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THE RADIAL OSCILLATION OF SOLUTIONS TO ODE'S
IN THE COMPLEX DOMAIN

by JOHN ROSSI and SHUPEI WANG*

(Received 5th September 1994)

We prove three results concerning the oscillation near a ray of solutions to (*)w" + Aw = 0, where A is an
entire function. The first result assumes that A is a polynomial and gives an upper bound on the number of
its real zeros if (*) admits a solution with only real zeros and infinitely many. The second result proves that
for A of finite order a solution w to (*) has "few" zeros "near" a ray if and only if the same is true for w.
The third result involves the density of the zeros of a solution to (*) "away" from a finite set of rays.

1991 Mathematics subject classification: 30D35, 34A20.

1. Introduction

In this paper we prove three results regarding the oscillation near a ray of solutions
to the differential equation

w" + Aw = 0 (1.1)

where A is an entire function.
Our first result makes some modest progress towards a solution to a problem

[1, Problem 2.71] posed by S. Hellerstein and the first author. The problem asks for a
characterisation of all nonconstant polynomials A such that (1.1) admits a solution
with only real zeros and infinitely many. It is known [5] that there cannot be two such
solutions which are linearly independent, unless the polynomial A is a constant. It is
also known that if

A(z) = az + b (1.2)

where a and b are real or

A(z) = zA-P (1.3)
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for certain choices of P > 0, then (1.1) admits such a solution [2, Section 8].
Recall that a function is said to be real if it maps the real axis to itself. We prove

Theorem 1.1. Let A be a polynomial of degree n such that (1.1) admits a solution w
with only real zeros and infinitely many. Then A is a real polynomial, w is a constant
multiple of a real entire function, and the number of real zeros of A counting multiplicity
is less than (n + 2)/2.

As an immediate corollary of Theorem 1.1, we obtain that if A is any nonconstant
polynomial with only real zeros and (1.1) admits a solution w with only real zeros and
infinitely many, then A has the form (1.2). Hence w is just a constant multiple of a real
translation of the classical Airy's function Ai(z).

This corollary was originally conjectured in [5, Conjecture 2] with the additional
assumption that A be a real polynomial. The conjecture was based on a belief that
Wiman's conjecture (see Section 2) held true. As we shall see, Sheil-SmalPs solution of
Wiman's conjecture [11] makes the proof of Theorem 1.1 almost immediate once the
reality of A and W are shown.

Our second result investigates the oscillatory behaviour of solutions to (1.1) for
entire A of finite order. (For an introduction to such an oscillation theory the reader is
encouraged to read [8].) Classically one considered equation (1.1) with A a continuous
real function of a real variable t and looked at the density of the zeros of a solution
together with the zeros of its derivative. A similar study in the complex plane is much
more difficult. Just because a solution has zeros near a ray, there is no reason to
believe that its derivative does as well. Some attempts were made in the general case
using Green's Transform (see [7]). To state our result, let / be meromorphic in the
complex plane. We define the radial exponent of convergence of the zeros of/ at the
ray arg z = 0, denoted 2.0(f), by

W) = lim limsup108"^'0'^. (1.4)
<->o+ H ( » f logr

Here nlp(r, 0,/) is the number of zeros of/ counting multiplicity in

{|z |<r}n{a<argz</?}.

When A is a polynomial much is known. Precise asymptotics of solutions to (1.1)
are worked out in large sectors of the complex plane [6, Chapter 11]. Consequently one
can easily see that a solution w has infinitely many zeros in a Stoltz angle around a
ray if and only if the same is true for w'. In fact there are only finitely many rays
L = {argz = 0} (depending only on A), called Stokes directions, around which a
solution w can have infinitely many zeros. (This will be discussed further in Section 2.)
In the above notation one can prove for such rays that

^±1, (1.5)
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where n is the degree of the polynomial. Here we remind the reader that (n + 2)/2 is
also the order of every solution of (1.1).

Since the order of any solution of (1.1) is infinity whenever A is transcendental, the
following theorem provides a result analogous to (1.5) for transcendental A.

Theorem 1.2. Let A be a transcendental entire function of finite order. Let argz = 6
be any given ray in the complex plane. Then for any solution wo/(l . l) we have

Ao(vv) = oo if and only if A0(w') = oo. (1-6)

We remark that (1.5) and Theorem 1.2 tell us that the oscillation near a ray of a
solution w to (1.1) is similar to that of its derivative provided A is of finite order.
Qualitatively this says that near rays, the oscillation of a solution to (1.1) behaves in
much the same way as a solution to the sine equation

w" + w = 0.

In general when A is transcendental it is difficult to determine near which rays a
solution has an infinite radial exponent of convergence. An extensive study of this
subject, when the coefficients have the form A = eF + Q, is contained in the Ph.D.
thesis of the second author [13]. Here the exact location of the rays with infinite radial
exponent of convergence is determined.

Our third result generalises two results of the first author [10, Theorem 2; Theorem
3]-

Theorem 1.3. Let A be a transcendental entire function and let {argz=0,},
i = 1, 2 , . . . , n be finitely many rays, where

0, < 02 < • • • < 0,, < 0n+l := 0, + 27r, 01+) - 0, < n.

Then

^ logn M i + i ( r , 0 ,E )
lim sup > -^ = oo.

~«, ^f logr

where E is the product of any three pairwise linearly independent solutions of (I.I). In
the case that A has order not exceeding 1/2, E may be taken to be the product of any two
pairwise linearly independent solutions.

The function no.Oj+t (r, 0, E) will be defined in the next section. It does not exceed
the corresponding n* function defined earlier and measures the number of zeros
between the rays argz = 0, and argz = 0I+) but sufficiently "far" from them. Intuitively
the theorem says that if A is transcendental, the zeros of at least one of three (two, if
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the order of A does not exceed 1/2) pairwise independent solutions to (1.1) cannot all
"congregate" around a given finite set of rays.

For the proof of Theorems 1.2 and 1.3, we use a Tsuji-type sectorial characteristic
developed by the second author in [13], which generalised the original Tsuji halfplane
characteristic introduced in [12]. It was brought to our attention by Simon Hellerstein
that one may also use the classical Nevanlinna sectorial characteristic [9] to prove
Theorem 1.2. The advantage in using the Tsuji-type theory over the Nevanlinna theory
is that in the Nevanlinna theory, the magnitudes of the true counting function of the
zeros and the averaged counting function may differ greatly if there are many zeros
near the "arms" of the sector involved. One can control this in the Tsuji setting and in
fact obtain more precise information about the density of the zeros. This distinction
seems to be important in the proof of Theorem 1.3. Indeed, we are unable to fashion a
proof of Theorem 1.3 using the Nevanlinna sectorial characteristic.

2. The proof of Theorem 1.1

Write

A(z) = anz" + • • • + a0, an ? 0 (2.1)

a n d define for j = 0,1,2,... ,n + I

p (22)
and

Wj(e) = {z: |argz-0,. |<e}.

Then given e, 0 < e < n/{n + 2), all but finitely many of the zeros of any nontrivial
solution w to (1.1) lie in U*̂ ,1 Wj(e). (See [6, Chapter 11].) Moreover, if/ has infinitely
many zeros in W}(e) for some j , then the number of zeros of/ in

Wj(e)n{\z\<r},

denoted by rij(r,f), satisfies

«;(r,/) = ( l + o ( D ) ^ | ^ ^ , r - o o . (2.3)

The rays {argz = 6j),j = 0, 1,. . . , n + 1, are called the Stokes rays for A.
We need the following lemma which can be deduced easily from Lemma 1 in [2].

We include the details for completeness.
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Lemma 2.1. Let Abe a polynomial of the form (2.1) and let w be a nontrivial solution
of (I.I) with infinitely many real zeros. Then A is a real polynomial.

Proof. Let A(z) = A,(z) + iA2(z) where At and A2 are real polynomials. Our goal is
to prove that A2 is identically zero. To this end we use the Green transform [7, p. 286]
and obtain for x < y

\y A(t)\W(t)\2dt = r
Jx Ji

Thus between any two consecutive real zeros of w there is a zero of A2. Since w has
infinitely many real zeros and A2 is a polynomial, A2 is identically zero. The lemma is
proved.

We also need a lemma proved in [2]. We offer a simple proof.

Lemma 2.2. Let w be as in Lemma 2.1. Assume additionally that all of its zeros are
real. Then w is a constant multiple of a real entire function.

Proof. Since w solves (1.1) with A a polynomial, it has finite order and all its zeros
are simple. Further by hypothesis w has infinitely many zeros all of which are real.
Thus by the Hadamard factorisation theorem w = Ylep+lQ, where P and Q are real poly-
nomials and II is a real entire function with infinitely many simple zeros. By absorbing
the ep term, we write w = W e where *P is a real entire function. Computing w" and
noting by Lemma 2.1 that A is real, we obtain that

2Q"P' + Q"¥ = 0.

But Q is a polynomial and ¥ has infinitely many simple zeros. This implies that Q' is
identically zero. The lemma is proved.

The following lemma follows by a straightforward combinatorial argument involving
(2.2). We omit the proof and refer the reader to [2, Theorem 2] or [4, Theorem 3(b)].

Lemma 2.3. Let w be as in Lemma 2.2. Then

Proof of Theorem 1.1. That A is real and w is a constant multiple of a real function
follow from Lemmas 1.1 and 1.2 respectively. Let 2p be the number of nonreal zeros
of A. (Since A is real, this number is indeed even.) Then by (1.1), w" has 2p nonreal
zeros.

A deep result of Sheil-Small [11] says that any constant multiple w of a real entire
function with only real zeros such that w" has at most 2p nonreal zeros must satisfy

w(z) = g(z)exp(-az2'*2),
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where a > 0 and g is entire with genus not exceeding 2p + 1. Since w has order
(n + 2)/2, we find that

(n + 2)/2<2p + 2. (2.4)

By Lemma 2.3 we must have strict inequality in (2.4). Since the number of real zeros
of A is n — 2p, the theorem is proved.

3. The sectorial characteristic function

As was mentioned in Section 1, our proof of Theorems 1.2 and 1.3 depends on a
sectorial theory developed in [13]. In this section we list some of the notation and
properties of this theory. We remark that a proof of Theorem 1.2 with radial exponent
of convergence replaced by the usual exponent of convergence in the whole plane
involves a routine argument in Nevanlinna theory which we offer to the reader as an
exercise. The machinery developed in [13] and described in this section allows us in
Section 4 to mimic this argument in small sectors around rays.

For any a, /? e R, 0 < p - a < n, set

Q(a, P) = {z = te10 : a < 6 < P, t > 0},

fi>, /?, r) = {z = tem : a < 9 < P,1 < t < r),

fi(a, p, r) = {z = tei0 : a < 0 < 0,1 < t < r(sin k(6 - a))*},

where k = n/(P — a).
We remark that for any a, / J e R , 0 < / ? - a < 7 t and r > 1,

Q(a, P, r) c n*(a, 0, r) C fi(a - e, p + e, or) (3.1)

holds for every 0 < e < "~^~°'), where a > 1 is a constant which is independent of r.
Let /(z) be a meromorphic function in the closure of Q(a, /?), where 0 < P — a < n.

For any a e C (a = oo), let nafi(r, a,f) be the number of zeros of /(z) — a (l//(z)) in
Q(a, P, r), counting multiplicity. With k = n/(P — a), we define

1. Sectorial proximity function:

:= ̂ - f
27iJa

f n(r ' log+ | / ( r e " ^ sin* 0)\
arcsin(r-l)

2. Sectorial counting function:

/sinfc(ln-a) 1\

l<|*,,|<r(Sinttfn-ii))I

where {|bn|e'p") are the poles of/ in fl(a, /?);
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3. Sectorial characteristic function:

With the above notation, we list some properties of this sectorial characteristic
function all of which are proved in [13].

Proposition 3.1.
(0 m^O-./i ••/*)<£"=, m^rJd;
(ii) m^(r. EL,/) < EL. «*,(»•./) + 0(1), r -* oo;
(iii) A/^(r,/, • • •/„) < EL. N^r.ft;
(iv) ^(r .EL./)<ELi^/ . f r . / ) ;
(v) T (̂r, /,-••/„)< EL. ^ r , / ) ;
(vi) 7^(r, ELi/) < EL, £.,(!•,/) + 0(1), r -* oo.

Proposition 3.2 (First Fundamental Theorem).

= 7i,(r.f) + 0(1), r - • oo, a € C.

We define the sectorial order, <r0 P(J~), of a function / meromorphic in the closure of

Proposition 3.3 (Lemma of the logarithmic derivative). Let f(z) be a function
meromorphic in Q(a, /?), 0 < /? — a < TC, a«rf /eO Z>e a positive integer. Then,

r ->• c», provided that a^(J) < oo,

' / ) = o ( l o g r + l o g T»"(r>

as r ->• oo, r g E, if(Tafi(f) = oo, w/jere £ « a set in (0, oo) with finite linear measure.

Since our result concerns the radial exponent of convergence defined in (1.4), we
need to relate the sectorial functionals n and N with n*. For a, p e R, 0 < P - a < 7t, we
set

y,.p(/) := lim sup r ^ ; Taj{f) := hm sup
logr p
r ^ ; Taj{f) := hm sup
logr p ,._„, logr
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Then it follows from [13, p. 31] that

Moreover if we define

yoif) =lim fo-c o+Xf)>
£-»0+

then it follows from (3.1) and (1.4) that

Vo(/) = 7o(/)- (3-3)

4. Proof of Theorems 1.2 and 1.3

Let w(z) be any nontrivial solution of (1.1). Thus for any a, /? e R with
0 < p — a < 7t, it follows from Proposition 3.3 that

T^(r, A) = mafi(r, A)

P n. e. (4.1)

Here as usual the abbreviation n. e. means: as r ->• oo except possibly on a set of finite
linear measure.

On the other hand by (1.1)

w" A w
—- — —A—-.
w w

This, (4.1) and Propostions 3.1, 3.2 and 3.3 give that

n. e. (4.2)

However since the zeros of w are simple,

( I ) (4-3)
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So by (4.2) and (4.3) we obtain

N^r, ^ + O(log T^(r, w) + log r) n. e. (4.4)

Moreover by Proposition 3.3,

r«./,(r,w) + logr) n.e. (4.5)

Using Proposition 3.2, (4.4) and (4.5) we obtain

N.J, (r, ^ = JVM (r, 1 ) + O(log T^r, w) + log r) n.e. (4.6)

Finally, since w satisfies (1.1) and A is of finite order, a simple application of the
Wiman-Valiron theory (see [3] and [10, Lemma 1]) shows that

log M(r, w) < exp(r"),

where N is a positive integer and M(r, w) = max|2l=r |>v(z)|. Consequently

logMa,fI(r,w)<exp(rA'), (4.7)

where Ma/jr, w) = maxaS<)<? \w(re'°)\.

By applying the same arguments as in [13, p. 33], we obtain from (4.7) that

r ^ o o . (4.8)

Therefore, it follows from (4.6) and (4.8) that for any a, /? e R, 0 < /? — a < n,

n.e.

Theorem 1.2 now follows from this, the definition of the radial exponent of
convergence, (3.2) and (3.3).

A companion to Theorem 1.2 is the following:

Theorem 4.1. Let A and 6 be as in Theorem 1.2 and let w be a nontrivial solution of

wlk) + Aw ~ 0, k > 2.
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Then for j= l,2,...,k-l,

Xg(w) = 00 if and only if A0(H'W) = 00.

The interested reader may supply his own proof of this theorem by slightly varying
the techniques used in the proof of Theorem 1.2. We omit the details.

The proof of Theorem 1.3 follows almost immediately from the arguments in [10]
once the sectorial machinery is put in place. We make a few remarks, leaving the
details to the reader. Property D is stated incorrectly in [10, p. 492]. It should say that
the Tsuji characteristic is asymptotic to a monotone increasing function. This is all that
is needed in the sequel and is true for the sectorial characteristic as well. Lemma 3 in
[10] follows easily in the sectorial case. To prove an analogue of Lemma 4 in [10],
Property E in [10] must be replaced by Proposition 2.2.23 in [13]. This gives only that
A has finite order. The proof of Lemma 4 used the fact that the order of A did not
exceed one. A careful reading of Lemma 4 shows that finite order was all that was
necessary.
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