2021; Wilkinson et al. 2023), which further
increases the dispersion perpendicular to the plane of discs within
the model, causing more disc-like objects to appear more elliptical
in shape and kinematics. We can see that this is evident in the dis-
tribution of ellipticities. However, there is still a relative difference
between each shape, so although the values may not reach as high
as we may expect, their relative distribution seems reasonable.

2.4.2 Sérsic index, n

As a commonly measured structural parameter, we consider the
Sérsic index, n, in the set of training parameters. The Sérsic index
describes the slope of the light profile of a galaxy as fitted with a
Sérsic profile (Sérsic 1963). Discy systems correspond to low Sérsic
indices (0.3≤ n≤ 1.5), while elliptical systems have higher values
n∼ 4. Despite its clear link to morphology and galaxy structure,
Fig. 5 suggests that the power of Sérsic index in distinguishing
3D shapes is limited as we find the majority of shapes occurring
in 0.3≤ n≤ 4. However, there is still a relative difference visible
where spherical objects are seen to preferentially exist at the upper
end of the limit and oblate objects dominate at the lower end of
the limit, as we might expect.

The Sérsic profile is defined as:

I(R)= Ieexp

{
−bn

[(
Rm

Re

)1/n

− 1

]}
, (6)

where the Ie is the profile intensity measured at the half-light
radius, Re. The Sérsic index, n, is a parameter that describes the
shape of the light profile, while bn is used to ensure that, for a given
Sérsic index n, the correct integration properties occur at the half-
light radius (i.e. that the function integrates to 0.5 for a given n).
Finally, Rm is the ‘modified’ radius at which an isophote is defined.
Within the ProFit code used to compute isophotal ellipses, this
has a number of functional forms depending on whether the fit-
ted isophotes are circular, elliptical or boxy. For more details on
each of the definitions, please refer to Section 2.1.1 of Robotham
et al. (2017). We use elliptical isophotes for this analysis.

The associated error on n is computed as the standard devia-
tion of the residual between the fitted Sérsic profile and the surface
brightness profile.

2.4.3 Kinematic misalignment angle,ψ

As suggested by a number of works (Franx et al. 1991; Weijmans
et al. 2014; Foster et al. 2017; Ene et al. 2018; Bassett & Foster
2019), the kinematic misalignment angle, ψ, should also enable us
to map back to the underlying 3D shape of the galaxy in question.
Again, usingψ alone is insufficient to invert back to an underlying
3D shape directly, as the kinematic misalignment is also depen-
dent on the intrinsic axis of rotation. For a triaxial galaxy, this
rotation axis can lie anywhere in a plane that connects the longest
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Figure 5. Histograms showing how different intrinsic shapes of EAGLE galaxies within our training data populate each observable parameter. In each case, the spherical systems
are shown in yellow, prolate systems in orange, triaxial systems in purple and oblate systems in blue. The overall height of the bar shows the distribution of each kinematic
parameter within the full training set. The coloured regions then demonstrate the percentage of each bar that is made up of each intrinstic shape. Starred (∗) axis labels have been
divided into equally-sized log10 bins to more clearly delineate between the groups, though bar labels are shown as the raw values for clarity. This plot demonstrates that, in none
of the single measurements can we cleanly distinguish between the intrinsic shapes directly. This justifies the machine learning approach.
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Table 1. List of investigated galaxy parameters in column 2 and their notation in column 1. A short description in column 3 and relevant sectionswhere each parameter
is described in the text are listed in column 4. Parameters that are selected as input features to the mixture density network (MDN) indicated in column 5.

Notation Feature Short description Section Used in MDN

(1) (2) (3) (4) (5)

ε Ellipticity Measured from each projected r-band luminosity map at the
isophotal ellipse containing half the total flux of the galaxy

Section 2.4.1
√

�ε Ellipticity error Associated ellipticity error measured using the standard deviation
between the ellipticities of the isophotal ellipses containing
40–60% of the total galaxy flux

Section 2.4.1
√

n Sérsic index Measured in the observed r-band light Section 2.4.2
√

�n Sérsic index error Associated error on the fitted Sérsic index where the error is
computed as the standard deviation of the residuals to the fit

Section 2.4.2
√

ψ Kinematic misalignment angle Measured between the principle axis of rotation and the principle
axis of the light distribution

Section 2.4.3
√

�ψ Kinematic misalignment angle error Associated error on the kinematic misalignment angle Section 2.4.3
√

λR Observable spin parameter Measured within 1 Re that describes the relative importance of
rotation over dispersion as a function of radius in supporting a
galaxy’s structure

Section 2.4.4

V/σ Kinematic support Measured within 1 Re of the relative importance of rotation over
dispersion in supporting a galaxy’s structure

Section 2.4.5

j Specific angular momentum Measured within 1 Re Section 2.4.6
√

σm Mass-weighted average velocity dispersion Measured within 1 Re Section 2.4.7
√

Vrot Observed rotational velocity Measured along the principle kinematic axis Section 2.4.8

and shortest axis of the system. In the second row of Fig. 5, we
consider the distribution of ψ and its associated error with differ-
ent intrinsic shape classifications for observations in our training
set. It is clear that triaxial objects make up a similar percentage of
every bin. Despite this, there are a number of clear trends with
oblate and prolate objects predominantly occupying the low ψ

and high ψ bins respectively, providing some level of distinguish-
ing power. Using machine learning, we can explore the relative
importance of this parameter with respect to other photometric
and kinematic features.

To compute ψ, we use the following equation from Franx et al.
(1991):

sin(ψ)= ∣∣sin (
PAphot − PAkin

)∣∣ . (7)

The photometric position angle, PAphot , is measured as the
orientation of the major axis of the isophotal ellipse in degrees
from vertical. Similarly, the error on this value is computed using
the standard deviation of isophotes’ major axes angles for the
isophotes 40–60% of the total light.

The kinematic position angle, PAkin, describes the stellar angu-
lar rotation vector along which the rotational velocity is max-
imised. To compute PAkin, we use the Kinemetry technique out-
lined in Appendix C of Krajnovic et al. (2006).

2.4.4 Observable spin parameter, λR

The observable spin parameter λR was defined by Emsellem
et al. (2007) to describe the level of coherent rotation in galax-
ies observed as part of the SAURON survey (Bacon et al. 2001).
λR is now commonly measured by IFS survey teams as a method
of distinguishing fast rotators from slow rotators within a λR − ε

plane. Given the underlying relation between the intrinsic shape
and rotational support, as well as the commonality of this measure,
it is an obvious parameter to include within the machine learning
training. We can see strong evidence for this in the first panel of
the third row of Fig. 2.4. While there are relatively fewer high-spin

objects observed in the EAGLE training set, we can see that any
objects above λR of 0.3 are either oblate or triaxial systems.

We use the following equation to define the spin parameter
within the half-light isophotal ellipse defined in Section 2.4.1:

λR =
∑N

i Fi Ri |Vi|∑N
i Mi Ri

√
V2
i + σ2

i
, (8)

where Fi is the flux of stellar particles contained per pixel, i, Vi
is the LOS velocity, σi is the LOS velocity dispersion and Ri is
the ellipsoidal radius corresponding to the semi-major axis of the
ellipse at this ith pixel location. Only pixels contained within the
half-light radius (described in Section 2.4.1) are included within
this calculation. We note that this ellipsoidal radius definition is
slightly different to the original λR definition in Emsellem et al.
(2007), which uses circularised radial weighting. The choice of
an elliptical aperture is made to be consistent with the values
measured by the SAMI survey (Sande et al. 2017).

2.4.5 Kinematic support,V/σ

Along a similar vein, V/σ is another common dynamical parame-
ter used to gauge the balance of rotational vs. pressure support of
galaxies (Illingworth 1977; Binney 1978; Davies et al. 1983). With
the advent of IFS, this value was reformulated by Binney (2005)
using the tensor virial theorem in order to relate kinematics back
to the intrinsic flattening. For this reason, it is included within the
training parameters.

We use the light-weighted kinematics to compute V/σ which
is given by the equation:

V/σ =
√ ∑N

i Fi V2
i∑N

i Mi σ
2
i
, (9)

where, as before, Fi is the stellar flux contained per pixel, i, Vi is
the LOS velocity at that pixel and σi is the LOS velocity dispersion
at that pixel. As with the measurement of λR, only pixels within
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the measurement radius of the half-light ellipse are used in this
computation. When considering the distribution of this parame-
ter across different galaxy shapes, in the central panel of the third
row in Fig. 5, we find qualitatively similar distributions to the λR
parameter.

2.4.6 Specific angular momentum, j

In Bassett & Foster (2019), it was found that the intrinsic flat-
tening of a galaxy was most strongly correlated with the stellar
specific angular momentum, j. Considering the distribution of
galaxy shapes in the right panel of the third row in Fig. 5, we can
already see that high j galaxies do exhibit flatter structures for our
training galaxies taken from the EAGLE simulation.

We compute the specific angular momentum, j, using the
formula:

j=
∑N

i Fi Ri |Vi|∑N
i Fi

, (10)

where the terms are the same as those used above. Again, only pix-
els contained within the half-light radius are included within this
calculation.

2.4.7 Mass-weighted velocity dispersion, σm

To then consider the level of dispersion support, in contrast to
rotation and j, we compute the mass-weighted velocity dispersion,
σm within the half-light isophote. As can be seen in Fig. 5, the first
panel in the final row shows increasing preponderance of prolate
systems with increasing dispersion.

This parameter is calculated using the LOS-velocity dispersion
maps for each observation:

σm =
∑N

i Mi σi∑N
i Mi

, (11)

where here, σi is the LOS velocity dispersion and Mi is the stellar
mass per pixel, i, contained within the half-light radius.

2.4.8 Rotational velocity,Vrot

The final flavour of kinematic parameter used is the rotational
velocity, Vrot. This is another way to parameterise the level of
rotation support for a system and was commonly recovered for
long-slit spectroscopy and radio interferometry measurements
(Davies & Birkinshaw 1988; Bak & Statler 2000). To compute this
parameter for our galaxies, we use the kinematic position angle
returned for the computation of ψ and realign our galaxy veloc-
ity map such that the maximum gradient is horizontal within the
image. The central row of pixels from the velocity image is then
used to visualise the galaxy rotation curve, with the left and right
of the curve normalised and averaged. Vrot is then quoted at the
turnover of the rotation curve.

We can see from the final panel in Fig. 5 that oblate and triaxial
systems often occupy these higher Vrot regions.

2.5 Selecting input features

From the initial set of 11 galaxy structural and kinematic param-
eters listed in Table 1, we further perform feature selection using
principal component analysis (PCA; Pearson 1901) on the training
data set. Before applying PCA, all parameters of the training data
are scaled based on the median and interquartile range between
the 25th and 75th quantiles as a preprocessing step. This PCA
step is useful in determining which parameters hold the most
constraining power and which sets may exhibit redundancies

Figure 6. Feature selection of galaxy kinematic parameters (see Table 1 for notation)
using principal component analysis. Absolute eigenvalues of the associated principal
component (PC) are labelled and coloured, where a value of 1 indicates the strongest
possible contribution with darker gradient.

when tackling intrinsic shapes. The resulting eigenvalues from the
PCA quantifies the relative contributions of the various param-
eters to the main principal components (PCs). The larger the
absolute value of the corresponding eigenvalue, themore influence
the parameter has on the PC.

Fig. 6 shows the distribution of PCs along with weightings of
each parameter on the PC and corresponding eigenvalues. We
select up to 8 PCs, which explain ∼99% of the variance in the
training data. By performing this step, we can filter out redun-
dant parameters and select those that are significant, which can
lead to the overall improvement in the performance of the pre-
dictive model (see Appendix A for comparative result without
performing feature selection). For each PC, the feature with the
highest absolute eigenvalue is used as input feature to train the
neural network model described in the next section. This corre-
sponds to 8 features (Used in MDN column in Table 1), namely
ellipticity ε, ellipticity error �ε, kinematic misalignment angle ψ,
kinematic misalignment angle error�ψ, specific angular momen-
tum j, mass-weighted average velocity dispersion σm, Sérsic index
n, and Sérsic index error �n.

3. Recover p-q distribution using machine learning

3.1 Building the mixture density network (MDN)

In order to recover p and q as probability distributions, we build
a mixture density network (MDN; Bishop 1994) using KERAS
(Chollet et al. 2015), an open-source PYTHON package for deep
learning, with TENSORFLOW (Abadi et al. 2015) backend. MDN
combines a deep or fully connected neural network with mixture
of distributions. It is a feed-forward neural network that maps a
set of input features, 
x, to generate output, y, of mixture models
(McLachlan & Basford 1988). Generally, the mixture distribu-
tion is represented by a Gaussian Mixture Model (GMM). The
conditional probability density function can be expressed as:

p(y|
x)=
m∑
i=1

αi(
x)N (y;μi(
x), σ2
i (
x)), (12)
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where m is the number of mixture components, and αi(
x), μi(
x)
and σ2

i (
x) are the corresponding weight, mean and variance of the
i-th component of the mixture.

The network architecture consists of several layers, starting
with an input layer, followed by dense hidden layers characterised
by a non-linear activation function, and lastly an output layer with
GMM, as illustrated in Fig. 1. For the hidden layer, we use three
dense layer networks with 128 neurons and rectified linear unit as
activation function. Additionally, a dropout layer with 15% drop
rate is inserted between each hidden layer to reduce over-fitting.

In the MDN output layer, we find that changing the number of
mixture components does not significantly affect the accuracy and
set it to be 5. The GMM parameters are derived from the network
output vector, 
z as follows:

αi(
x)= exp (zα
i )∑M

j=1 exp (zα
j )
, (13)

σi(
x)= exp (zσ
i ), (14)

μi(
x)= zμ
i . (15)

The softmax activation function in Equation (13) ensures that
the weights are positive and sum to one. An exponential activation
is applied in Equation (14) such that the standard deviations are
positive. For themeans in Equation (15), a linear activation is used.
During the training process, the GMM parameters are optimised
by minimising the negative logarithmic likelihood of Equation
(12) as the loss function using root mean squared propagation.We
train the MDNmodel for 5 000 epochs using the training data set.
Early stopping is imposed to terminate the run when there is no
significant improvement in the model performance’s on the val-
idation set. Finally, the optimised GMM parameters are used to
predict the distributions of p and q of the test dataset.

3.2 Computing evaluationmetrics

To evaluate the performance of the model predictions, we com-
pute the commonly used root mean squared error (RMSE) metric.
The RMSE is the average of the squares of the difference between
the actual value, y, and predicted value, ŷ, given by:

RMSE=
√√√√ 1

Ngal

Ngal∑
i=1

(ŷi − yi)2, (16)

whereNgal is the number of galaxies in the dataset. Themean of the
predicted p and q distributions are used to compare to the actual
values of p and q.

Additionally, we also assess the degree of success and contam-
ination. For each predicted shape class, we compute the negative
predicted value (NPV) defined as:

NPV= Number of TRUE negatives
Number of negative calls

, (17)

and the positive predicted value (PPV) or precision is defined as:

PPV= Number of TRUE positives
Number of positive calls

. (18)

As such, the NPV describes the number of systems that have cor-
rectly been identified as NOT a given shape as a fraction of all the
systems identified as NOT that shape, i.e. larger negative predicted
rates imply a smaller contamination of this shape into other shape

Figure 7. Predicted against actual p and q for each galaxy shape using mixture den-
sity network (MDN) for the test data set. The black crosses represent the average
prediction, while circles represent projections of individual galaxies colour coded by
the standard deviation from the MDN output. The darker the gradient, the more cer-
tain. The prediction error is evaluated by the root mean squared error (RMSE), where
lower values represent better agreement. For reference, the identity is shown as a grey
dashed line. Although there is a large variation in the standard deviation of individual
prediction, inmost of the systems, the average of the predictions are close to the actual
value.

classes. By contrast, the PPV indicates the number of correctly
identified objects of a given shape, i.e. the degree one can trust the
shape given by the predicted p and q as a function of galaxy class.

4. Results

Fig. 7 presents the predicted mean of p and q for each galaxy sys-
tem from the MDN model in comparison to the actual values. An
indication of the uncertainty given by the standard deviation out-
put from the Gaussian mixture parameter is shown in coloured
points. The corresponding distributions are shown in Fig. 8.
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Figure 8. Distributions of p and q recovered from the mixture density network model
for each galaxy shape compared to the actual for the test data set.

For oblate systems, which are the most abundant class objects,
the predicted p values tend to be underestimated, while the q
values tend to be overestimated. The distribution of p is highly
skewed towards low values. Prolate galaxies are well constrained
with the recovered p and q distributions closely matching those
of the actual distributions. Spherical objects, on the other hand,
are much harder to predict with both p and q predictions often
lower than the actual values. Their recovered distributions are also
poorly estimated. For triaxial objects, p is better predicted than q,
whereby the latter is overestimated in most cases. It is also worth
noting that there is a large scatter in the standard deviation, which
can extend up to ∼0.37. However, the predicted means (indicated
by the crosses in Fig. 7) remain close to the true values.

Generally, the MDN is able to recover the underlying shape
distributions of p and q for most of the systems, particularly pro-
late objects yield the best recovery with the lowest RMSE. This is
followed by triaxial, oblate, and lastly spherical objects with the
largest RMSE. Comparing the distributions between the actual and
predicted for oblate and triaxial systems, even though their distri-
butions are not exact, theMDNdoesmanage to capture the overall
shape of the distribution. For example, both actual and predicted p
distributions for the oblate galaxies have similar negatively skewed
shaped distribution. The q distributions for the triaxial galaxies
appear to be positively skewed.

For each prediction, the MDN outputs a probability density
function that gives a useful indication of the allowable range of
p and q values and whose standard deviations serve as estimates
of the uncertainties. Accounting for this, we further group them
into ‘informative’ and ‘uninformative’ based on the p− q errors.

Figure 9. The recovered p− q shape probability density function within one standard
deviation (σ) from the mixture density network, showing examples of ‘informative’
(left column) and ‘uninformative’ (right column) predictions for each galaxy shape.
‘Informative’ fits are those with low standard deviation of σ ≤ 0.24, while vice versa
for ‘uninformative’ fits. The predicted shape is shown on the top right of each panel.
The vertical dashed line shows the actual value.

Examples of the recovered shape distributions are portrayed in
Fig. 9. For objects that are predicted with low uncertainties of less
than the mean of the standard deviation at σ ≤ 0.24, we labelled
them as ‘informative’, as shown in the left column. The rest, that
do not satisfy that criteria, are labelled as ‘uninformative’ in the
right column. Generally, it can be seen that when the retrieved dis-
tribution of p is broad (i.e. high standard deviation), the retrieved
distribution of q will also be broad, with Pearson correlation coef-
ficient between the uncertainties of p and q of 0.796 (p-value
� 0.01%). This suggests that both p and q predictions are less
reliable if either one has large error.

In Fig. 10, we show the predicted p and q values of each obser-
vation in our testing set coloured by its true underlying 3D shape
for all objects (top panel) and objects in the ‘informative’ group
(bottom panel). Generally, the NPV and PPV improve as more
certain (lower σ) predictions are filtered (see Appendix B for
trends in NPV/PPV with σ). Visually, we see that predicted classes
are correlated with their true underlying shapes, with contami-
nation specifically from oblate systems being predicted as every
other shape class. To quantify the degree of the success and con-
tamination, we also compute the predictive values, namely NPV
(Equation (17)) and PPV (Equation (18)), which are quoted as
percentages in Table 2.
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Figure 10. Predicted p and q for each galaxy shape using mixture density network
for all results (above) and for objects with a certainty of σ ≤ 0.24 (below). Points are
coloured by their true 3D shape class. The total number of predicted objects is indi-
cated by the number in the round bracket in each shape region, followed by the
number of true objects of that shape. The negative predicted values (NPV) and posi-
tive predicted values (PPV) are shown as a function of galaxy shape within the legend
of each plot. We see the expected distributions broadly approaching the true as we
select more certain predictions, though uncertain oblate systems (shown in blue)
contaminate every other class in both plots. The reasons for this are discussed in
Section 5.

Certain galaxy shape classes are harder to predict than the oth-
ers. Some classes, like spherical galaxies, are rarer and constitute a
smaller proportion or relative area (see Fig. 2) of the evenly sam-
pled p− q space, and this is also true in our Universe. Based on the
predictive values, we can be confident of the MDN predictions for
oblate galaxies, which exhibit the highest PPV.We see that galaxies
predicted to be oblate are very likely to truly be oblate, with> 92%
of all systems in this region truly being this shape intrinsically. On
the other hand, oblate systems have the lowest NPV rate, at∼36%,

Table 2. The negative predicted values (NPV) and positive predicted values (PPV)
for each underlying 3D shape given as percentages, where a higher value is bet-
ter. In the left column of each metric, we show the values when all returned
shapes are considered. In the right column of each metric, we consider only
results with uncertainty less than 0.24.

Shape NPV (all) NPV (σ ≤ 0.24) PPV (all) PPV (σ ≤ 0.24)

Oblate 35.6% 52.4% 92.5% 93.6%

Prolate 98.8% 98.8% 23.6% 30.2%

Spherical 98.5% 97.7% 5.7% 10.2%

Triaxial 88.4% 80.1% 23.6% 41.8%

demonstrating that an object classified as not oblate in shape has
a high chance of actually being an oblate system. Though further
improvement could be seen, to ∼52%, by selecting samples with
higher certainty. Despite contaminating the most of other regions
in the predicted p-q parameter space, very few other shapes are
falling into this region. By contrast, predominantly due to the con-
tamination by oblate systems, we see the PPV values of all other
shapes are significantly lower.

At the other extreme, spherical systems have the lowest PPV
at < 10% and thus lowest confidence. This implies that many of
the predicted spherical galaxies will be false positives. Conversely,
with a NPV of > 97%, we can confidently rule out a galaxy that
is identified as not spherical to be true negative. This is also the
case for prolate and triaxial galaxies, which also present high NPV,
but low PPV. The prolate systems are predicted with particularly
high NPV rate, at ∼99%, showing that an object identified as not
prolate is very likely not to be intrinsically prolate.

5. Discussion and future prospects

As demonstrated in Figs. 7–10, the machine learning approach to
intrinsic shape recovery has a number of benefits over previous
methods. Our approach returns a probability density function for
every projection of individual galaxies. This approach thus pro-
vides an estimate of the intrinsic shape along with uncertainties
for individual galaxies. Subsequently, this can be used to quantify
our trust in the predictions.We can be certain of our prediction for
objects with accurately recovered p and q values with low standard
deviation. Those with large uncertainties are less reliable even for
those with retrieved p− q close to the actual.

In comparison to the original work of Bassett & Foster (2019),
we do not see a preferential recovery of p= 1 in our predictions. In
particular, Fig. 8 in this work compares favourably to Figure 7 from
Bassett & Foster (2019). As suspected in that work, this improve-
ment implies that ψ is not uniquely linked to intrinsic shape –
the addition of further kinematic and photometric information is
necessary for realistic p-q recovery. Considering the results of the
PCA, we can see that ψ is important to the determination, but in
combination with a number of other parameters (Fig. 6). From
Fig. 5, we also see that no single feature provides a clear mapping
to the intrinsic 3D shape.

The kinematic misalignment ψ does contribute to the abso-
lute eigenvalues of the PCA, but only at the 7th component in
Fig. 6. Interestingly, we see that parameters such as the mass-
weighted dispersion σm and the specific angular momentum j pro-
vide greater constraints to the intrinsic shape recovery than their
combined counter-parts, λR and V/σ. We note that the dynam-
ical range of each parameter has been controlled for through
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normalisation during the PCA, therefore differences in the param-
eter dynamical ranges cannot be driving these trends. This may
be because a level of degeneracy is introduced by the division
of parameters in λR and V/σ which may negate their shape
describing power.

From Fig. 10, we see that, despite clear improvements on pre-
vious approaches, we do struggle to recover some regions of the
p− q parameter space. This may in part be due to the formula-
tion of the problem. Mathematically, we know that p> q, given
a> b> c (and p= b/a, q= c/a) and that bothmust be less than or
equal to 1. As the MDN returns a Gaussian distribution of predic-
tions in p and q, it is down-weighting the possibility of shapes that
occur at these boundaries, especially the spherical objects where
both ratios are near the boundary p∼ q∼ 1. This is clearly seen in
Fig. 10, where the predicted values fail to occupy any region close
to the extremes of the parameter space.

The MDN uses a GMM, which may not be appropriate should
the underlying distribution of shapes not be well characterised by
Gaussians. As can be observed in Fig. 8, the expected distribu-
tions can vary between different systems. Oblate objects mainly
have high p values. However, the recovered distribution has a
long tail towards lower values, which causes contamination to
other galaxy classes in the p− q space. For spherical objects, the
data appear sparse and modelling with multiple Gaussian com-
ponents might not be a good representation of their distribution.
This has also been noted in Bassett & Foster (2019), particu-
larly for the p− q recovery of spherical galaxies. Additionally,
based on our investigation, using a deeper neural network model
and more mixture components in the MDN will not significantly
improve the predictions for individual galaxy types. A further
exploration is to perform a detailed search of the MDN architec-
ture and the best set and combinations of galaxy properties that
can help in improving the machine learning model performance.
The addition of other kinematic and photometric properties, espe-
cially those known to correlate with structural parameters, such
as colour, ionised gas kinematic parameters and star formation,
might also provide additional information to aid in the recovery
of p and q.

This work presents a proof of concept that demonstrates the
capability of MDN models to recover the p and q values to infer
the shape of individual galaxy. Instead of relying on restrictive
assumptions about the relationship between the intrinsic shape
and parameters such as the kinematic misalignment, ψ, we use
the MDN model to simultaneously train on various kinematic
and photometric parameters that provide meaningful properties
to characterise 3D galaxy shapes. Generally, the MDN model can
recover the shape distribution for prolate objects, but performs
more poorly for other shapes. The MDN can provide estimates
of the p and q values as well as meaningful uncertainties through
probability distributions of those parameters. We recommend the
use of informative retrieved p and q values with low standard devi-
ation, while cautioning against using those with large standard
deviation.

The MDN pipeline requires low computational power to run,
especially once it has been trained and large volumes of test
data can be evaluated almost instantly. Future work will include
deploying MDN on mock data sets from a varied set of hydro-
dynamical cosmological simulations, such as IllustrisTNG. This
would provide important insights on how differently the model
might perform on real data, how well it scales across different

data sets and also inform how different cosmological simulations
compare with one another and with real galaxies.

6. Conclusion

Recovering the underlying 3D intrinsic shapes of individual galax-
ies is a challenging task since our observations of galaxies appear
as 2D projection maps. As opposed to traditional methods that
assume a relationship between the intrinsic kinematic misalign-
ment and morphological axes, we employ a supervised machine
learning method. For this purpose, we build a mock observational
dataset from the EAGLE hydrodynamical cosmological simula-
tion as our training and testing datasets. We then apply a MDN
to predict the intrinsic axis ratios, p and q, that characterise the 3D
galaxy shape.

As with other methods, our approach also finds that it is harder
to recover the distribution of p than that of q, which can be
retrieved reasonably well for the majority of systems. We demon-
strate that there is no simple pair of parameters that is able to
provide a unique link to the 3D intrinsic shape. We find instead
that the inclusion and combination of both kinematic and photo-
metric information does further improve the p− q recovery. We
show that our MDN model has great potential in recovering the
intrinsic shapes of the galaxies, along with subsequent uncertain-
ties. Our MDN approach can be applied to any IFS data. These
works will serve as the foundation for future investigations on the
use of ML for galaxy intrinsic shape recovery.
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Appendix A. Galaxy Shape Predictions without Feature
Selection

Fig. A1 shows the predicted mean of p and q from theMDNmodel
when no feature selection is applied, i.e. using all parameters listed
in Table 1. In all cases except for p values for triaxial systems,
the MDN performs slightly better with lower RMSE when feature

Figure A1. Predicted against actual p and q for each galaxy shape using mixture den-
sity network (MDN) without performing feature selection for the test data set. The
black crosses represent the average prediction, while circles represent projections of
individual galaxies colour coded by the standard deviation from the MDN output. The
darker the gradient, the more certain. The prediction error is evaluated by the root
mean squared error (RMSE), where lower values represent better agreement. For ref-
erence, the identity is shown as a grey dashed line. Compared to Fig. 7, the RMSE
is marginally worse for all systems except the p values for triaxial when no feature
selection is performed.
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Figure B1. Trends in positive predicted values (PPV) and negative predicted values (NPV) with varying standard deviations from MDN output (σ) for each galaxy shape. In each
panel, the colour of the points shows the constant bin in the p or q value not on the axis, i.e. σ(ppred) in the plot of σ(qpred) and vice versa. The darker the gradient, the narrower the
σ andmore certain. The vertical grey dashed line shows the mean of the standard deviation at σ = 0.24.

selection is included (see Fig. 7). Incorporating feature selec-
tion will be particularly useful especially in the presence of large
number of features, which we intend to explore in future work.

Appendix B. Trends in Certainty of Galaxy Shape Predictions

Fig. B1 shows the trends in positive predicted values (PPV) and
negative predicted values (NPV) with different cut-off selection
for the standard deviation of the MDN output. The cut-off crite-
rion for Figs. 9–10 and Table 2 of themain paper using themean of
the standard deviation at σ = 0.24 is shown in vertical grey dashed
line. Broadly, there are improvements in PPV and NPV as more
certain objects are selected.

Notably for oblate systems, the NPV rate is refined by a fac-
tor of ∼4 improvement. The PPV for prolate and triaxial systems
also improve by a factor of ∼2 with the removal of less confident
predictions. The NPV results for triaxial systems behave oppo-
site from expectation, yielding worse predictions as the standard
deviation decreases. This may be due to the expected distribu-
tion not being well captured by the MDN model, particularly for
p (see Fig. 8). The recovered p values for triaxial objects cover a
broader range of values compared to the true underlying shapes.
There is no improvement in the NPV for spherical systems due to
the smaller sample size in that group. In general, predictions with
lower σ are to be preferred to ensure the retrieved galaxy shapes
are ‘informative’.
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