The effects of the *t*-complex upon male reproduction are due to complex interactions between its several regions

By CRAIG HAMMERBERG¹

Department of Human Genetics, Box 015, The University of Michigan Medical School, 1137 E. Catherine Street, Ann Arbor, Michigan 48109

(Received 20 October 1981)

SUMMARY

The three major regions (T, tail-determining; A, abnormal transmission ration; L, embryonic lethality) of the t complex on the murine seventeenth chromosome can interact to influence male reproduction (Lyon & Mason, 1977; Hammerberg, 1981). Evidence is presented here that suggests: (1) the presence of a polymorphic system within the T region that influences quasi-sterility in the male; (2) the existence of enhancing factors of transmission ratio distortion; and (3) that preferential interactions between t-haplotypes are found to occur both cis and trans which influence transmission ratio distortion.

1. INTRODUCTION

It has been known for some time that mutants in the *t*-complex can cause distortion of its transmission by the male (Chesley & Dunn, 1936) as well as male sterility or quasi-sterility (Dunn & Gluecksohn-Schoenheimer, 1943). More recently, it has seemed useful to divide the *t*-complex into three regions: T, A and L (Lyon & Mason, 1977). The regions of a *t*-haplotype can affect male fertility in the following manner:

A. Transmission ratio distortion

(i) The T, A and L regions (complete *t*-complex) in the *cis* configuration result in moderate to high transmission ratio distortion of the *t*-haplotype when in repulsion to a normal chromosome (Chesley & Dunn, 1936; Bennett & Dunn, 1971; Lyon & Mason, 1977).

(ii) The A region alone or combined *cis* or *trans* with a T region results in low transmission of the A region (Bennett & Dunn, 1971; Lyon & Mason, 1977).

(iii) The A region with or without a T or L region (*cis* or *trans*) in the homozygous state results in equal transmission of both chromosomes (Bennett & Dunn, 1971; Lyon & Mason, 1977).

(iv) An A region, with or without a cis T region derived from a t^6 -haplotype,

¹ Present address: College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060.

in *trans* with a complete t^6 -haplotype gives equal transmission of both chromosomes (Lyon & Mason, 1977).

(v) An A region, with a *cis* T region derived from non- t^6 -haplotypes, in *trans* with a complete non- t^6 -haplotype often shows aberrant distortion of the complete non- t^6 -haplotype (Bennett & Dunn, 1971).

	<i>t</i> -haplotype derived	Regi	ons of t -	complex	
t-haplotype	from	Т	A	L	_ Transmission ratio*
$t^{w_{100}}tf$	t ^{w18} †	t ^{w5}	t^{w_5}	+	Low
$t^{h_2} t f$	t ⁶	t ⁶	t ⁶	+	Low
$t^{1ow}tf$	<i>t</i> 6	+	t ⁶	+	Low
t ⁶	t ⁶	t ⁶	t ⁶	t ⁶	Moderately high
t ⁰	t ⁰	t ^o	t ⁰	t^0	Normal to moderate
t^{w_5}	t ^{w5}	t^{w_5}	t^{w_5}	t^{w_5}	High

Table 1. List of t-haplotypes

* Transmission ratio of the t-haplotype when trans to a wild-type chromosome.

 $t^{w_{18}}$ is a recombinant *t*-haplotype that is derived from a t^{w_5} -like haplotype.

B. Fertility

(i) Males with T-A regions derived from a t^6 -haplotype in *trans* with A-L or L regions are fertile (Lyon & Mason, 1977).

(ii) Males with T-A regions derived from a non- t^6 -haplotype in *trans* with most complete *t*-haplotypes are quasi-sterile (Dunn & Bennett, 1969).

The discrepancy between the effects of the T-A regions of t^6 and non- t^6 -haplotypes upon male fertility suggest that a polymorphism exists in the gene(s) in these regions. A deletion of the T region, T^{Orl} , was used to demonstrate that there are differences in the T region of t^6 - and non- t^6 -haplotypes (t^{12} , t^0 , t^{w2} and t^{w18}) in the effects upon transmission ratios and male sterility (Erickson *et al.* 1978; Hammerberg, 1981). Using a *t*-recombinant, $t^{w100}tf$ (Table 1) derived from a non- t^6 -haplotype, t^{w18} (Silver *et al.* 1980), it is demonstrated here that quasi-sterility induced by *t*-haplotypes in the male is dependent upon what *t*-haplotypes are placed together. In addition, it is shown that transmission ratio distortion can be altered by combining different regions of unrelated *t*-haplotypes.

2. MATERIALS AND METHODS

(i) Mice

The t-haplotypes: $t^{w100}tf$, $t^{h2}tf$, $t^{low}tf$, t^{6} , t^{0} and t^{w5} (Table 1) were all maintained in the breeding colony of Dr. R. P. Erickson of the Department of Human Genetics at the University of Michigan Medical School.

220

(ii) Matings

 $t^{w100}tf/t^{w100}tf$ homozygotes were crossed to T/t^x ($t^x:t^0$, t^e and t^{w5}) and tailless $(T/t^{w100}tf)$ and normal-tail ($t^x/t^{w100}tf$) male progeny were selected for studies of fertility and transmission ratio distortion. $T/t^{w100}tf$ males were tested by mating them to normal-tail (+/+) females and newborn offspring were checked for tail-length at birth. Normal-tail ($t^x/t^{w100}tf$) littermates were mated to +tf/+tf

Antiserum		Donor strain	Region detected	Reactivit t ^{w100} tf	y with* t ^{h2} tf
D-2	$(B10.A(5R) \times LP.RIII)F_1$	B10	Dp		_
Anti-D ^d	$(B10.AKM \times A.SW)F_1$	A.TH	$\mathbf{D}^{\mathbf{d}}$	+	_
D-17(2)	$(D1.C \times AKR.M)F_1$	DBA/1	Kq	—	+
D-23(2)	$(B10 \times LP. RIII) F_1$	B10.A(2R)	Kĸ	_	—
D-32	$(B10.A(2R) \times C3H.SW)F_1$	C3H	$\mathbf{D}^{\mathbf{k}}$	±	+
Ia 11, 16	$(\mathbf{A} \times \mathbf{B10})\mathbf{F_1}$	B10.D2	KdIq	+	±
Ia 9, 20	$(\mathbf{A} \times \mathbf{B10} . \mathbf{D2}) \mathbf{F_1}$	B10.A(5R)	K ^p I ^p	-	—

Table 2. H-2 antisera and pattern of reactivity with $t^{w100}tf$ and $t^{h2}tf$

* Range of cell lysis when reacted with antisera: -, 0–30 % cell lysis; \pm , 35–70 % cell lysis; +, 100 % cell lysis.

females to test for transmission ratio distortion. Their progeny were checked at four and/or eight weeks for the tufted phenotype. To determine fertility, a male was placed with two females for eight to twelve days, then rotated.

 $t^{w100}tf/t^{w100}tf$ homozygotes were also mated to $T(t^{h18}) + /t^{h2}tf$ and their normal-tail tufted $(t^{w100}tf/t^{h2}tf)$ male offspring were tested for transmission ratio distortion. Because both of these *t*-haplotypes carry the tufted allele and have the tailenhancing factor, it was necessary to use their H-2 antigens as genetic markers for measuring their transmission ratios. $t^{w100}tf H-2^d/t^{h2}tf H-2^{q/k}$ males were mated to $+ H-2^b/+ + H-2^b$ or $+ H-2^b/+ + H-2^b/$ females and their offspring typed at four weeks of age for their H-2 antigens (see below).

 $t^{w100}tf/t^{low}tf$ males were obtained by mating $t^{w100}tf/t^{w100}tf$ to $t^{low}tf/t^{low}tf$. The transmission ratio of $t^{w100}tf$ was determined by mating them to T/+ females and checking their newborn for tail-length.

(iii) H-2 antisera

The H-2 antisera used in these studies were obtained from the National Institutes of Health (Table 2).

(iv) Microcytotoxicity assay

 $2 \ \mu$ l of antiserum in 5 doubling dilutions were mixed in a Terasaki plate with $2 \ \mu$ l of lymphocytes (2×10^6 cells/ml), taken from the mesenteric lymph nodes, for 20 min at room temperature. After washing with a drop of medium (Hanks, with $5 \ \%$ heat inactivated newborn calf serum) for 10 min, $2 \ \mu$ l of complement (Baby Rabbit serum, Pel-Freez) was added and incubated for 30 min at room temperature.

Plates were read with a Zeiss-inverted phase microscope after fixing the cells with 5% formaldehyde in phosphate-buffered saline.

3. RESULTS

(i) The effect of $t^{w100}tf$ upon male fertility

Depending upon the *t*-haplotype which is placed in *trans* with $t^{w100}tf$ different effects are seen upon male fertility. Males of the $t^{w100}tf/t^6$ + genotype have normal fertility, whereas $t^{w100}tf/t^{w5}$ + males are quasi-sterile (Table 3). This behaviour of $t^{w100}tf$ resembles that of t^6 -recombinants of the T-A regions in one respect in that

Table 3. Effect of t^{w100}tf upon male fertility of various t-haplotypes

Male genotype	No. tested	No. female weeks permale	Newborns per female per week
$t^{w100} tf/T^*$	3	45	5.3
$t^{w100}tf/T^{\dagger}$	3	27	3.12
$t^{w100}tf/t^{6}$	3	39	3.3
$t^{w100}tf/t^{0}$	2	17	4.64
$t^{w100} tf/t^{w5}$	6	59	0.42

* Littermates to $t^{w100}tf/t^6$ derived from the cross of $t^{w100}tf/t^{w100}tf$ to Ttf/t^6 .

† Littermates to $t^{w_{100}}tf/t^0$ derived from the cross of $t^{w_{100}}tf/t^{w_{100}}tf$ to T/t^0 .

in combination with t^6 , normal male fertility is obtained. Such t^6 -recombinants would also have normal fertility when placed in *trans* to t^{w5} (Lyon & Mason, 1977). However, the quasi-sterility of $t^{w100}tf/t^{w5}$ + is what would be expected for most non- t^6 recombinants of the T-A regions in *trans* with a complete non- t^6 -complex (Dunn & Bennett, 1969). It has also been shown (Dunn & Bennett, 1969) that near-sterility occurs in the t^{w29}/t^0 combination, where t^{w29} is a t^{w18} recombinant with normal transmission ratios. However, the fertility of $t^{w100}tf/t^0$ + males is normal (Table 3).

(ii) Transmission ratio distortion effects of t^{w100}tf

The transmission of $t^{w100}tf$ can be altered by the particular t-haplotype it is combined with. Transmission of $t^{w100}tf$ by $t^{w100}tf/T$ + males is lower than normal Mendelian values (Table 4, line 1). When $t^{w100}tf$ is combined with t^6 , it behaves like a low distorting t^6 -recombinant in that both t-haplotypes are transmitted close to equality (Table 4, line 3). The combination $t^{w100}tf/t^0$ also has transmission ratios close to Mendelian values (Table 4, line 4).

The transmission ratios of $t^{w100}tf/t^{w5}$ are close to what would be expected if the relative ratio formula of Bennett & Dunn (1971) is applied. According to this formula, the transmission ratios of a *t*-haplotype will vary relative to the ratio of the seventeenth chromosome *trans* to it. Assuming a transmission ratio of 0.90 for t^{w5} (Bennett, 1975), the expected ratio for t^{w5} in *trans* with $t^{w100}tf$ would be

Tal	Table 4. Crosses demonstrating the influence of various t-haplotypes upon $t^{w100}tf$	demonstratin	ug the infl	vence of vari	ous t-hap	lotypes upon	t ^{w100} tf	
Mating	8	No.						
۴о	0 1	tested	Phen	Phenotype of Offspring Tail-length	ring	% fm100ff	$\chi^{^{2*}}$	χ^2
fimotif/fiootmi +L/fiootmi	+/+ T/+	6 4	NT 91	ST 409 58 Tufted	0T 82	18 59	202·24 4·12	13·85†
+ 94/fj001m ¹ + 01/fj001m ¹ + 01/fj01m ¹	f1+/f1+ f1+/f1+ f1+/f1+	cc c) 4	Tufted 76 69 34	Non-tufted 99 89 18 H-2		43 65	3-02 2-54 4-92	
1,20H-3d/4uzH-2dk	H2 ^b /H-2 ^b or H-2 ^b /H-2 ^k	4	H-2 ^d 67	H-2 ^{q/k} 43		61	5.24	13-51†
	* Comparison based upon normal Mendelian rates of 50% . † Comparison based upon the transmission of t^{w100} f from t^{w} ‡ Chi-square based upon a value of 0.21 for transmission ra § Chi-square based upon a value of 0.32 for transmission ra	based upon n based upon tl ased upon a v ased upon a v	ormal Men he transmis value of 0·2 value of 0·3	Comparison based upon normal Mendelian rates of 50%. Comparison based upon the transmission of $t^{w100}tf$ from $t^{w100}tf/t^6$ + males (line 3). Chi-square based upon a value of 0.21 for transmission rate of t^0 . Chi-square based upon a value of 0.32 for transmission rate of t^{w5} .	50%. from f ^{w100} ti sion rate or sion rate of	/t ⁶ + males (l f t ⁰ . f t ^{ws} .	ine 3).	

0.9:0.5 = X:0.18 or 0.32, which is not significantly different from the observed value of 0.35 (Table 4, line 5). However, if the same formula is applied to the $t^{w100}tf/t^0$ + combination where the normal transmission rate of t^0 is 0.58 (Hammerberg, unpublished data), then the expected rate for t^0 would be 0.21 (observed is 0.56).

Transmission rates of $t^{w100}tf$ are thus dependent upon the *t*-haplotype placed trans. The *t*-haplotypes examined so far have had complete *t*-complexes. In order to determine the effects of only the T region upon $t^{w100}tf$ transmission rates, two t^6 recombinants, $t^{10w}tf$ and $t^{h2}tf$ differing in the T region were placed in trans with $t^{w100}tf$. The H-2 antigens served as markers for the segregating $t^{w100}tf$ and $t^{h2}tf$ haplotypes: $t^{w100}tf$ was typed as H-2^d, while t^{h2} is a H-2 recombinant consisting of H-2 K^q and H-2 D^k (Table 2). $t^{w100}tf/t^{h2}tf$ males were outcrossed to H-2^b or H-2^b/H-2^k females. The segregation of $t^{w100}tf$ and $t^{h2}tf$ was followed with the appropriate antisera listed in Table 2. Segregation of $t^{w100}tf$ and $t^{low}tf$ could be followed by using the tail-determining factor on $t^{w100}tf$ which is absent from $t^{low}tf$: $T/t^{w100}tf$ mice are tailless while $T/t^{low}tf$ mice are short-tailed. As expected from published results (Bennett & Dunn, 1971) $t^{w100}tf/t^{low}tf$ males transmit both t-haplotypes in Mendelian fashion (Table 4, line 2). The combination $t^{w100}tf/t^{h2}tf$ also shows $t^{w100}tf$ being transmitted close to the expected Mendelian values (Table 4, line 6).

4. DISCUSSION

The three region model of the t-complex proposed by Lyon & Mason (1977) was based upon work with t^6 -recombinants. A mid-region, A, was proposed, which, when by itself, is transmitted by the male in low numbers. The L region (distal end) by itself is transmitted normally, but when combined in *cis* with the A region, variable transmission of the t-haplotype is obtained. Only when all three regions, T, A and L, are in *cis* is moderately high transmission of the t-haplotype obtained, indicating that all three regions are necessary for high transmission ratio distortion. When both seventeenth chromosomes carry A regions from a t^6 haplotype with or without other regions, each A region is transmitted equally. A recessive sterility factor was located in the L region of the t^6 -complex, while the T-A regions of t^6 were found to be devoid of such effects upon fertility.

Using a deletion of the T region, T^{Or1} (Erickson *et al.* 1978; Hammerberg, 1981), it was demonstrated that the T region of t^6 differs from other *t*-haplotypes in that it lacks the quasi-sterility factor. In addition, it was shown that the T region can interact with the A region to modify transmission ratio distortion. Because the various T regions were in *trans* with a deletion, these loci were expressed in the hemizygous state. Using a non- t^6 -recombinant, $t^{w100}tf$, the interaction between different regions, *cis* and *trans*, was measured.

The normal fertility achieved by $t^{w100}tf/t^0$ + males is unexpected because T^{Or1}/t^0 males are quasi-sterile. However, $t^{w100}tf$ does possess the ability to cause quasi-sterility as $t^{w100}tf/t^{w5}$ males are quasi-sterile. If a single gene within the T region is responsible for quasi-sterility, then the alleles of t^6 , t^0 and t^{w5} are different. Only

224

the t^6 allele resembles the wild-type, in that it is never quasi-sterile. The t^0 -haplotype (a member of the same complementation group as t^6) has an allele which is intermediate in its effect; in the hemizygous state (T^{Orl}/t^0) it is quasi-sterile, but when placed in *trans* with $t^{w100}tf$, a non-t-recombinant, normal fertility results. The t^{w5} haplotype has the same T region as $t^{w100}tf$ since the original t-haplotype of $t^{w100}tf$ was t^{w5} -like (Bennett & Dunn, 1960). Thus, $t^{w100}tf/t^{w5}$ + males are homozygous for the same quasi-sterile allele and are quasi-sterile.

A polymorphic system could exist for quasi-sterility, where each member of a complementation group sharing the same H-2 haplotype would have the same allele at the quasi-sterile locus. When such alleles are found in the hemizygous (T^{Orl}/t^0) or homozygous state $(t^{w100}tf/t^{w5}+)$, male quasi-sterility will result. Quantitative variation probably exists in the ability of these different alleles to interact to cause quasi-sterility as $t^{w100}tf/t^0 +$ males have normal fertility, whereas males with a t^0 -haplotype in combination with t^0 -recombinants are sterile (Dunn & Bennett, 1969).

The effect of $t^{w100}tf$ upon the transmission ratios of complete t-haplotypes is the same in one respect: the transmission ratio of $t^{w100}tf$ is drastically increased. In the case of moderate distorters, t^0 and t^6 , the increase is such that Mendelian values are almost obtained. The high distorter, t^{w5} , has a more extreme effect upon $t^{w100}tf$ transmission: $t^{w100}tf$ is transmitted in excess of 50 %. This increase in transmission of low distorters has also been observed for other high distorters-low distorters combinations (Bennett & Dunn, 1971). This interaction between t-haplotypes must be a property of the degree of distortion that they produce. High distorters could carry some enhancing factor(s) that causes their high distortion. These factors could be lost $(t^0 \text{ and } t^6)$ resulting in moderate distortion. When a moderate distorter, t^0 or t^6 , is in trans to an A region, the L region interacts with both A regions to allow Mendelian transmission. However, when high distorters are placed across from a low distorter t-recombinant, the enhancing factors will increase the transmission of the *t*-recombinant. The enhancing factors of a high distorter must alter the modifying factors within the T region (Hammerberg, 1981) trans to it, such that when *trans* to wild-type T region, extreme distortion is seen but when trans to a t-haplotype consisting of T-A regions, increased segregation of trans t-haplotypes occurs.

The interaction of $t^{w100}tf$ with t^6 -recombinants, $t^{h2}tf$ and $t^{10w}tf$, again demonstrate the similarity between the T end of t^6 and the wild-type at the modifying gene(s) within the T region. The A region of $t^{h2}tf$ and $t^{10w}tf$ are similar, while $t^{h2}tf$ maintains the T region of t^6 and $t^{10w}tf$ has the wild-type T region. $t^{w100}tf$, in repulsion with both $t^{10w}tf$ and $t^{h2}tf$ is transmitted close to Mendelian values. The transmission rates of $t^{w100}tf$ by $t^{w100}tf/t^{h2}tf$ or $t^{w100}tf/t^{10w}tf$ may not be significantly different from normal Mendelian values, but are significantly different from $t^{w100}tf$ rates in $t^{w100}tf/t^6 +$ or $t^{w100}tf/t^0 +$ males. The difference among these t-haplotypes lies in the presence or absence of a L region. The presence of a L region causes the t-haplotype $(t^0 \text{ or } t^6)$ carrying it to be transmitted in a higher frequency than the $t^{w100}tf$ haplotype. Removal of the L region $(t^{h2}tf \text{ or } t^{l0w}tf)$ results in an increase in the

transmission of $t^{w100}tf$. The L region would thus appear to interact better with an A region that is *cis* to it, causing it to be transmitted slightly better than the *t*-haplotype in repulsion.

Quantative interactions within the t-complex can be found among its different regions. There exists within the T region a polymorphic system that influences quasi-sterility in the male, with different allelic combinations resulting in quasi-sterility. Transmission ratio distortion appears to be influenced by the presence of enhancing factors that are present in high distorters but lacking in moderate distorters. These enhancing factors influence the *trans* T region modifying factors such that a trans T region derived from a t complex is transmitted greater than normal. The L region would appear to influence the *cis* A region, better than a *trans* A region, when two A regions are combined, resulting in higher transmission of the chromosome bearing the L region. These observations suggest that preferential interactions between regions can occur both *cis* and *trans*.

I wish to thank Dr R. P. Erickson for his advice and support. This work was supported by NIH Grant HD 11738 awarded to Dr. Robert P. Erickson.

REFERENCES

BENNETT, D. (1975). The t-locus of the mouse. Cell 6, 441-445.

- BENNETT, D. & DUNN, L. C. (1960). A lethal mutation (t^{w18}) in the house mouse showing partial duplications. Journal of Experimental Zoology 143, 203-219.
- BENNETT, D. & DUNN, L. C. (1971). Transmission ratio distorting genes on chromosome IX and their interaction. In *Proceedings, Symposium on the Immunogenetics of the H-2 System* (ed. A. Lengerova and M. Vojtiskova), pp. 90-103. Basel: Karger.
- CHESLEY, P. & DUNN, L. C. (1936). The inheritance of taillessness (anury) in the house mouse. Genetics 21, 525-536.
- DUNN, L. C. & BENNETT, D. (1969). Studies of the effects of t-alleles in the house mouse on spermatozoa. II. Quasi-sterility caused by different combinations of alleles. Journal of Reproduction and Fertility 20, 239-246.

DUNN, L. C. & GLUECKSOHN-SCHOENHEIMER, S. (1943) Test for recombination amongst three lethal mutations in the house mouse. *Genetics* 28, 29-40.

- ERICKSON, R. P., LEWIS, S. E. & SLUSSER, K. S. (1978). Deletion mapping of the *t* complex of chromosome 17 of the mouse. *Nature* 274, 163-164.
- HAMMERBERO, C. (1981). The influence of T^{Orl} upon male fertility in *t*-bearing mice. Genetical Research 37, 71-77.

LYON, M. F. & MASON, I. (1977). Information on the nature of *t*-haplotypes from the interaction of mutant haplotypes in male fertility and segregation ratio. *Genetical Research* 29, 255-266.

SILVER, L. M., WHITE, M. & ARTZT, K. (1980). Evidence for possible unequal crossing over within the mouse T/t complex. Proceedings of the National Academy of Sciences, USA 77, 6077-6080.