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1. Preliminaries. The problem of existence of proper invariant subspaces for
arbitrary bounded linear operators has been and still is an obsessive question for
operator theorists. While the counterexamples of Enflo and Read have completely
settled this problem in the frame of general Banach spaces, the Hilbert space case, as
well as that of some particular Banach spaces, offer hopes for a positive answer to
some optimistic scholars.

Although the case of bounded operators remains a permanent temptation, we shall
try in the following to turn the discussion to some classes of unbounded operators.
Also, because the Scott Brown technique [3] seems to be very much related to bounded
operators, we shall exploit the resources of Thomson’s and Trent’s techniques [10],
[12] to get some information concerning the existence of invariant subspaces for
the unbounded ones. This starting point will force us to restrict ourselves to some
families of (unbounded) subnormal operators in Hilbert spaces. Even for the concept
of “invariant subspace” it turns out that one has to formulate (at least) two possible
definitions.

Let H be a complex Hilbert space and let T : D(T ) ⊂ H → H be a closed, densely
defined linear operator. Also, let L ⊂ H be a closed linear subspace.

DEFINITION 1. We say that L is invariant under T if D0(T ;L) := D(T) ∩ L is dense
in L and TD0(T ;L) ⊂ L.
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We say that L is quasi-invariant under T if the linear subspace

D(T ;L) := {x ∈ D0(T ;L); Tx ∈ L}

is dense in L.
If T is an arbitrary family of linear operators in H, a closed subspace L ⊂ H is

said to be (quasi-)invariant under T if L is (quasi-)invariant under each T ∈ T .
Clearly, every invariant subspace under T is quasi-invariant, and the two notions

coincide when T is bounded. Moreover, if L is invariant (resp. quasi-invariant) under
T , then the operator T : D0(T ;L) → L (resp. T : D(T ;L) → L) is closed.

EXAMPLE 1. Let N : D(N) ⊂ H → H be a normal operator and let E be the
spectral measure of N. Then, for every Borel set B ⊂ �, the subspace L := E(B)H
is invariant under N. Indeed, if x = E(B)x ∈ D(N) ∩ L then Nx = E(B)Nx ∈ L.

2. Let T : D(T) ⊂ H → H be a closed operator and let D ⊂ D(T) be a linear
subspace such that TD ⊂ D. If L := D̄, then L is quasi-invariant. In particular, if there
exists a non-null vector x0 ∈ ∩k≥0D(Tk), then the closure of the subspace generated by
the set {Tkx0; k ≥ 0} is quasi-invariant under T .

3. We shall show that there are quasi-invariant subspaces which are not invariant.
Let H := L2[0, 1] and let H0 := {f ∈ H;

∫ 1
0 f (s) ds = 0}. We consider the derivation

operator Tf = f ′, defined on the space D(T) := {f ∈ H; f ′ ∈ H}. T is a closed operator.
We shall show that H0 is quasi-invariant but it is not invariant.

First of all, let us show that the subspace D(T ;H0) = {f ∈ D(T) ∩ H0; Tf ∈ H0} is
dense in H0. Indeed, since C∞

0 (0, 1) is dense in H, we can choose a sequence (fk)k≥1 in
C∞

0 (0, 1) convergent to a given f ∈ H0. Then the sequence gk := fk − ∫ 1
0 fk(s) ds, k ≥ 1,

is also convergent to f . Moreover, g′
k = f ′

k ∈ C∞
0 (0, 1), and

∫ 1
0 f ′

k(s) ds = 0 for all k.
Therefore,

D(T ;H0) ⊃ (
C∞

0 (0, 1) + �
) ∩ H0,

and the latter is dense in H0 as observed before. Consequently, H0 is quasi-invariant.
On the other hand, the function f (s) = 1/2 − s belongs to H0 ∩ D(T) but Tf (s) =

−1 is not in H0.
Now let S be a family of densely defined operators in a Hilbert space H. The

family S is said to be subnormal [9] if there exists a Hilbert space K ⊃ H and a family
N consisting of commuting normal operators in K such that for every S ∈ S there is
some N ∈ N with S ⊂ N. In this case N is said to be a normal extension of S. From
this definition it follows, in particular, that the space H is quasi-invariant under each
N ∈ N .

With S and N as above, note that the family S̄ of the closures S̄ of all S ∈ S is
also subnormal, and that N is a normal extension of S̄.

The aim of this paper is to prove the existence of (quasi-)invariant subspaces
for some subnormal families of (not necessarily bounded) operators. We shall mainly
use the techniques developed in [10], [12] and [13] for subnormal bounded operators,
respectively for subnormal tuples of bounded operators, adapted to our conditions. We
only remark that the Cauchy transform methods for a compactly supported measure
(see [4], [10], [12], [13]) can be extended to the larger class of finite measures, and
that positive measures on �n having finite moments of all orders provide interesting
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examples of subnormal tuples, which, in particular, have (quasi-)invariant subspaces.
Nevertheless, examples related to not necessarily finite measures also exist (see the last
section).

2. Subalgebras of the algebra Lω(µ) of R. Arens. Throughout this text, if not
otherwise specified, let � be a locally compact Hausdorff space and let µ be a positive,
finite Borel measure on �. As in [1] we form the space Lω(µ) := ⋂

p≥1 Lp(µ). Endowed
with the topology given by the family (‖ · ‖p)p≥1 of all Lp-norms on Lω(µ), (1 ≤ p < ∞),
this is a complete metrizable locally convex topological vector space which is actually a
commutative topological algebra. This follows from the generalized Hölder inequality

‖fg‖r ≤ ‖f ‖p‖g‖q, f, g ∈ Lω(µ),

where 1
r = 1

p + 1
q . As Lω(µ) = proj∞←p Lp(µ) is a reduced projective limit, its dual

space may be identified (c.f. [6, Satz 1.6, p. 143]) with

L1+(µ) :=
⋃
p>1

Lp(µ) = ind
p→1

Lp(µ),

the duality being given by 〈g, f 〉 := ∫
�

f (w)g(w) dµ, f ∈ Lω(µ), g ∈ L1+(µ). Con-
versely, by [6, Satz 1.2, p. 142] we have (up to canonical topological isomorphisms)
L1+(µ)∗ = Lω(µ). Thus Lω(µ) is reflexive. Obviously, we have the following inclusions
(with dense ranges)

L∞(µ) ⊂ Lω(µ) ⊂ Lp(µ) ⊂ L1+(µ) ⊂ L1(µ).

Note, that all these inclusions can be strict (see [1] for the case of the Lebesgue measure
on the interval [0, 1]).

Let now A be a subalgebra of Lω(µ) of dimension ≥2, containing the constant
functions, and let Ap(µ) denote the closure of A in Lp(µ). The closure Aω(µ) of A in
Lω(µ) is then a subalgebra of Lω(µ) that actually coincides with

⋂
p>1 Ap(µ). For a ∈

Aω(µ), let Na and Ma denote the operators of multiplication by a in L2(µ) and A2(µ),
respectively, with the domains D(Na) := {f ∈ L2(µ); af ∈ L2(µ)} and D(Ma;A2(µ)) :=
{f ∈ A2(µ); af ∈ A2(µ)}. Thus, the operators Ma are subnormal and A2(µ) is a quasi-
invariant subspace for all Ma with a ∈ Aω(µ). One of our aims will be to find joint
quasi-invariant subspaces for the family of operators �(Aω(µ)) := {Ma; a ∈ Aω(µ)}.

LEMMA 2. Assume thatA is an algebra of Borel measurable functions (with pointwise
multiplication) that is contained in L1(µ). Then A is a subalgebra of Lω(µ).

Proof. Fix an arbitrary p ∈ [1,∞) and let m > p be an integer. If a ∈ A, then
am ∈ A ⊂ L1(µ); i.e. a ∈ Lm(µ) ⊂ Lp(µ). �

Let us mention some examples of subalgebras of the Arens algebra in the special
case that � = �n. These are of particular interest.

EXAMPLES. Let µ be a finite positive Borel measure on �n such that the complex
algebra Pa = Pa,n of all analytic polynomials is contained in L1(µ). Then Pa and the
algebra R(µ) of all analytic rational functions without singularities in the support of
µ are subalgebras of Lω(µ).

The next result is a strengthened form of [4, Lemma V.4.3].
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LEMMA 3. Let A be a subalgebra of Lω(µ). Let k ≥ 1 be an integer, let p = 2k + 1,
and let q = (2k + 1)/(2k). Then, for each h ∈ Lq(µ) such that

‖h‖q = sup
{∣∣∣∣

∫
�

f h dµ

∣∣∣∣ ; f ∈ Ap(µ), ‖f ‖p ≤ 1
}

,

we can find v ∈ A2+1/k(µ) such that |h| = |v|2µ-a.e.

Proof. Without loss of generality we may assume ‖h‖q = 1. As the unit ball
of Ap(µ) is weakly compact, there exists some u ∈ Ap(µ) such that ‖u‖p = 1 and
1 = ∫

uh dµ ≤ ‖u‖p‖h‖q = 1. Because of the Hölder inequality, we obtain |u|p =
|h|qµ-a.e., which implies |u|2k = |h|µ-a.e. Put v := uk ∈ L2+1/k(µ). Let (am)m≥1 be a
sequence in A converging to u in Lp(µ). Fix C > 0 with supm ‖am‖p ≤ C. If α, β

are nonnegative integers such that α + β = k − 1, then 1/(2 + 1/k) = 1/(2k + 1) +
α/(2k + 1) + β/(2k + 1). From the general Hölder inequality we obtain∥∥(u − am)uαaβ

m

∥∥
2+1/k ≤ ‖u − am‖p‖uα‖(2k+1)/α

∥∥ab
m

∥∥
(2k+1)/β

≤ ‖u − am‖p‖u‖α
p

∥∥aβ
m

∥∥
p ≤ ‖u − am‖p‖u‖α

p Cβ,

and the last term tends to zero as m → ∞. Hence

∥∥uk − ak
m

∥∥
2+1/k =

∥∥∥∥(u − am)
∑

α+β=k−1

uαaβ
m

∥∥∥∥
2+1/k

→ 0

as m → ∞, showing that uk ∈ A2+1/k(µ). �

3. Some auxiliary results. In this section we develop the necessary function
theoretic machinery, following the corresponding results from [10], [12], and [13];
(see also [4]).

Let n ≥1 be a fixed integer. We denote by λn the Lebesgue measure in the complex
Euclidean space �n.

Let ν be a finite complex measure on �n. For arbitrary w = (w1, . . . , wn), z =
(z1, . . . , zn) ∈ �n we set

ν̄(w) :=
∫

�n

n∏
j=1

|zj − wj|−1 d|ν|(z).

It is easily seen that the assignment w → ν̃(w) is a function defined λn-a.e. in �n that
is, moreover, locally integrable. Indeed, if r > 0 and if we set∏

(r) := {z ∈ �n; |zj| ≤ r, j = 1, . . . , n},

then we have

∫
�(r)

ν̃(w) dλn(w) =
∫

�n


 n∏

j=1

∫
|wj |≤r

dλ1(wj)
|zj − wj|


 d|ν|(z) ≤ Cr|ν|(�n) < ∞,

where Cr > 0 depends only on r (see [4, Lemma V.2.1]). As r > 0 is arbitrary, we readily
infer the assertion.
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This shows, in particular, that the function

ν̂(w) :=
∫

�n

n∏
j=1

(zj − wj)−1 dν(z),

which may be called the Cauchy transform of ν (see also [4], [13] etc.), is defined λn-a.e.
in �n and it is locally integrable. Therefore, we may regard ν̂ as a distribution.

The following two lemmas are almost proved in [13]. We give them here for the
convenience of the reader.

LEMMA 4. We have the equality

∂nν̂

∂ z̄1 · · · ∂ z̄n
= (−π )nν

in the sense of the theory of distributions.

Proof. If φ ∈ C∞
0 (�n) is arbitrary, we have

φ(w) =
(

− 1
π

)n ∫
∂nφ(z)

∂ z̄1 · · · ∂ z̄n

dλn(z)
(z1 − w1) · · · (zn − wn)

,

via a well-known classical representation formula. Therefore,

(
∂nν̂

∂ z̄1 · · · ∂ z̄n

)
(φ) = (−1)n

∫
�n

ν̂(w)
∂nφ

∂w̄1 · · · ∂w̄n
dλn(w)

= (−1)n
∫

�n


∫

�n

n∏
j=1

(zj − wj)−1 ∂nφ

∂w̄1 · · · ∂w̄n
dλn(w)


 dν(z)

= (−π )n
∫

�n
φ(z) dν(z).

�

LEMMA 5. Let µ be a positive finite measure on �n and take g ∈ Lq(µ), with 1 ≤
q < 2. Then the function z → (z1 − w1)−1 · · · (zn − wn)−1g(z) is in Lq(µ) except for w in
a λn-null set.

Proof. If r > 0 is fixed, for all z ∈ �(r), we have

∫
�(r)

|w1 − z1|−q · · · |wn − zn|−q dλn(w) ≤
∫

�(2r)
|u1 · · · un|−q dλn(u) = Cq,r

with Cq,r = (2π/(2 − q))n(2r)(2−q)n
. Hence

∫
�(r)

(∫
�n

|w1 − z1|−q · · · |wn − zn|−q|g(z)|q dµ(z)
)

dλn(w)

≤ Cq,r

∫
�n

|g(z)|q dµ(z) < ∞.
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Hence, for each r > 0, the function

w →
∫

�n
|w1 − z1|−q · · · |wn − zn|−q|g(z)|q dµ(z)

is integrable on �(r), and therefore has finite values except for w in a λn-null set Nr ⊂
�(r). As N := ⋃∞

m=1 Nm is a λn-null set, our assertion holds for all w ∈ �n\N . �
The next result is a version of a theorem of Brennan; (see [2]).

LEMMA 6. Let µ be a finite positive Borel measure on �n such that Pa ⊂ L1(µ). For
a fixed w ∈ �n let us denote by Fw the linear space of all polynomials P ∈ Pa having the
form P(z) = c0 + ∏n

j=1(zj − wj)Q(z), z ∈ �n, c0 ∈ �, Q ∈ Pa.
If p > 2 and Pp

a (µ) �= Lp(µ), then there exists some point w ∈ �n such that the linear
map Fw � P → P(w) ∈ � is continuous with respect to the norm of Lp(µ).

Proof. Since Pp
a (µ) �= Lp(µ), there exists a function g ∈ Lq(µ)\{0} (1/p + 1/q = 1)

such that
∫

Pg dµ = 0 for all P ∈ Pa. We clearly have g ∈ L1(µ). Therefore, the measure
µg := gµ is finite on �n. It follows from Lemma 4 that µ̂g �= 0 on a set E of positive
Lebesgue measure. The equality

µ̂g(w) =
∫

�n

n∏
j=1

(zj − wj)−1g(z) dµ(z)

and Lemma 5 allow us to find a point w ∈ E such that the function given by z → ∏n
j=1

(zj − wj)−1g(z) is in Lq(µ).
Now, let P ∈ Fw be fixed. Therefore P(z) = P(w) + ∏n

j=1(zj − wj)Q(z) for some
polynomial Q. By virtue of the choice of g,

∫
�n

(P(z) − P(w))
n∏

j=1

(zj − wj)−1g(z) dµ(z) = 0,

which implies that

ew(P) := P(w) = 1
µ̂g(w)

∫
�n

P(z)hw(z) dµ(z),

where hw(z) := ∏n
j=1(zj − wj)−1g(z). Moreover,

|ew(P)| ≤ 1
|µ̂g(w)| ‖P‖p‖hw‖q,

which is precisely our assertion. �
In the framework of Section 2, a general Cauchy transform is not available.

Therefore, as for the bounded case in [12], we shall use a localized version.
Let ν be a finite, complex Borel measure on the locally compact Hausdorff space

� and let a be a Borel measurable function on � that is integrable with respect to |ν|.
We show now that, for λ1-a.e. z ∈ �, the expression

ν̃[a](z) :=
∫

�

1
|z − a(w)| d|ν|(w)
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is finite. Indeed, if r > 0 is arbitrarily given and if we set

A2r := {w ∈ �; |a(w)| ≤ 2r}, D(0, r) := {z ∈ �; |z| ≤ r}, (1)

then using the Fubini theorem and Proposition V.2.2 in [4], we have

∫
D(0,r)

ν̃[a](z) dλ1(z) =
∫

�\A2r

∫
D(0,r)

1
|z − a(w)| dλ1(z) d|ν|(w)

+
∫

A2r

∫
D(0,r)

1
|z − a(w)| dλ1(z) d|ν|(w)

≤
∫

�\A2r

∫
D(0,r)

1
r

dλ1(z) d|ν|(w)

+
∫

A2r

∫
D(a(w),2r)

1
|z − a(w)| dλ1(z) d|ν|(w)

≤ 5πr|ν|(�).

As r is arbitrary, we obtain the assertion.
This fact shows that the function

z �→ ν̂[a](z) :=
∫

�

1
z − a(w)

dν(w),

which may be called the a-Cauchy transform of ν, is defined λ1-a.e. and is locally
integrable, and so can be considered as a distribution on �. The following will be our
replacement for Lemma 4.

LEMMA 7. For all ϕ ∈ C∞
0 (�) we have the equality

〈
∂ν̂[a]
∂ z̄

, ϕ

〉
= π

∫
�

ϕ(a(w)) dν(w).

Proof. Indeed, by the classical integral representation formula we obtain

〈
∂ν̂[a]
∂ z̄

, ϕ

〉
= −

∫
�

∂ϕ

∂ z̄
(z)

∫
�

1
z − a(w)

dν(w) dλ1(z)

= π

∫
�

−1
π

∫
�

∂ϕ

∂ z̄
(z)

1
z − a(w)

dλ1(z) dν(w)

= π

∫
�

ϕ(a(w)) dν(w).
�

In the next section we shall also need the following fact.

LEMMA 8. Let µ be a positive finite Borel measure on � and let a be in Lω(µ) and
g ∈ L2(µ). Then the function

w �→ g(w)
z − a(w)

is in L3/2(µ) for λ1-a.e. z ∈ �.
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Proof. With the notation of (1) we have for all r > 1,

∫
D(0,r)

∫
�

|g(w)|3/2

|z − a(w)|3/2
dµ(w) dλ1(z)

=
∫

�\A2r

∫
D(0,r)

|g(w)|3/2

|z − a(w)|3/2
dλ1(z) dµ(w)

+
∫

A2r

|g(w)|3/2
∫

D(0,r)

1
|z − a(w)|3/2

dλ1(z) dµ(w)

≤ πr1/2
∫

�\A2r

|g(w)|3/2 dµ(w)

+
∫

A2r

|g(w)|3/2
∫

D(a(w),4r)

1
|z − a(w)|3/2

dλ1(z) dµ(w)

≤
∫

�\A2r

|g(w)|3/2 dµ(w) + 2π

∫
A2r

|g(w)|3/2
∫ 4r

0
ρ−1/2 dρ dµ(w)

≤ 9πr1/2‖g‖3/2
3/2.

Our statement now follows from Fubini’s theorem. �

4. Existence of quasi-invariant subspaces. As before, � will denote a locally
compact Hausdorff space and µ a positive finite Borel measure on �. We are now
ready to prove our next result.

THEOREM 9. Let A be a subalgebra of the Arens algebra Lω(µ) having dimension at
least 2. Then the multiplication operators Ma, a ∈ Aω(µ), have a proper quasi-invariant
subspace in A2(µ).

Proof. (a) Assume first that for all a, b ∈ Aω(µ) and all g ∈ A2(µ)⊥ the function
z �→ ∫

�
g(w)b(w)/(z − a(w)) dµ(w) vanishes for λ1-a.e. z ∈ �. Because of dim A≥ 2,

the algebra A contains a function a which is not constant µ-a.e. Hence, there exist
two points z1, z2 in the essential range of a with z1 �= z2. Fix two disjoint open
sets U, V ⊂ � with z1 ∈ U , z2 ∈ V . Then µ(a−1(U)) �= 0 and µ(a−1(V )) �= 0 by the
definition of the essential range. Let now (ϕm)m≥1, (ψm)m≥1 be two sequences in
C∞

0 (�) such that 0 ≤ ϕm(x) ↗ χU and 0 ≤ ψm(x) ↗ χV pointwise on � for m → ∞.
Then 0 ≤ ϕm(a(w)) ↗ χA and 0 ≤ ψm(a(w)) ↗ χB pointwise on �, where A := a−1(U),
B := a−1(V ) are disjoint. It follows from our assumption and Lemma 7 applied to the
complex measure ν := bḡµ that

0 =
∫

�

ϕm(a(w))g(w)b(w) dµ(w) →
∫

�

χA(w)g(w)b(w) dµ(w) as m → ∞,

for all g ∈ A2(µ)⊥, b ∈ Aω(µ). Hence, χAb ∈ A2(µ), for all b ∈ Aω(µ), and we see that
χAAω(µ) ⊂ D(Mc;A2(µ)), for all c ∈ Aω(µ). Hence, the closure M1 of χAAω(µ) in
A2(µ) is a common quasi-invariant subspace for {Mc; c ∈ Aω(µ)} containing the non-
zero element χA. In the same way one obtains that the closure M2 of χBAω(µ) in A2(µ)
is a common quasi-invariant subspace for {Mc; c ∈ Aω(µ)} containing the non-zero
element χB. Since the two spaces are orthogonal, they must be proper quasi-invariant
subspaces for {Mc; c ∈ Aω(µ)}.
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(b) Therefore we may now assume that there exist some a, b ∈ Aω(µ) and some
g ∈ A2(µ)⊥ such that

∫
�

g(w)b(w)
z − a(w)

dµ(w) �= 0, for all z ∈ E,

where E is not a λ1-null set. In particular, a cannot be a constant function. Because

of Lemma 8, we may also assume that w �→ g(w)
z − a(w) ∈ L3/2(µ), for all z ∈ E. We fix a

point z ∈ E. Then, the linear functional

ka,z : f �→
∫

�

g(w)f (w)
z − a(w)

dµ(w)

is continuous on A3(µ). By the Hahn–Banach theorem, we find some h ∈ L3/2(µ)
such that ka,z(f ) = ∫

�
h(w)f (w) dµ(w) for all f ∈ A3(µ) and ‖ka,z‖ = ‖h‖3/2. Hence,

by Lemma 3, there is some v ∈ A3(µ) such that |h| = |v|2µ-a.e. Notice that for all
u ∈ Aω(µ) we have

‖uv‖2 ≤ ‖v‖3‖u‖6,

by the generalized Hölder inequality. Therefore, v ∈ ⋂
u∈Aω(µ) D(Mu;A2(µ)). Let now

M be the closure in A2(µ) of M0 := {(z − a)uv; u ∈ Aω(µ)}. Obviously, M is quasi-
invariant for all Mu, u ∈ Aω(µ). To show that M �=A2(µ), consider the function φ

defined by φ(w) := h(w)/v(w) if v(w) �= 0 and φ(w) := 0 if v(w) = 0. Note that |φ| =
|v|, so that φ ∈ L3(µ) ⊂ L2(µ). For all u ∈ Aω(µ) we obtain∫

�

φ(w)(z − a(w))u(w)v(w) dµ(w) =
∫

�

(z − a(w))u(w)h(w) dµ(w)

= ka,z((z − a)u)

=
∫

�

(z − a(w))u(w)g(w)
z − a(w)

dµ(w) = 0,

as g ∈ A2(µ)⊥ and u ∈ A2(µ).
Note also that,

∫
�

φ(w)b(w)v(w) dµ(w) =
∫

�

h(w)b(w) dµ(w) = ka,z(b) =
∫

�

g(w)b(w)
z − a(w)

dµ(w) �= 0.

In particular, ka,z �= 0. Hence also v �= 0 and we have shown that M �=A2(µ).
If (z − a(w))v(z) �= 0 for µ-a.e. w ∈ �, then M is not trivial. Otherwise we have

v ∈ ker Mz−a and 1 /∈ ker Mz−a since a is not constant. Thus, in this case, ker Mz−a

will be a nontrivial common invariant subspace, for all Mu with u ∈ Aω(µ). �
REMARK. In the situation of Theorem 9, let B be any subalgebra of Lω(µ) such

that B ⊂ A2(µ). Then B2(µ) ⊂ A2(µ) and, applying Theorem 9 to B instead of A,
we see that the family of all Mb with b ∈ B has a proper quasi-invariant subspace. In
particular, one may choose B maximal with the property A ⊂ B ⊂ A2(µ).

If A is a subalgebra of L∞(µ), then L∞(µ) ∩ A2(µ) is an algebra. We obtain from
Theorem 9 and the preceding remark the following result of T. T. Trent [12].
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COROLLARY 10. Let A be a subalgebra of L∞(µ) of dimension at least 2. Then the
family SB of all Mb with b ∈ B := L∞(µ) ∩ A2(µ) has a proper invariant subspace in
A2(µ).

Proof. Indeed, as noted in the remark, the family SB has a nontrivial common
quasi-invariant subspace M. As SB consists of bounded linear operators, the subspace
M is invariant for SB. �

The next result is an abstract form of Theorem 9.

THEOREM 11. Let S be a subnormal family of closed linear operators in the Hilbert
space H with dim H at least 2. Assume also that there exists a non null linear subspace
D ⊂ ⋂

S∈S D(S ) such that SD ⊂ D, for all S ∈ S. Then S has a proper quasi-invariant
subspace.

Proof. Of course, if S has a joint eigenvector v, then the one dimensional subspace
spanned by v is a proper common invariant subspace for S. Hence, from now on, we
shall assume that S has no joint eigenvectors. This forces D to be infinite dimensional.

Let N = {Ns; S ∈ S} be a normal extension of S in the Hilbert space K ⊃ H. For
all S ∈ S denote the spectral measure of its normal extension NS by ES(·). We also
write B for the C∗-subalgebra of L(K) generated by

{ES(B); S ∈ S, B a Borel subset of �}.

By the general spectral theorem (see [5] or [7]) there exists a unique resolution of the
identity on the set B(�) of all Borel sets of the maximal ideal space � of B such that
for all operators A ∈ B we have

A =
∫

�

Â(M) dE(M ),

where Â denotes the Gelfand transform of A. If f : � → � is a Borel measurable
function, we denote by �(f ) the closed linear operator in K given by

〈�(f )x, y〉 :=
∫

�

f (M ) d〈E(M )x, y〉,

for all

x ∈ D(f ) := D(�(f )) :=
{

u ∈ K;
∫

�

|f (M)|2 d〈E(M )x, x〉< ∞
}
.

(See for example [7, Theorem 13.24].) For all S ∈ S and all bounded Borel sets B ⊂ �,
the bounded linear operator NSES(B) is in B. For S ∈ S we define a function ϕS :
� → � by

ϕS(M) :=



NSES(B))∧(M ), if there exists a bounded Borel setB ⊂ �

with ÊS(B)(M) �= 0,

0 otherwise.
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If M ∈ � and if B1, B2 are bounded Borel sets in � satisfying ÊS(Bj)(M) �= 0 (and

hence ÊS(Bj)(M) = 1) for j = 1, 2, then

(NSES(B1))∧(M) = (NSES(B1))∧(M)ÊS(B2)(M)

= (NSES(B1 ∩ B2))∧(M)

= (NSES(B2))∧(M).

This shows that ϕS is indeed a well defined function. It follows from the definition that
it is continuous on the open set

�S :=
⋃

B

ÊS(B)
−1

(�\{0}),

where the union is taken over all bounded Borel sets B ⊂ �, and that ϕS vanishes on
the compact set �\�S. Hence, ϕS is Borel measurable. Using the fact that∫

B
z dES(z)x = NSES(B)x =

∫
�

(NSES(B))∧(M) dE(M)x

=
∫

�

ÊS(B)(M)ϕS(M) dE(M)x,

for all x ∈ K and all compact B ⊂ �, a straightforward computation shows that
NS =�(ϕS) holds for all S ∈ S. In particular, it follows that �(f )D ⊂ D, for all f
in the algebra AS of functions generated by {ϕS; S ∈ S}. Let us fix some non null
vector x0 ∈ D, denote the scalar Borel measure 〈E(·)x0, x0〉 by µ, and let H0 be the
closure of �(AS)x0. This is a non null closed quasi-invariant subspace forS. IfH0 �=H,
we are done. Hence we assume now that H0 = H. The isometry f �→ �(f )x0 then
extends to an isometry J from A2

S (µ) onto H satisfying SJ = JMϕS , for all S ∈ S,
where MϕS denotes the operator of multiplication with ϕS in A2

S (µ). As AS ⊂ Lω(µ),
by Lemma 2, we see from the previous theorem that there exists a quasi-invariant
subspace for {�(f ); f ∈ Aω(µ)}. �

5. Existence of invariant subspaces. We fix a positive measure µ on �n such
that Pa ⊂ L2(µ) (and hence Pa ⊂ Lω(µ), by Lemma 2). The n-tuple N = (N1, . . . , Nn),
consisting of commuting normal operators in L2(µ), is defined by (Njf )(z) := zjf (z), for
all f ∈ D(Nj) := {h ∈ L2(µ); z �→ zjh(z)f ∈ L2(µ)}. If K ⊂ �n is a compact subset, we
put L2(K, µ) := { f |K ; f ∈ L2(µ)}, whose norm will be denoted by ‖·‖2,K . Let P2

a (K, µ)
be the closure of Pa in L2(K, µ). We also define

P̃2
a (µ) := {

f ∈ L2(µ); f |K ∈ P2
a (K, µ), K ⊂ �n, K compact

}
.

We clearly have P̃2
a (µ) ⊃ P2

a (µ).

LEMMA 12. The space P̃2
a (µ) is closed in L2(µ) and invariant under Nj, ( j = 1, . . . , n).

Proof. If f = limm fm in L2(µ) with fm ∈ P̃2
a (µ), then fm|K ∈ P2

a (K, µ), for all m ≥ 1
and all compact subsets K ⊂ �n. Therefore, f |K = limk fm|K ∈ P2

a (K, µ), showing that
f ∈ P̃2

a (µ).
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Now, assume that f ∈ D(Nj) ∩ P̃2
a (µ). If K ⊂ �n is a fixed compact set, we can find

a sequence (Pm)m≥1 in Pa such that ‖f − Pm‖2,K → 0 as m → ∞. But

‖Njf − NjPm‖2,K ≤ sup{|zj|; z ∈ K}‖f − Pm‖2,K → 0,

showing that Njf |K ∈ P2
a (K, µ), for all compact subsets K of �n. �

Lemma 12 shows that we may define the multiplication operator M̃j induced by
Nj, in P̃2

a (µ), with the domain D(M̃j) = P̃2
a (µ) ∩ D(Nj), for all j = 1, . . . , n. Now set

M̃ := (M̃1, . . . , M̃n). We have the following result.

THEOREM 13. Suppose that the measure µ has the following property:
(∗) for every compact subset K ⊂ �n such that P2

a (K, µ) �= L2(K, µ) there exists
a point w ∈ �n such that the map Fw � P → P(w) ∈ � is continuous in the norm of
L2(K, µ).

If the support of µ has at least two points, the subnormal tuple M̃ = (M̃1, . . ., M̃n)
has a proper invariant subspace.

Proof. If P̄2
a (µ) = L2(µ), then M̃ = N and, for a bounded Borel set B with

µ(B) �= 0, µ(�n\B) �= 0 the space χBL2(µ) is a proper invariant subspace for M̃, where
χB is the characteristic function of B.

Assume now that L2(µ) �= P̃2
a (µ). Then there exists a compact set K such that

L2(K, µ) �=P2
a (K, µ). In this case, in virtue of property (∗), there exists a point w ∈ �n

such that the map Fw � P → P(w) ∈ � is continuous in the norm of L2(K, µ). Let
hw be a Hahn–Banach extension of this map to P2

a (K, µ) and let εw be the map
εw(f ) = hw(f |K), f ∈ P̃2

a (µ).
If

∏n
j=1(zj − wj) = 0 µ-a.e., we choose J ⊂ {1, . . ., n} maximal with the property∏

j∈J(zj − wj) �= 0 and (zk − wk)
∏

j∈J(zj − wj) = 0 µ-a.e., for all k /∈ J. If J �= ∅, then

M := ⋂
j/∈J ker(Mk − wk) is a non null closed subspace invariant under M̃. If J = ∅,

then the support of the measure µ is the set {w}, which contradicts the hypothesis.
If

∏n
j=1(zj − wj) �= 0, we shall fix a compact set L ⊃ K such that∏n

j=1(zj − wj)|L �= 0. Let N0,L := {∏n
j=1(zj − wj)P|L; P ∈ Pa}, which is non null, and

let NL be the closure of N0,L in P2
a (L, µ). Let also N be the space {f ∈ P̃2

a (µ) : f |L ∈
NL} ⊂ ker εw. We shall show that N , which is clearly a proper closed subspace, is
invariant under M̃. Indeed, if f ∈ N ∩ D(M̃j) for a fixed j, we can find a sequence
(Pm)m≥1 in N0,L convergent to f |L. Note that zjPm → zjf |L(m → ∞) in NL. Therefore
zjf is in N , which completes the proof. �

REMARK . It follows from a theorem of Thomson [11] (see also [4,
Theorem VIII.4.3]), that property (∗) is automatically fulfilled if n = 1. We do not
know whether or not this property is automatically fulfilled when n > 1. A related
property is provided by Lemma 6.

We shall present in the following another type of invariant subspace, related to
Hardy spaces on tubes. Unlike in the preceding cases, we work here with the Lebesgue
measure in �n, which is not a finite measure.

We shall use in the following some results from [8]. (See especially Chapter III.)
If z = (z1, . . . , zn) ∈ �n and s = (s1, . . ., sn) ∈ �n are arbitrary points, we denote by

z · s the complex number
∑n

j=1 zjsj. In particular, ‖s‖ = (s · s)1/2 is precisely the norm
of s.
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For every f ∈ L2(�n) we denote by f̂ its Fourier transform. The map L2(�n) � f →
f̂ ∈ L2(�n) is a unitary operator, via the Plancherel Theorem.

Set � := (0,∞) × · · · × (0,∞) ⊂ �n, and � := �n + i� ⊂ �n. The space H2(�)
consists of those holomorphic functions F : � → � such that

‖F‖2 := sup
t∈�

∫
�n

|F(s + it)|2 ds < ∞.

The space H2(�), endowed with the norm ‖F‖ defined above, becomes a Hilbert
space.

If F ∈ H2(�), then the limit

F∗(s) = lim
t→0

F(s + it)

exists almost everywhere in �n and F∗ ∈ L2(�n). Moreover, this limit also exists in the
L2(�n)-norm, and the map

H2(�) � F → F∗ ∈ L2(�n)

is a linear isometry. This allows us to identify the space H2(�) with a closed subspace
of L2(�n). In fact, we have the following result.

LEMMA 14. The image of the map H2(�) � F → F∗ ∈ L2(�n) is the closed subspace

H2
� = {f ∈ L2(�n); supp(f̂ ) ⊂ �̄}.

Proof. As this result is not explicitly stated in [8] (although all ingredients are
present), for the convenience of the reader we shall give a short proof.

If g ∈ L2(�n) and supp(g) ⊂ �̄, we set

F(z) =
∫

�̄

e2π iz·ug(u) du, (z ∈ �). (2)

Then F ∈ H2(�) and ‖F‖ = ‖g‖, by Theorem III.3.1 of [8]. Moreover, ‖F∗‖ = ‖F‖,
by virtue of Theorem III.5.1 and Corollary III.3.4 from [8].

It is also clear that F(s + it) is the inverse Fourier transform of the function
e−2πt·ug(u), and the latter converges to g(u) as t → 0 in L2(�n). Since F(s + it) → F∗(s)
as t → 0 in L2(�n), it follows that g is the Fourier transform of F∗.

Conversely, every function F ∈ H2(�) is of the form (2), by Theorem III.3.1 from
[8], implying the desired equality. �

Let P be the algebra of all polynomials on �n with complex coefficients. We define
on L2(�n) the operators

Mpf (s) = p(s)f (s), (s ∈ �n, p ∈ P, f ∈ D(Mp)),

with D(Mp) = {f ∈ L2(�n); pf ∈ L2(�n)}. The operator is (unbounded) normal [5] in
L2(�n), for each p ∈ P .

We are interested in the action of the operators Mp in the space H2
�. We have the

following result.
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THEOREM 15. Let C ⊂ � be a closed set whose boundary is a λn-null set, and let

H2
�(C) := {

f ∈ H2
�; supp f̂ ⊂ C

}
.

Then H2
�(C) is invariant under Mp, for each p ∈ P .

If C has a nonempty interior G, then the subspace H2
�(C) is proper.

Proof. The subspace H2
�(C) is clearly closed.

If all involved functions are regarded as distributions, for f ∈ L2(�n) and p ∈ P ,
the Fourier transform of pf is the distribution p(D̂)f̂ , where D̂j = (2π i)−1∂/∂sj and
D̂ = (D̂1, . . . D̂n). In particular, the support of the distribution p(D̂)f̂ must be contained
in the support of the function f̂ .

Let f ∈ H2
�(C) be such that pf ∈ L2(�n). The preceding remark shows that the

support of the Fourier transform of pf as a distribution must be in C. But the Fourier
transform of a function in L2(�n) coincides with its Fourier transform as a distribution
(see [8, Section I.3]). Therefore, if f ∈ H2

� and pf ∈ L2(�n), then pf ∈ H2
�.

If g ∈ C∞
0 (�), and if F(z) = ∫

�̄
e2π iz·ug(u) du we infer that

zαF(z) = (−1)|α|
∫

�̄

e2π iz·uD̂αg(u) du, (z ∈ �),

for all α = (α1, . . . , αn) ∈ �n
+, where D̂α = D̂α1

1 · · · D̂αn
n . This shows that

{
f ∈ H2

�; f̂ ∈ C∞
0 (G)

} ⊂
⋂
p∈P

D(Mp).

The density of the set C∞
0 (G) in L2(C) implies the density of D(Mp) ∩ H2

�(C) in
H2

�(C), for all p.
As C = C̄ ⊂ �, we can choose a closed set C1 ⊂ �\C with non empty interior.

The subspace H2
�(C1) is obviously non null. Moreover, since the Fourier transform is a

unitary operator, the subspaces H2
�(C) and H2

�(C1) are orthogonal in H2
�. In particular,

H2
�(C) is a proper subspace of H2

�. �
Note, that the point evaluations Ez : F �→ F(z), are continuous on H2(�) for all

z ∈ �. Indeed, for all F ∈ H2(�), z ∈ �, we have by means of the Cauchy–Schwarz
inequality,

|F(z)| =
∣∣∣∣
∫

�̄

F∗(u)e2π iz·u du
∣∣∣∣ ≤ ‖F∗‖

(∫
�̄

e−4πImz·u du
)1/2

≤ ‖F‖ · C(z)

with a positive constant C(z) only depending on z. By means of this we show now that
the algebra of all operators of multiplication by polynomials on H2(�) has indeed a
very rich invariant subspace structure.

THEOREM 16. Let M be a closed subspace of H2(�) that is invariant, for all Mp, p ∈
P , such that M ∩ ⋂

p∈P D(Mp) �= {0}. Then M contains a nontrivial closed subspace
which is invariant, for all Mp, p ∈ P .

Proof. We fix some 0 �= G ∈ M ∩ ⋂
p∈PD(Mp) and some w ∈ � with G(w) �= 0.

By multiplying G by 1/G we may assume in the following that G(w) = 1. Now Mw :=
M ∩ ker(Ew) is a closed subspace of M not containing G. Let q be a non-constant
polynomial such that q(w) = 1. In particular, Mq has empty point spectrum. Therefore
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0 �= MqG − G ∈ Mw and Mw �= {0}. To show that Mw is invariant under all
Mp, p ∈ P , we fix an arbitrary p ∈ P . Since M is invariant for Mp, we have that
D(Mp) ∩ M is dense in M. Let now F be an arbitrary element of Mw. Then there
is a sequence (Fn)∞n=1 in D(Mp) ∩ M converging to F for n → ∞. By the continuity
of Ew we also have Fn(w) → F(w) as n → ∞. Then (Fn − Fn(w)G)∞n=1 is a sequence in
D(Mp) ∩ Mw converging to F . Since obviously Mp(D(Mp) ∩ Mw) ⊂ Mw we see that
Mw is indeed an invariant subspace for Mp. �
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