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Direct numerical simulations (DNSs) of three-dimensional cylindrical release gravity
currents in a linearly stratified ambient are presented. The simulations cover a range of
stratification strengths 0 < S ≤ 0.8 (where S = (ρ∗

b − ρ∗
0 )/(ρ∗

c − ρ∗
0 ), ρ∗

b , ρ∗
0 and ρ∗

c are
the dimensional density at the bottom of the domain, top of the domain and the dense
fluid, respectively) at two different Reynolds numbers. A comparison between the stratified
and unstratified cases illustrates the influence of stratification strength on the dynamics
of cylindrical gravity currents. Specifically, the front velocity in the slumping phase
decreases with increasing stratification strength whereas the duration of the slumping
phase increases with increments of S. The Froude number calculated in this phase shows a
good agreement with models proposed by Ungarish & Huppert (J. Fluid Mech., vol. 458,
2002, pp. 283–301) and Ungarish (J. Fluid Mech., vol. 548, 2006, pp. 49–68), originally
developed for planar gravity currents in a stratified ambient. In the inertial phase, the
front velocity across cases with different stratification strengths adheres to a power-law
scaling with an exponent of −1/2. Higher Reynolds numbers led to more frequent lobe
splitting and merging, with lobe size diminishing as stratification strength increased.
Strong interactions among inner vortex rings occurred during the slumping phase, leading
to the early formation of hairpin vortices in weakly stratified cases, while strongly stratified
cases exhibited delayed vortex formation and less turbulence.
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1. Introduction

Gravity currents or density currents are a horizontal intrusion of different density to an
ambient fluid. Gravity currents are observed in many naturally occurring phenomena
such as sandstorms (Parsons 2000), powder-snow avalanches (Turnbull & McElwaine
2007) and bushfires (Dold, Zinoviev & Weber 2006). Comprehensive reviews of gravity
currents in geophysical flows, laboratory experiments and numerical simulations are given
by Simpson (1982) and Meiburg, Radhakrishnan & Nasr-Azadani (2015). We consider a
body of heavy fluid initially at rest released into an ambient fluid at t = 0. The heavy
fluid collapses and leads to an intrusion of fluid with a distinct head region. When the
gravity current is formed, a well-defined shape is recognised and the flow develops into a
highly turbulent head, quasi-steady body and shallower following tail (Cantero et al. 2008;
Zordan, Schleiss & Franca 2018).

Experimental (Huppert & Simpson 1980; Alahyari & Longmire 1996; Marino, Thomas
& Linden 2005; Patterson, Simpson & Dalziel 2006) and numerical (Blanchette et al.
2005; Cantero, Balachandar & García 2007a; Cantero et al. 2007b, 2008) studies of
planar and cylindrical gravity currents have found that propagation of a gravity current
undergoes four main stages. As the heavy fluid is released, the gravity current undergoes
an acceleration phase (zero to maximum), where the gravitational potential energy of the
heavy fluid is converted into kinetic energy. A secondary acceleration is reported by Zhu
et al. (2017) and Ooi, Zgheib & Balachandar (2015) who conducted numerical simulations
of a circular gravity current on a uniform slope. The secondary acceleration phase is due
to the rearrangement and redistribution of the heavy fluid in the current which increases
the buoyancy at the downstream end of the current. After the front velocity reaches its
maximum, the acceleration phase is followed by the slumping phase, where the front
height and speed remain constant. In this phase, the axisymmetric (cylindrical) current
head comprises a coherent counter-clockwise (or clockwise, depending on the azimuthal
direction being observed) rotating vortex ring. This ring is formed due to the roll-up of the
interface shear layer between the heavy and ambient fluids. The effects of stretching and
tilting of the vortex ring on the dynamics of axisymmetric (cylindrical) currents have been
explored by Patterson et al. (2006) and Cantero et al. (2007a). Next, the gravity current
transitions into the self-similar inertial phase in which the buoyancy force is balanced by
the inertial force. The gravity current eventually reaches the viscous phase wherein the
viscous force dominates the buoyancy force. In the inertial and viscous phases, it has been
reported that the front velocity of the gravity current decays as a power law (Fay 1969;
Hoult 1972; Cantero et al. 2007b, 2008).

Stratification of the ambient fluid can greatly affect the propagation and dynamics of
the gravity current. Additionally, the presence of stratification leads to the generation of
internal waves. The specific layer through which the gravity current propagates depends
on the relative strength of the current (ρ∗

c − ρ∗
0 ) and the ambient stratification (ρ∗

b − ρ∗
0 )

(Maxworthy et al. 2002; Dai, Huang & Hsieh 2021). In stratified environments, intrusive
gravity currents can occur when the density of the heavy fluid matches the density at an
intermediate level (see Flynn & Sutherland 2004; Ungarish 2005b; la Forgia et al. 2020;
Ottolenghi et al. 2020). Conversely, gravity currents propagate along the bottom boundary
when the density of the heavy fluid is equal to or greater than the density at the bottom
of the stratified ambient (Maxworthy et al. 2002; Ungarish 2005a; Birman, Meiburg &
Ungarish 2007b; White & Helfrich 2008). In this paper, we will only consider the case
where the stratification of the ambient fluid is linear for a horizontal domain of uniform
depth and the current is denser than the ambient. We will also assume that the release is
of full-depth.
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Cylindrical gravity current in a stratified ambient

Various experimental and numerical studies have been carried out to investigate the
propagation of a gravity current into a stratified ambient fluid. Mitsudera & Baines (1992)
conducted an experimental study of a downslope gravity current flow in a continuously
stratified ambient fluid to model the Bass Strait outflow. An experimental and numerical
study was conducted by Maxworthy et al. (2002) to investigate the relationship between
the internal Froude number of the gravity current and stratification S in the ambient and

S = ρ∗
b − ρ∗

0
ρ∗

c − ρ∗
0
. (1.1)

The flow regime of the gravity current flow is determined by the Froude number based
on the buoyancy frequency which is a dimensionless parameter defined as the ratio
of the inertial forces relative to the gravitational forces, i.e. Fr = u∗

f ,mean/N∗H∗, where
u∗

f ,mean is the mean front velocity in the slumping phase, (N∗)2 = (g∗/ρ∗
0 )(−dρ∗/dz∗) =

g∗(ρ∗
b − ρ∗

0 )/ρ∗
0 H∗ is the buoyancy frequency, g∗ is the gravitational acceleration, ρ∗ is

the dimensional fluid density, z∗ is the vertical coordinate and H∗ is the depth of the
domain. Note that in this manuscript, variables with asterisks (∗) denote dimensional
variables. In the subcritical regime (Fr < 1/π), the gravity current propagates slower than
the maximum speed of the linear internal gravity wave (N∗H∗/π) and minimal (or no)
vortices are observed behind the gravity current head, whereas in the supercritical regime
(Fr > 1/π), the gravity current flow becomes turbulent and strong Kelvin–Helmholtz
(K–H) billows can be observed behind the head.

A similar study was conducted by Ungarish & Huppert (2002) using the shallow-water
approximation and found excellent agreement with the experimental results presented by
Maxworthy et al. (2002). It is worth noting that the propagation speed of the gravity
current is reduced by the stratified ambient compared with the homogeneous ambient
(where the density of the ambient fluid is constant throughout the domain). A similar
phenomenon was previously observed by Lam et al. (2018a,b), Lam, Chan & Ooi (2022b)
who conducted direct numerical simulations (DNSs) of a two-dimensional gravity current
flow in a stratified ambient to investigate the effects of the initial aspect ratio and the
strength of stratification on the dynamics of the gravity current flow. Lam et al. (2018b)
reported that in the subcritical regime, the gravity current contains minimal vortices
whereas, in the supercritical regime, the gravity current becomes turbulent and strong
vortices are observed in the gravity current head.

Planar release gravity currents in stratified (Maxworthy et al. 2002; Ungarish & Huppert
2002; Birman et al. 2007b; Longo et al. 2016; Chiapponi et al. 2018; Lam et al. 2018b;
la Forgia et al. 2020; Ottolenghi et al. 2020; Dai et al. 2021; Zahtila et al. 2024), and
unstratified ambients (Rottman & Simpson 1983; Shin, Dalziel & Linden 2004; La Rocca
et al. 2008; Dai 2015; Pelmard, Norris & Friedrich 2018; Dai & Huang 2020; De Falco,
Adduce & Maggi 2021; Maggi, Adduce & Negretti 2022, 2023a; Maggi et al. 2023b), as
well as cylindrical release gravity currents in unstratified environment have been widely
studied experimentally and numerically (Cantero et al. 2007a,b; Zgheib, Bonometti &
Balachandar 2014, 2015a; Dai & Huang 2016). However, experimental and numerical
studies on stratified gravity currents with the cylindrical release are limited, and therefore
we are interested in cylindrical gravity currents propagating into a linearly stratified
ambient.

Birman et al. (2007b) examined the model developed by Ungarish (2006) (where the
hydraulic theory from Benjamin (1968) was generalized to a linearly stratified ambient)
on the dependency of the front velocity on the stratification strength (S). The model was
found to work well for weak stratification (S ≤ 0.5). Ungarish & Huppert (2006) analysed
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W.K. Lam and others

the exchange of energy of gravity currents propagating into an unstratified and linearly
stratified ambient with the shallow-water model and two-dimensional (2-D) Navier–Stokes
simulations. Good agreement between the shallow-water model and the 2-D simulations
was obtained up to the end of the inertial phase as the viscous effects were not included in
the shallow-water model. Ungarish & Huppert (2008) then analysed the energy balances
of an axisymmetric gravity current in the homogeneous ambient and linearly stratified
ambient using the shallow-water model and Navier–Stokes finite difference simulations
within a two-dimensional geometry. A fair agreement on the energy changes of the
current was also obtained between these two approaches. Similar observations reported
by Ungarish & Huppert (2006) were obtained in this study too where the stratification
in the ambient enhanced the accumulation of potential energy and reduced the energy
dissipation in the system.

Previous literature has explored the dynamics of gravity currents in unstratified ambients
with varying aspect ratios and depth ratios of heavy fluid on a horizontal plane (or on
a uniform slope). The front location, front velocity and theoretical or empirical models
to predict the front velocity during the slumping, inertial and viscous phases have been
determined for both planar and cylindrical currents in an unstratified ambient. Some
studies have also investigated the effects of stratification on planar currents, but to our
knowledge, no studies have investigated fully three-dimensional (3-D) cylindrical gravity
currents in a stratified ambient. Such studies are important because cylindrical currents
behave differently from planar currents. For example, the spreading rate of a planar current
increases linearly, while that of a cylindrical current increases quadratically. Furthermore,
the propagation of a current can be affected by a stratified ambient, as reported by Birman
et al. (2007b), Lam et al. (2018a,b, 2022a,b) and Dai et al. (2021).

This study aims to investigate the effects of the strength of the stratification, S, and
Reynolds number, Re, on the dynamics of the cylindrical release gravity current flow on the
horizontal plane. In this work, we present the results from fully 3-D DNSs of cylindrical
gravity currents propagating in a linearly stratified ambient with varying stratification
at moderate Reynolds numbers. A detailed study on predicting the front velocity in the
different phases as well as the scaling for the front velocity for both unstratified and
stratified cases in the slumping phase is explored. Analysis of the density contours is
used to compare the flow structures at different Reynolds numbers and stratification
strengths. The three-dimensional structure of the advancing front is compared between the
unstratified and stratified cases. The paper is structured as follows. Section 2 describes the
numerical procedure including the governing equations, initial and boundary conditions,
and the formulation of the problem. In § 3, the theoretical and empirical models in
predicting the front velocity in the different phases and the impact of stratification on
the front velocity in the slumping phase will be analysed. In § 4, we present our simulation
results as well as a discussion of these results. Finally, conclusions are drawn in § 5.

2. Computational set-up

The 3-D, cylindrical release gravity currents in a stratified ambient have been simulated
using Nek5000, a spectral element, incompressible flow solver (Fischer, Lottes &
Kerkemeier 2008). Here, we adopt the Boussinesq approximation where the density
difference between two fluids is sufficiently small (less than 5 %) (Turner 1979) to neglect
the influence of density differences in the inertial and diffusion terms, and retains only
in the buoyancy term (Dai et al. 2021; Cao, Philip & Ooi 2022). The non-dimensional
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Cylindrical gravity current in a stratified ambient

governing equations employed in the study take the form

∇·u = 0, (2.1)

Du
Dt

= −ρẑ − ∇p + 1
Re

∇2u, (2.2)

∂ρ

∂t
+ ∇·(ρu) = 1

ReSc
∇2ρ, (2.3)

where ρ is the density of the fluid, u = [u, v, w] is the velocity for 3-D flow, p is pressure
and ẑ is the unit vector in the positive z-direction. The dimensionless density, ρ, is defined
as

ρ = ρ∗ − ρ∗
0

ρ∗
c − ρ∗

0
, (2.4)

where the symbols ρ∗, ρ∗
0 and ρ∗

c with asterisks are the dimensional density of the local,
top of the domain and heavy fluid, respectively. The value of ρ is bounded between 0 and
1. In the ambient fluid, the dimensionless density in the ambient ρa varies linearly with
depth z from ρa = ρb = S at the bottom (z = 0) to ρa = ρ0 = 0 at the top (z = 1) and

ρa = ρa(z, t = 0) = S(1 − z). (2.5)

The Schmidt number is Sc = ν∗/κ∗ (where ν∗ is the kinematic viscosity and κ∗ is the
molecular diffusivity). Although saline, which is typically used in experiments, has Sc =
700, it is found that when Sc is of the order of 1 or larger, there is a weak scaling with
the dynamics of the gravity current that does not significantly affect the bulk flow results
(Härtel, Meiburg & Necker 2000; Necker et al. 2005; Cantero et al. 2007b; Bonometti &
Balachandar 2008; Dai 2015). Therefore, Sc = 1 is used in all simulations in the study.

The height of the domain H∗ is taken as the length scale. The velocity scale, U∗, time
scale, T∗, and the Reynolds number, Re, are defined as

U∗ =
√

g′H∗, T∗ = H∗

U∗ , Re = U∗H∗

ν∗ , (2.6a–c)

where g′ = g∗(ρ∗
c − ρ∗

0 )/ρ∗
0 is the reduced gravity and g∗ is the gravitational acceleration

acting in the negative z direction.
Figure 1 shows the initial configuration of a full-depth cylindrical-release gravity current

in a linearly stratified ambient with S = 0.5. The horizontal directions are represented by
x and y, while the wall-normal direction is represented by z. The computational domain
is a square prism with Lx = Ly = 30 (Lx = Ly = 20 for the cases with higher Reynolds
number to reduce computational cost). A cylindrical lock contained heavy fluid with a
density of ρc has a height H = 1 and unit radius (r0) is contained at the centre of the
computational domain. The density of the ambient (ρa) is increased linearly from the top
(ρ0) to the bottom (ρb). A no-slip boundary condition is employed at the bottom (z = 0)
of the domain and a slip, impermeable symmetry boundary condition is applied at the top
of the domain (z = 1) and vertical side walls (x = [−Lx/2, Lx/2] and y = [−Ly/2, Ly/2]).

In this study, we have systematically investigated the effects of the stratification
strength on the dynamics of the cylindrical gravity current. Four stratification strength
of S = 0, 0.2, 0.5 and 0.8 are considered and simulated at Reynolds numbers of Re =
3450 and 10 000. Here, seventh-order polynomial spectral elements are used in this
study to reduce numerical error in the simulation. The number of spectral elements
employed for the simulations at low and high Re are Nx × Ny × Nz = 190 × 190 × 15 and

983 A43-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

98
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.98


W.K. Lam and others

y
z

x
Lx Ly

H
2r0

g∗

ρa (z)

Figure 1. Sketch of the computational domain for the 3-D simulation. he horizontal directions are represented
by x and y, while the wall-normal direction is represented by z. The cylindrical region of heavy fluid located in
the centre of the domain has a density of ρc. The heavy and ambient fluid has the same height as the height of
the domain H. The density of the ambient ρa(z) increases linearly from the top ρ0 to the bottom boundary ρb
as indicated by the lighter grey shading and the ρa(z) shown on the top left wall.

270 × 270 × 20, respectively. The grid distribution within the spectral element follows
the Gauss–Legendre–Lobatto (GLL) grid spacing. This total number of unique grid points
is 1.9 × 108 and 5 × 108 grid points. Grid stretching (geometrical progression with power
coefficient) is applied along the wall-normal direction (z) where the grid size at the bottom
part is denser than the top. The computational grid has a grid spacing of 0.0033 ≤ �x =
�y ≤ 0.0332 for Re = 3450 and 0.0021 ≤ �x = �y ≤ 0.0165 for Re = 10 000. The grid
spacing to Kolmogorov scale ratio, �l/η (where �l = (�x�y�z)1/3 and η is the local
dissipation) is calculated at different instantaneous time and is always less than 10. This
is more conservative than the �l/η ≈ 16 recommended by Lu et al. (2023) and Zahtila
et al. (2023), who studied the grid convergence characteristics of spectral element solvers.
Therefore, we have ensured that our grid resolution is sufficient to resolve all of the
turbulent length scales and also meet the requirement of �x = �y ≈ (ReSc)−1/2, where
Sc = 1 (Härtel et al. 2000; Birman, Martin & Meiburg 2005; Dai 2015). A variable time
step is used to ensure that the Courant number is always less than 0.5 and the simulation
is run for a total time of T = 60.

3. Theoretical predictions of front velocity

This section describes the theoretical and empirical models for predicting the front velocity
of a cylindrical gravity current during the slumping, inertial and viscous phases as it
propagates into an unstratified ambient. In the following sections of this paper, we will
discuss the effect of stratification on the prediction of the front velocity during the
slumping phase.

3.1. Slumping phase
Several theoretical and empirical models have been proposed to predict the front velocity
during the slumping phase. First, Benjamin (1968) derived the Froude number of the front
using hydraulic theory. The expression of the current speed in terms of Froude number
based on the depth H∗ of the ambient fluid is expressed as

FrB =
u∗

f√
g′H∗ =

√
h̃(2 − h̃)

(1 − h̃)

(1 + h̃)
, (3.1)

where uf is the constant front velocity and h̃ = h∗/H∗ is the dimensionless current height.
In the limit of h̃ → 0.5, FrB = 0.5. Shin et al. (2004) extended Benjamin’s theory by
taking into consideration the exchange between the advancing front of the gravity current
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Cylindrical gravity current in a stratified ambient

and the backward disturbance. Both full-depth and partial-depth releases are taken into
account in the study, and the speed of the current has the expression of

FrS = 1
2

√
D̃(2 − D̃), (3.2)

where D̃ = D∗/H∗ is the dimensionless initial depth of the heavy fluid. In the limit of
full-depth release, D̃ = 1, the above expression yields the same results as (3.1).

Huppert & Simpson (1980), however, reported an empirical expression for the Froude
number at the gravity current head based on the experimental measurement as

FrHS =
⎧⎨
⎩

1
2 h̃1/6

HS (0.075 ≤ h̃HS ≤ 1),

1.19h̃1/2
HS (0 ≤ h̃HS ≤ 0.075),

(3.3)

where h̃HS is the dimensionless depth of the current just behind the head. In the limit of
h̃HS → 0.5, the value of FrHS ≈ 0.45 is slightly lower than the value of 0.5 predicted
by Benjamin (1968) and Shin et al. (2004). Here the subscript B, S and HS denotes
Benjamin (1968), Shin et al. (2004) and Huppert & Simpson (1980). Previous studies
(Bonnecaze et al. 1995; Ungarish & Huppert 1998; Hallworth, Huppert & Ungarish 2001)
that study axisymmetric currents have adopted the empirical Froude number reported by
Huppert & Simpson (1980) (see (3.3)) in their studies and the results are consistent with
the results obtained using different methods such as numerical simulation, experimental
measurement and shallow-water approximations. Cantero et al. (2007b), however, reported
that the three-dimensionality of the current does not have a strong influence on the speed
of the current during the slumping phase but becomes important during the inertial and
viscous phases. Numerical results from Cantero et al. (2007b) show a good agreement
with the experimental data from Hallworth et al. (2001) when compared with the planar
theory. Therefore, the slumping velocity from planar theory will be used for comparison
with current simulation results.

The theoretical and empirical models for the mean front velocity in the slumping phase
for unstratified gravity currents overestimate the front velocity of gravity currents in a
stratified ambient. Ungarish & Huppert (2002) claimed that the mean front velocity in
the slumping phase in the Froude condition reported by Huppert & Simpson (1980) (see
(3.3)) is a function of h̃HS with stratification strength (S) and height of channel (H) as
parameters. The proposed mean front velocity in the slumping phase for the gravity current
in a stratified ambient is

FrUH(h̃, S) = Frξ (h̃)(1 − S + 1
2 h̃S)1/2, (3.4)

where Frξ (h̃) is the Froude number and the subscript ξ denotes B, HS and C
(corresponding to Benjamin 1968; Huppert & Simpson 1980 and Cantero et al. 2007b),
respectively.

Ungarish (2006) adapts Long’s model (Long 1953, 1955; Baines 1995) and the Froude
number is defined as

FrU(h̃, S) = Frξ (h̃)(1 − 2
3 S)1/2. (3.5)

Here, the subscript UH and U denotes Ungarish & Huppert (2002) and Ungarish (2006).
Ungarish (2006) concludes that Fr rescaling is useful for the case with weak stratification
but significantly underestimates Fr when S/h̃ > 5 (larger S and/or small h̃). Birman et al.
(2007b) conducted two-dimensional simulations of planar gravity currents propagating in
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a stratified ambient with initial fractional depth h̃0 = 0.2, 0.5 and 1 with S ranging from
0.2 to 0.9 at Re = 4000. The front velocity of the current in the slumping phase as a
function of S was compared with the theoretical model by Ungarish (2006). Birman et al.
(2007b) reported that the model is found to predict well in determining the Froude number
with weak stratification. For strong stratification (S > 0.5), multiple solutions exist and the
solutions deviate from the first theoretical solution but agree closely to the second or third
theoretical solutions.

3.2. Inertial phase
After the slumping phase, the gravity current in an unstratified ambient transitions into
the first self-similar regime, the inertial phase. Here, the reflected backward propagating
wave catches the front with a speed slightly greater than the speed of the front (Rottman
& Simpson 1983). During the inertial phase, the buoyancy force is balanced by the inertial
force and the front velocity of the current decreases as a power law, t−1/2 for the cylindrical
current (Cantero et al. 2007b) in the inertial phase. Models for gravity currents in the
inertial phase have been proposed by Fay (1969), Fannelop & Waldman (1972), Hoult
(1972), Huppert & Simpson (1980) and Rottman & Simpson (1983). The asymptotic
behaviour of the cylindrical current in the inertial phase is

rf = π1/4ξiph1/4
0 (r0t)1/2, uf = 1

2ξiph1/4
0 r1/2

0 t−1/2, (3.6a,b)

where rf is the radial front location of the cylindrical current, ξip is a constant for the
cylindrical current and the subscript ip denotes the inertial phase. The initial height and
radius of the lock are h0 and r0. Hoult (1972) and Huppert & Simpson (1980) proposed
ξip = 1.3 and 1.16, respectively. Cantero et al. (2007b) investigates the transition between
the different phases on 3-D cylindrical gravity currents at Re = 895, 3450 and 8950.
A range of experimental data was used to revisit the scaling during the phases of spreading
for cylindrical release gravity current. The best-fit value of the constants ξip was found to
be 1.23 for the cylindrical current.

3.3. Viscous phase
Finally, the gravity current reaches the second self-similar regime, the viscous phase when
the viscous force becomes significant compared with the buoyancy force. Fay (1969) and
Hoult (1972) predict the self-similar solution for the cylindrical current using a boundary
layer approximation

rf = ξvp,Hth
1/3
0 r2/3

0 Re1/12t1/4, uf = 1
4ξvp,Hth

1/3
0 r2/3

0 Re1/12t−3/4, (3.7a,b)

where the subscript vp denotes the viscous phase. The solution from Hoult (1972) has a
constant value of ξvp,Ht = 1.38. Huppert (1982) revised the analysis by considering the
viscous effect over a rigid horizontal surface. The self-similar solutions obtained for the
viscous phase differ from those presented in (3.7) and are expressed as

rf = ξvp,Hph3/8
0 r3/4

0 Re1/8t1/8, uf = 1
8ξvp,Hph3/8

0 r3/4
0 Re1/8t−7/8, (3.8a,b)

where ξvp,Hp = 1.197. Here the subscript Ht and Hp denotes Hoult (1972) and Huppert
(1982), respectively.
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4. Results and discussion

4.1. Equivalent height of the gravity current
The equivalent height, defined as the azimuthally averaged integrated height of the current
in the wall-normal direction (z), is defined by

h̄(r, t) = 1
2π

∫ H

0

∫ 2π

0
ρ(r, θ, z, t) dθ dz −

∫ H

0
ρa(z) dz. (4.1)

Note that in this definition of equivalent height, the total mass of the gravity current is
1/R × ∫ R

0 h̄r dr, where R is the radius of the domain. The equivalent height provides a
good indication of the distribution of mass in the streamwise direction and the shape of
the gravity current (Shin et al. 2004; Marino et al. 2005; Birman et al. 2007a; Cantero
et al. 2007b; Dai 2015). However, when stratification is introduced to the ambient fluid, it
changes the equivalent height (h̄) by an amount proportional to the stratification strength
S. This is reflected in the second term of (4.1), which is equal to S/2 and is zero in an
unstratified case where ρa = 0. It should be noted that as the strength of stratification
increases, the interface between the intrusion and the ambient becomes smoother and less
distinguishable (Sutherland et al. 2022). Before we examine the propagation in detail, we
analyse the density contours and equivalent height of the gravity current with different S
at Re = 3450 and 10 000 to characterise the flow in the slumping and inertial phases, the
two most persistent and interesting phases.

Figure 2 shows the time evolution of the azimuthally averaged density contour of the
gravity current at Re = 3450 for S = 0, 0.2, 0.5 and 0.8, respectively. The equivalent
height (h̄) of the current is plotted on top of the density contour (ρ = 0.015). In the
slumping phase, strong K–H vortices are formed behind the head of the gravity current.
The rolled-up vortices entrain ambient fluid and mix with it, and these structures are
reflected in the local maximum of the equivalent height. The height of the current in the
head region does not differ significantly during the slumping phase for S ≤ 0.5. Weaker
vortices are formed in the case with strong stratification (S = 0.8) and the current head
results in a smaller head size than the other cases. Also, we can observe the head is slightly
lifted from the bottom wall in all cases and in all phases due to the no-slip condition, and
a layer of ambient fluid is entering and mixing with the head. A similar observation is also
reported by Cantero et al. (2007a). At t = 10.4, the current with S = 0 has transitioned into
the inertial phase and the K–H billow has mixed with the head. A similar observation is
observed for S = 0.2 and 0.5 in the inertial phase. At a similar time t = 10 for S = 0.8, the
K–H billow is still presented behind the current and this shows that stratification delayed
the transition of the current.

4.2. Front location and front velocity
The front location of the gravity current is typically defined as the location where the
equivalent height, h̄, is smaller than an arbitrarily small threshold δ (Cantero et al. 2007b;
Dai 2015; Zhu et al. 2017; Chan, Lam & Ooi 2018). However, for a gravity current in a
stratified ambient, this method leads to an overestimation in the front location due to a
displaced bottom layer. Therefore, the gradient of the equivalent height method is used
as it is more robust for flows with strong stratification. This method is explained in more
detail and its accuracy is compared with a few different methods in Appendix A.

Figure 3(a) shows the plot of the front location for the cases with stratification strength
ranging from 0 to 0.8 at Re = 3450 (solid lines) and 10 000 (open circles). The front
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Figure 2. Azimuthal-averaged density contour of the gravity current (ρ = 0.015) with S = (a) 0, (b) 0.2,
(c) 0.5 and (d) 0.8 at Re = 3450. The red box shows the head is lifted from the bottom wall. The solid black
line shows the equivalent height of the gravity current (h̄). SP, slumping phase and IP, inertial phase.

location of the gravity current is plotted until the front has mixed with the ambient fluid
and is not detectable. Increasing the linear stratification strength leads to a reduction
in the distance travelled by the front of the gravity current at the end of the slumping
phase. At t = 16, which is approximately when the gravity current for the case S = 0.8 at
Re = 3450 has dissipated and there is no appreciable or discernible gravity current flow
any more, the gravity current propagated for approximately 3.8 lock radii (rf ≈ 4.8), which
is approximately 22 % smaller than the distance travelled in the unstratified ambient case
(S = 0), where the current travelled approximately 4.6 lock radii (rf ≈ 5.6). Similarly,
in the high-Re case, for S = 0.8, the distance travelled was approximately 4.2 lock radii
(rf = 5.2), representing a reduction of approximately 17 % compared to the unstratified
case, where the travel distance was 4.9 lock radii (rf ≈ 5.9) at t = 17.

The predicted front location for S = 0 using the scaling in the inertial and viscous phase
is also included in figure 3(b) and is represented with different line styles. It is important
to note that the physical simulation time will not correspond to the virtual time origin

983 A43-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

98
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.98


Cylindrical gravity current in a stratified ambient

10

9

8

7

6

5

4r f
 –

 r 0

3

2

1

0

10

9

8

7

6

5rf

4

3

2

1

0
5 10 15 20 25 30 35 40 45 50 55 60

100

100

10–1uf

10–2

101

–5 0 5 10 15 20 25 30

t – t0
35 40

Theory – IP (3.6)
Theory – VP (3.7)
Theory – VP (3.8)

45 50 55 60

VP

IP

(b)

(c)

(a)

t

t

Re = 3450; S = 0 Re = 10 000; S = 0
Re = 10 000; S = 0.2
Re = 10 000; S = 0.5
Re = 10 000; S = 0.8

Re = 3450; S = 0.2
Re = 3450; S = 0.5
Re = 3450; S = 0.8

Figure 3. Plot of (a) front location, (b) front location with time offset (t0) and (c) front velocity against time
for stratified cylindrical release gravity current with different stratification strength ranging from S = 0 to 0.8 at
Re = 3450 (—) and 10 000 (◦). The stratification is represented with a different colour where red, S = 0; green,
S = 0.2; blue, S = 0.5 and cyan, S = 0.8. The predicted front location using the theoretical models for S = 0
at Re = 10 000 are included in the plot where (∗), inertial phase in (3.6); (�), viscous phase by Hoult (1972)
in (3.7); (�), viscous phase by Huppert (1982) in (3.8) with Re = 10 000, h0 = 1 and r0 = 1. The dashed line
shows the maximum speed of the linear internal gravity wave, N∗H∗/π for different stratification strengths:
green, S = 0.2; blue, S = 0.5 and cyan, S = 0.8.

(Samasiri & Woods 2015; Sher & Woods 2015). Therefore, we have estimated a value
of the virtual origin in time, t0, for all the cases in the inertial phase using the method
proposed by Sher & Woods (2015) and Samasiri & Woods (2015). Figures 3(b) and 4 show
the front velocity profiles collapse in the inertial phase irrespective of the Reynolds number
and stratification strength, at least for the range of Re and S considered in this study. The
front location of the gravity current for both low and high Re with 0 ≤ S < 0.5 cases
follows the inertial phase scaling of t1/2 (represented by ∗) reported by Huppert & Simpson
(1980) (defined in (3.6)). For the strongly stratified cases (S = 0.8), the propagation of
the current becomes negligible during the slumping phase due to the insufficient density
difference between the current and the ambient at the bottom wall. As a result, there is no
longer any gravity current flow.

The proposed scalings in the viscous phase by Hoult (1972) and Huppert (1982)
(represented by the � and �) underestimate the front locations of the gravity current.
However, the trend of the scalings shows a good agreement with the simulation result
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for both low- and high-Re cases within the range of 0 ≤ S < 0.8. The front location for Re
with S = 0 in the viscous phase evolves at approximately t0.28. This is closer to the viscous
scaling t1/4 in (3.7), and it is larger than the viscous scaling t1/8 in (3.8) by a factor of 2.
For the stratified cases, the propagation of the current becomes negligible in the early
stage of the viscous phase (or does not transition into the viscous phase). Therefore, no
observation is made for those cases. Cantero et al. (2007b) optimised the prefactors of
the scalings law and reported the empirical best-fit value of ξip = 1.23, ξvp,Ht = 2.6 and
ξvp,Hp = 4.64 from the front velocity plot. With a slight modification of the prefactors,
we found ξip = 1.23, ξvp,Ht = 2.96 and ξvp,Hp = 6.56 provides a fair agreement with our
simulation results. However, these prefactors are not suitable for scaling laws in predicting
the front location of the gravity current.

The front velocity of the gravity current is determined by applying a moving-average
filter with filter width of �t = 1 to the front location and then differentiating the filtered
front location with respect to the time (uf = drf /dt). The plot of the front velocity against
time for all cases is presented in figure 3(c). In the cylindrical release gravity current,
similar to a planar release, we observe the propagation of gravity current undergoes four
main flow phases as reported by Blanchette et al. (2005), Cantero et al. (2007a,b, 2008)
and these phases are discussed in the following.

The first phase is the initial acceleration where the front velocity accelerates from 0
to a maximum value. The maximum front velocity increases with Re but decreases as
S increases. As S increases (S = 0, 0.2, 0.5, 0.8), the peak value of the front velocity
decreases from 0.563 to 0.512, 0.485 and 0.414 at Re = 3450 and from 0.594 to 0.545,
0.514 and 0.437 at Re = 10 000. It is also noted that the duration of the acceleration phase
is also extended with increasing S with the gravity current taking a longer time to reach the
maximum front velocity. Comparing the duration for the strongly stratified and unstratified
cases to reach the maximum front velocity, the case with S = 0.8 takes approximately 43 %
longer than S = 0 (t ≈ 2.0 versus t ≈ 1.4).

After the initial acceleration, the gravity current undergoes a slumping phase. In this
regime, the front velocity remains relatively steady. Cantero et al. (2007b) investigated the
transition between different phases of spreading by collecting experimental data from the
literature and revisited the scaling of the slumping phase. They reported the best-fit value
of the mean front velocity in the slumping phase is FrC = 0.42h̃−1/2

0 (where the subscript
C denotes Cantero et al. (2007b) and h̃0 = h0/H is the depth of initial release). A period
of near-constant velocity was observed in the planar currents, but was not clearly identified
for the cylindrical current. However, there is a brief period of slower variation before the
current exhibits a more pronounced decay (Cantero et al. 2007b). Our simulation results
are in good agreement with Cantero et al. (2007b) where the front velocity in the slumping
phase decreases at a very slow pace instead of approaching a period of near-constant
velocity. The slumping phase is found to occur at a later time at both Re when S increases
where the cases with S = 0 begin at t ≈ 2, and t ≈ 2.2, 3 and 4 for the cases with S = 0.2,
0.5 and 0.8, respectively (see figure 3c). For a better comparison, the near constant velocity
region is used to calculate the mean front velocity. Here, Frsim = uf ,meanh̃−1/2

0 is the
Froude number of the gravity current based on the mean front velocity in the slumping
phase (table 1). The front velocity remains constant for a longer period as the stratification
strength increases for both Reynolds numbers.

For the cases with S = 0, the mean front velocity in the slumping phase has a value of
0.38 (Re = 3450) and 0.41 (Re = 10 000), and gradually decreases to 0.26 (Re = 3450)

and 0.27 (Re = 10 000) when the stratification strength increases to 0.8. The mean front
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S FrUH FrU Re = 3450 Re = 10 000

Frsim Fr Frsim Fr

0 0.42 0.42 0.38 — 0.41 —
0.2 0.39 0.39 0.36 0.81 (Supercritical) 0.38 0.85 (Supercritical)
0.5 0.33 0.34 0.31 0.44 (Supercritical) 0.34 0.48 (Supercritical)
0.8 0.26 0.29 0.26 0.29 (Subcritical) 0.27 0.30 (Subcritical)

Table 1. Mean front velocity in the slumping phase of present simulations expressed as Frsim with different
stratification strength at Re = 3450 and 10 000. FrUH and FrU denote the Froude number reported by Ungarish
(2006) ((3.5)) and Ungarish & Huppert (2002) ((3.4)), respectively. The flow regime of present simulation are
determined by the buoyancy Froude number Fr = u∗

f ,mean/N∗H∗.

velocity in the slumping phase has dropped approximately 32 % in strong stratification and
thus Frsim decreases as S increases.

The flow regime of the gravity current propagating in a stratified ambient is determined
by the buoyancy Froude number calculated using the slumping velocity. When the current
is moving with a value of Fr > 1/π, it is referred as a supercritical flow and in this regime,
the current travels faster than the internal gravity waves. When gravity current has a Fr
value smaller than 1/π, the gravity current flow is in the subcritical regime. However, the
release of the cylindrical gravity current is a developing flow and the local Froude number,
based on the instantaneous velocity, changes with time. In the initial acceleration phase,
the front velocity increases rapidly from zero and for all cases, is greater than the speed
of the internal gravity wave (see figure 3c with the dashed line being the velocity of the
linear, mode-one, long internal gravity wave). The gravity current then transitions into the
slumping phase after the front velocity reaches a local maximum. In the slumping phase,
the front velocity of the current with S = 0.8 is less than the speed of the internal gravity
wave (N∗H∗/π) and is in the subcritical regime. As the flow decelerates in the inertial
regime, the flow of the other less stratified cases eventually enters the subcritical regime
based on the local Froude number. In the subcritical regime, the oscillation of forward-
and backward-propagating internal waves behind the gravity current is more pronounced
compared with the supercritical flow. Further discussion on this phenomenon is presented
in the following sections.

For the full-depth release and with the limit of h̃ and h̃HS → 0.5, the Froude number
of the gravity current (Frsim) for S = 0.2, 0.5 and 0.8 is calculated using (3.4) and
(3.5). The scaling proposed by Ungarish & Huppert (2002) and Ungarish (2006) takes
into consideration the effects of stratification, where the front velocity decreases with
increments of S. We recall the best-fit value of the Froude number FrC = 0.42h̃−1/2

0
reported by Cantero et al. (2007b) and adapt it to the scaling. The results are tabulated in
table 1. Average differences of 6.4 % and 7.2 % are observed for the low-Re cases across
the stratified and unstratified cases compared with the models reported by Ungarish &
Huppert (2002) and Ungarish (2006), respectively. The percentage difference decreases
to 1.9 % and 3 % when the Reynolds number increases to Re = 10 000. Both models
can capture the stratification effect and provide good predictions for Frsim, however, the
scaling reported by Ungarish & Huppert (2002) shows a better agreement compared with
that by Ungarish (2006). However, when using the classical formula of Benjamin (1968),
FrB(h̃) (the second term on the left-hand side of (3.4) and (3.5), it overestimates Frsim by
approximately 30 % and 22 % at Re = 3450 and 10 000, respectively.
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Figure 4. Plot of the front velocity against time for stratified cylindrical release gravity current with different
stratification strengths ranging from S = 0 to 0.8 at Re = (a) 3450 and (b) 10 000. The stratification is
represented with a different colour where red solid line (circle), S = 0; green solid line (circle), S = 0.2; blue
solid line (circle), S = 0.5 and cyan solid line (circle), S = 0.8. The theoretical model for S = 0, (black solid
line), slumping phase; (· · · · · · ), inertial phase; (– – –), viscous phase by Hoult (1972) in (3.7); (-·-·), viscous
phase by Huppert (1982) in (3.8).

Figure 4 shows the plot of the front velocity with different stratification strengths and
different phases at Re = (a) 3450 and (b) 10 000. The gravity current transitions into the
inertial phase when the inertial force balances the buoyancy force. For the low-Re cases,
the current leaves the nearly constant velocity phase and transitions into the inertial phase
at t = 4.6, 5, 6.8 and 11.4 with S = 0, 0.2, 0.5 and 0.8, respectively. The current enters
the inertial phase at t = 3.8, 4, 5 and 11 for the high-Re case with S = 0, 0.2, 0.5 and 0.8,
respectively. The front velocity follows the model proposed by Huppert & Simpson (1980)
(as defined in (3.6)) with good agreement up to t = 17 and 27 for the case with S = 0 and
0.2. The density of the current becomes close to the density at the bottom boundary for
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S = 0.2, 0.5 and 0.8 before the end of the inertial phase, and the propagation of the current
is not observed when the heavy fluid has mixed with the ambient fluid.

A comparison of the front velocity for the unstratified and stratified cases with the
scalings in the viscous phase for Re = 3450 and 10 000 is also shown in figure 4. For the
S = 0 case at Re = 3450 and 10 000, the front velocity leaves the inertial phase at t = 17
and 20 and the front velocity decays faster in the viscous regime. In the S = 0.2 case,
the gravity current transitions from the supercritical regime to subcritical gravity current.
Here, the internal gravity waves travel faster than the current, pushing the head of the
current which results in a reduction in the decay rate of the front velocity. Consequently,
the current in the S = 0.2 case travels further than the unstratified case at later times.

Both the scaling laws for the viscous phase proposed by Hoult (1972) and Huppert
(1982) in (3.7) and (3.8) underpredict the simulation results. The velocity of the front in
the viscous phase from the simulations is higher than what the scaling laws predict. This
is also true when considering the virtual time origin calculated in the viscous phase. It
is important to note that for S = 0.5 and 0.8, the gravity current flow does not enter the
viscous phase as the dense fluid has fully mixed with the ambient fluid at the bottom of
the domain. Because the viscous scaling proposed by Hoult (1972) and Huppert (1982)
were derived for 2-D gravity currents, they underpredicted the cylindrical gravity current
simulations where the three-dimensionality of the current has a strong influence over
the propagation speed (Huppert 1982; Cantero et al. 2007b). Similar observations were
reported by Cantero et al. (2007b) and best-fit values of the prefactors ξvp,Ht = 2.6 and
ξvp,Hp = 4.64 (see (3.7) and (3.8)) is proposed without modifying the theoretical power
law exponents.

For the strongly stratified cases, the current has a similar density close to the bottom
boundary (ρc ≈ ρb) before transitioning into the viscous phase. Neither of the cases with
S = 0.5 and 0.8 undergoes a transition into the viscous phase. In the case with S = 0.5,
the density of the current becomes close to the density at the bottom boundary (ρc ≈ ρb)
before transitioning into the viscous phase. Additionally, the propagation of the current for
S = 0.8 becomes negligible in the slumping phase where front velocity decreases rapidly
after the end of the slumping phase. A similar finding was observed for Re = 10 000
cases. The propagation of the current becomes negligible after the slumping phase as
there is insufficient density difference between the current and ambient at the bottom wall
to continue propagating.

4.3. Space-time diagram of the equivalent height h̄
The evolution of the azimuthally averaged cylindrical gravity current in a stratified ambient
at Re = 3450 and 10 000 as visualised by the contour of the equivalent height (h̄) of the
gravity current is shown in figures 5 and 6. The heavy fluid is coloured red while the
ambient fluid is represented in blue. The front location of the gravity current is plotted with
a solid black line. The red dashed line has a slope corresponding to the maximum speed
of the linear internal gravity wave and is plotted for stratified cases only. The crossing
white dotted lines, forming a ‘hash’ like pattern, observed on the left side of figure 5(b–d)
represent the presence of the forward- and backward-propagating internal gravity waves
(refer to the inset plot in figure 5(d) for better visualisation).

The ‘spikes’ observed on the left-hand side of the solid black line during the time
interval 5 < t < 15 indicate the occurrence of the breakdown of the K–H billows behind
the gravity current head. These vortices behind the current head transport the heavy fluid
towards the head during the early times and eventually break down into smaller-scale
turbulent structures at later times. The head of the gravity current continues to propagate
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Figure 5. Contour of the equivalent height of the gravity current with S = (a) 0, (b) 0.2, (c) 0.5 and (d) 0.8
at Re = 3450. The heavy and ambient fluid is coloured red and blue, respectively. The solid black line, front
location of the current (rf ); red dashed line, slope corresponding to the maximum speed of the linear internal
gravity wave (N∗H∗/π), front location of the internal gravity wave. The white dotted lines show the movement
of the internal gravity wave behind the gravity current. The white arrow indicates the counter-clockwise rotating
vortices behind the current head, which propagate in the opposite direction of the current. The red rectangle
corresponds to the inset figure and shows the forward- and backward-propagating internal gravity waves behind
the gravity current. The colour of the inset in panel (d) is saturated (the colour scale is five times smaller than
the original) for better visualisation.

forward, while small vortices within the body of the current remain in the same location
(or propagate at a slow pace), mix with the surrounding fluid and eventually form the
tail of the gravity current at later times. The tail of the current breaks down into multiple
sections. Additionally, in figure 5(d), the white arrow indicates that the vortices are rotating
counter-clockwise and propagating in the opposite direction of the current.

As the stratification strength S increases to 0.8, the ‘hash’-like pattern continues to grow,
indicating the presence of forward- and backward-propagating internal gravity waves
behind the gravity current (see figure 5d) and is significant compared with other cases
(particularly in the region 0 < r < 5). In the initial acceleration phase, the gravity current
with S = 0.8 at both Re has a propagation speed similar to the internal gravity wave. The
red dashed line in figures 5(d) and 6(d) is almost tangent to the solid black line. Later, the
internal gravity wave propagates faster than the gravity current and the red dashed line is
plotted below the solid black line. When the gravity current propagates slower than the
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Figure 6. Contour of the equivalent height of the gravity current with S = (a) 0, (b) 0.2, (c) 0.5 and (d) 0.8
at Re = 10 000. The heavy and ambient fluid is coloured red and blue, respectively. The solid black line, front
location of the current (rf ) and red dashed line, slope corresponding to the maximum speed of the linear internal
gravity wave (N∗H∗/π).

maximum speed of the linear internal gravity wave, the gravity current is in the subcritical
regime. This agrees well with the plots in figure 3(b) where the maximum speed of the
linear internal gravity wave is greater than the front velocity in the slumping phase with
S = 0.8. The results are qualitatively similar for the higher Reynolds number cases shown
in figure 6.

4.4. Turbulent structures of the gravity current
The 3-D turbulent structure of the cylindrical current is visualised by the isosurface of
swirling strength λ2, which is the imaginary component of the complex eigenvalues of the
local velocity gradient tensor (Zhou et al. 1999). In this section, the two extreme cases
S = 0 and 0.8 at Re = 10 000 are selected to compare the 3-D flow structures between
the unstratified and the strongly stratified cases. Figure 7 shows the time evolution of the
isosurface of λ2 for the unstratified case at Re = 10 000.

At time t = 3.2 (figure 7a), radially aligned hairpin vortices are formed at the head of
the gravity current due to the high shear at the bottom of the no-slip wall. These structures
are similar to the tooth-like vortices reported by Dai & Huang (2022) in a planar release
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Figure 7. Time evolution of the isosurface of λ2 = −20 for the case with S = 0 at Re = 10 000. The dotted
line represents the location of the spanwise vorticity (ωz) contour on the x–z plane. A closer look at the black
and red square region is shown on the left.
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gravity current. They found that the merging and splitting of the lobes and clefts of the
gravity current are a result of the merging and birth of these vortices.

As the gravity current slumps, inner and outer vortex rings are generated by the gravity
current. These structures arise due to the K–H billows developing behind the head of the
gravity current and counter-rotating vortex rings formed close to the wall due to the high
shear of the near-wall region (see 2-D colour map of vorticity in figure 7). These vortex
structures mutually interact with each other causing these structures to bend and tilt with
some of these structures getting intertwined (see figure 7a).

Strong interaction between the counter-rotating vortex pairs leads to a chaotic and
violent breakdown of the turbulent structures to smaller scales. Smaller secondary
filaments perpendicular to the vortex rings are formed (figure 7c,d) and the mechanism
leading to the breakdown of these structures is similar to the phenomena observed in a
vortex ring collision. McKeown et al. (2020) described this mechanism to be an iterative
cascade of the elliptical instability where energy from the larger scales is transferred to
smaller scales by the formation of perpendicular structures before finally being dissipated
by the smallest scales.

At time t = 5.4 (figure 7d), where the gravity current is at the end of the slumping phase,
the flow at the head of the gravity current appears to be fully turbulent.

When strong stratification is present in the ambient fluid (S = 0.8), there are subtle
differences in the evolution of the vortical structure of the gravity current compared
with the unstratified case. Time evolution of the isosurface of λ2 for the cylindrical
release gravity current propagating in a strongly stratified ambient at Re = 10 000 is
shown in figure 8. Due to the lower slumping velocity, the vortical structures generated
by the gravity current are located closer to each other and have a lower circulation
strength as the current propagates radially outward. Because of this, the breakdown
of the inner vortical rings occurs first compared with the unstratified case where the
breakdown of the inner and outer rings occur at roughly the same time (see figures 7c
and 8c). The turbulent structures in the flow also appear to be larger than the unstratified
case and this is due to the lower local Reynolds number of the head of the gravity
current.

Figures 9 and 10 shows a quadrant of the total isosurface of density and swirling
strength λ2 for the high-Re case with S = 0, 0.2, 0.5 and 0.8. The isosurface of density
is plotted on the left and the isosurface of λ2 is on the right and is coloured by the
velocity magnitude of the current. For consistent comparison between the stratified cases,
a constant non-dimensionalised density contour value of ρ̃ = (ρ − S)/(1 − S) = 0.015 is
selected. All the figures are plotted in the same phase (slumping and inertial phases) for
a better comparison of the evolution of the gravity current with different stratification
strengths. It is important to note that none of the stratified cases, whether at low or high
Reynolds numbers (Re), transition into the viscous phase.

The propagation of the current for the case with strong stratification (S = 0.8) becomes
negligible at the later time in the slumping phase and does not transition into the inertial
phase (or viscous phase). The figures shown in 10(b) are the current in the slumping phase
of spreading.

In the slumping phase, undulations at the front of the gravity current due to the
lobe-and-cleft instability are clearly visible for cases with S = 0, 0.2 and 0.5 but are less
prominent for S = 0.8. Radially aligned hairpin vortices formed at the head of the gravity
current due to the high shear at the bottom of the no-slip wall can be observed clearly for
0 ≤ S < 0.5. However, for S = 0.8, these hairpin structures are formed in the middle of
the slumping phase (t ≈ 6) and therefore we did not observe any in figure 10(b).
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Figure 8. Time evolution of the isosurface of λ2 = −5 for the case with S = 0.8 at Re = 10 000. The dotted
line represents the location of the spanwise vorticity (ωz) contour on the x–z plane. A closer look at the black
and red circled region is shown on the left.
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t = 3 (SP)
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Figure 9. Time evolution of the isosurface of density (on the left) and λ2 (on the right) for the case with S =
(a) 0 and (b) 0.2 at Re = 10 000. The lobe-and-cleft instability is formed at the gravity current head in SP, and
the lobe and cleft can be seen clearly in IP. The bulging front indicates a lobe and the indentation between two
lobes is a cleft circled with a black circle. SP, slumping phase and IP, inertial phase.

A K–H billow is formed behind the gravity current head for all the cases, corresponding
to the rolled up vortices. For S = 0.5 and 0.8, the vortices around the ring are less
significant compared with at S = 0 and 0.2. The interaction between the inner and outer
vortex rings can be observed in the isosurface of λ2 for all the cases in figures 9 and
10, but the interaction reduces with increasing stratification strength. The wrinkling of
the isosurface of density is due to the turbulent structures developing within the gravity
current and the morphology of the isosurface of density is related to the local entrainment.

During the inertial phase, as the current moves radially outward with a decelerating
velocity, the turbulent structures undergo a breakdown into smaller scales for values of
0 ≤ S ≤ 0.5. This process continues until the heavy fluid becomes completely blended
with the surrounding fluid. For the case with S = 0.8, the hairpin structures are forming in
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t = 9.6 (End of SP)

0 0.2 0.4 0.6 0.8 1.0 1.2
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Figure 10. Time evolution of the isosurface of density (on the left) and λ2 (on the right) for the case with S =
(a) 0.5 and (b) 0.8 at Re = 10 000. The lobe-and-cleft instability is formed at the gravity current head in SP,
and the lobe and cleft can be seen clearly in IP. SP, slumping phase and IP, inertial phase.

the head at t = 9.6. The tail of the current begins to separate from the body as the heavy
fluid has mixed with the ambient fluid and the head continues to propagate. The lobes and
clefts can be seen clearly at the front of the head of the gravity current head when plotting
the isosurface of density. The evolution of the radially advancing lobes and clefts structure
of the current is discussed further in the next section.

4.5. Lobes and clefts structure
In the last five decades, there have been many experimental and numerical studies
conducted to elucidate the formation of the lobes and clefts instability in planar (Simpson
1972; Härtel et al. 2000; Dai & Huang 2022) and cylindrical gravity currents (Cantero
et al. 2007a) in the absence of stratification. Formation of the lobes and clefts is due
to the no-slip impermeable boundary condition of the bottom wall (Simpson 1972).
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Simpson (1982) postulated that these structures occur due to the convective instability
as the head of the gravity current flows over the less heavy fluid. Stability analysis of the
flow at the head of a gravity current conducted by Härtel et al. (2000) showed that the
development of the 3-D structures are due to a local instability at the leading edge of the
front. Numerical simulation of a planar gravity current conducted by Dai & Huang (2022)
noted the importance of tooth-like vortices (also observed in figures 7a,b and 8b,c) that
have a very similar appearance to hairpin vortices generated in a turbulent boundary layer,
on the merging and splitting of the lobes and clefts structures. When merging and splitting
processes are presented, Simpson (1972) reported the empirical relationship for the lobe
size for a planar current to have an expression of

λ̃l

h̄H
= 7.4Re−0.39±0.02

F , (4.2)

where λ̃l is the mean wavelength of the lobe, h̄H is the azimuthally averaged height of the
gravity current head, ReF = Reh̄Huf is the local instantaneous front Reynolds number and
uf is the front velocity of the gravity current.

The evolution of the lobes and clefts are visualised by plotting the 2-D contour of density
ρ̃ = 0.015 on the x–y plane at height z = 0.01 (close to the bottom boundary) with a
constant time interval of �t = 0.8. The cases with S = 0 at Re = 3450 and 10 000 are
plotted in figure 11 to investigate the effects of Reynolds numbers on these structures. The
colour of lines represents the different phases of the gravity current flow. The density
contour lines are initially circular and smooth; however, undulations are observed in
between at the end of the acceleration phase and the start of the slumping phase (solid
green lines). These undulations grow and develop into lobes and clefts. In the inertial
(solid blue lines) and viscous phases (solid black lines), the splitting and merging of lobes
are observed. At lower Reynolds number (figure 11a), the density contour in the viscous
phase looks more symmetrical than in the high-Re case which contains a larger range of
turbulent scales.

Figure 12 shows the lobes and clefts structure of the advancing front with S = 0.2 and
0.5 at Re = 10 000. Each contour line represents ρ̃ = 0.015. The dashed lines show the
splitting and merging of the lobes and clefts. A cleft merges with the neighbouring cleft
producing a new cleft and larger lobes. The splitting and merging process is observed
more frequently in the self-similar inertial and viscous phase compared with the slumping
phase. As the current propagates, a lobe splits into two smaller lobes (the distance between
dashed lines becomes wider) and multiple clefts merge (the distance between dash lines
becomes narrower) which is shown in figure 12(a). The splitting and merging of existing
lobes-and-clefts with S = 0.2 are significantly greater than in the unstratified case shown
in figure 11(b).

The lobes and clefts structure for S = 0.8 is plotted in figure 13. As the stratification
strength increases, the 2-D density contour plot becomes smaller due to the density
difference between the heavy fluid and the density at the bottom wall being smaller with
increasing S. Also, the stratification strength slows down the transitions of the current, and
gravity current with S = 0.8 has a longer duration in the slumping phase compared with
the other cases. The splitting and merging process is the slowest for the S = 0.8 case and
has the smallest lobe size. After the end of the slumping phase, the current continues to
propagate for a short period before the gravity current has dissipated and there is no gravity
current flow any more. The summary of the quantitative information of the lobe-and-cleft
structure with different Re and S is tabulated in table 2.
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Figure 11. Evolution of the front visualised by the contour of ρ = 0.015 close to the bottom boundary at Re =
(a) 3450 and (b) 10 000 with S = 0. The time separation between contours is �t = 0.8. The colour represents
the transition between phase: red, initial acceleration phase; green, slumping phase; blue, inertial phase and
black, viscous phase.

The number of lobes, Nl, against time for different S at different Re is plotted in figure 14.
The number of lobes is calculated by counting the number of local maxima in the density
contour. Spectral analysis of the profile was also conducted but did not result in a distinct
peak in the frequency domain due to the diverse distribution of lobe sizes, thus leading
to a misleading lobe size. The number of lobes for the case with S = 0 and 0.2 at low
Re does not differ significantly until the current reaches rf ≈ 5 and starts to increase
after that. For S = 0.5, Nl increases as the current propagates radially out. The number
of lobes for S = 0.8 remains nearly constant where the gravity current has dissipated and
there is no appreciable or discernible gravity current flow any more. For higher Reynolds
number cases, the number of lobes for S = 0 and 0.2 first decreases until rf ≈ 5 (at the

983 A43-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

98
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.98


Cylindrical gravity current in a stratified ambient

10

8

6

4

2

0

–2

–4

–6

–8

–10

y

(a)

(b)

–10 –8 –6 –4 –2 0 2 4 6 8 10

10

8

6

4

2

0

–2

–4

–6

–8

–10

y

x

(a)

–10 –8 –6 –4 –2 0 2 4 6 8 10

Figure 12. Evolution of the front visualised by the contour of ρ = 0.015 close to the bottom boundary at
Re = 10 000 with S = (a) 0.2 and (b) 0.5. The time separation between contours is �t = 0.8. The colour
represents the transition between phases: red, initial acceleration phase; green, slumping phase and blue, inertial
phase. The dashed lines in panel (a) show the splitting and merging of the lobes and clefts.

end and in the middle of the inertial phase). The increase in number Nl as the currents
propagate is observed for S = 0.5 and 0.8 until the gravity current has dissipated. The
gravity current at a higher Reynolds number becomes strongly turbulent due to the rapid
growth of 3-D disturbances. In addition, the mixing within the current head is significantly
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Figure 13. Evolution of the front visualised by the contour of ρ = 0.015 close to the bottom boundary at Re =
10 000 with S = 0.8. The time separation between contours is �t = 0.8. The colour represents the transition
between phases: red, initial acceleration phase; green, slumping phase and blue, inertial phase.

S Re t rf Nl λ̃l Phase S Re t rf Nl λ̃l Phase

0 3450 4 2.38 78 0.21 SP 0 10 000 3 2.05 134 0.1 SP
0.2 3450 5 2.64 76 0.22 SP 0.2 10 000 4 2.36 141 0.11 SP
0.5 3450 6 2.74 70 0.25 SP 0.5 10 000 5 2.52 116 0.14 SP
0.8 3450 10 3.46 57 0.36 SP 0.8 10 000 11 3.81 125 0.2 SP
0 3450 17 5.71 75 0.5 IP 0 10 000 18 6.05 124 0.34 IP
0.2 3450 27 7.23 94 0.52 IP 0.2 10 000 25 7.29 133 0.36 IP
0.5 3450 21 5.94 101 0.39 IP 0.5 10 000 19 5.94 154 0.25 IP
0.8 3450 11 3.69 58 0.39 End of SP 0.8 10 000 14 4.51 154 0.2 End of SP
0 3450 60 9.96 93 0.74 VP 0 10 000 40 9.19 135 0.45 VP
0.2 3450 42 9.01 115 0.52 VP

Table 2. Quantitative information on the lobe-and-cleft structure. Here, rf is the radial location of the front,
Nl is the total number of lobes in 360◦ and λ̃l = 2πrf /Nl is the mean wavelength of the lobe. SP, slumping
phase; IP, inertial phase; VP, viscous phase.

greater compared with low-Re cases. As a result, the number of lobes observed in the
gravity current increases compared with cases at low Reynolds numbers.

In the slumping phase, the head of the gravity current accumulates the majority of the
heavy fluid, resulting in intense mixing. This is due to the elevated head being more
energetic than the thinner trailing body. As a result, the entrainment of ambient fluid
predominantly takes place in the head of the gravity current (Beghin, Hopfinger & Britter
1981; Ross, Linden & Dalziel 2002; Ross, Dalziel & Linden 2006). Dai & Huang (2022)
investigates the merging and splitting processes in the lobe-and-cleft structure at a gravity
current head in the slumping phase. They found that the merging process involves the
interaction of three hairpin vortices, where the middle hairpin vortex breaks up and
reconnects with the two neighbouring hairpin vortices. During this process, a cleft can
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Figure 14. Plot of the number of lobes (Nl) against radial front for stratified cylindrical release gravity current
with different stratification strength at Re = (a) 3450 and (b) 10 000. The stratification is represented with a
different symbol and a cubic spline curve is fitted through the data, ◦(—), S = 0; *(- - -), S = 0.2; �(-·-·),
S = 0.5; 	(· · · · · · ), S = 0.8. The colour of the symbols represents the transition between phases: red, initial
acceleration phase; green, slumping phase; blue, inertial phase and black, viscous phase.

merge with neighbouring clefts but may never fully disappear. However, in the splitting
process, a new streamwise vortex is formed by the parent vortex of opposite orientation.
This parent vortex can be either the left part or the right part of the existing hairpin vortex
within the splitting lobe. However, as the stratification strength increases, the density
difference between the heavy fluid and the ambient fluid becomes smaller, resulting in
less mixing within the current head and a decrease in the number of lobes during the
slumping phase. When the current transitions into the inertial phase, the lobes and clefts
evolve very dynamically, and the splitting and merging processes occur more frequently.

The average size of the lobes can be determined by calculating the mean wavelength of
the lobe λ̃l = 2πrf /Nl (where rf is the radial location of the front and Nl is the total number
around the radial current). Figure 15 presents the mean wavelength of the lobe as a function
of the radial front of the current for both Reynolds numbers. From figure 15(b), it can
be observed that the mean wavelength of the lobe decreases as the stratification strength
increases at later times where the average size of the lobe decreases. For low-Re cases, a
similar trend is observed for S = 0, 0.2 and 0.5. For S = 0.8, the lobe size is larger than in
the other cases. It is because the gravity current still transitions from the slumping phase
to the inertial phase. The gravity current has dissipated and there is no gravity current flow
any more before it completely transitions into the inertial phase. The splitting and merging
process occurs more frequently in the self-similar phase, and therefore the lobe size for
S = 0, 0.2 and 0.5 is smaller than for S = 0.8.

Figure 16 shows the dimensionless lobe size, λ̃l/h̄H against the front Reynolds number.
Discrepancies were observed for both Re cases and this may be due to the model developed
by Simpson (1972) being based on planar current, but the current simulation results are for
a cylindrical release. The result in the slumping phase for S = 0 in both Re is in reasonable
agreement with Simpson (1972). However, our simulation results show the wavelength of
lobes is larger in both the inertial and viscous phases. A similar observation is reported by
Cantero et al. (2007a). Despite differences observed between the present study and that
of Simpson (1972), our unstratified (S = 0, see figure 16a,b) simulation results still agree
well with those of Cantero et al. (2007a) in both Re cases. This discrepancy is due to
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Figure 15. Plot of the mean wavelength of lobes (λ̃l) against radial front for stratified cylindrical release gravity
current with different stratification strength at Re = (a) 3450 and (b) 10 000. The stratification is represented
with a different symbol and a cubic spline curve is fitted through the data, ◦(—), S = 0; ∗(- - -), S = 0.2;
�(-·-·), S = 0.5; 	(· · · · · · ), S = 0.8. The colour of the symbols represents the transition between phases: red,
initial acceleration phase; green, slumping phase; blue, inertial phase and black, viscous phase.

the mixing in cylindrical current being greater than a planar current, and the cylindrical
current decays more rapidly as the current propagates and mixes radially.

For S = 0.8 in figure 16(c,d), the wavelength of lobes in the slumping phase is observed
to be similar to the wavelength of S = 0 in the inertial phase. This is because the transition
of the current for S = 0.8 occurs later than in unstratified cases. A similar observation is
found for the case with a higher Reynolds number.

5. Conclusion

Three-dimensional simulations of cylindrical release gravity current are performed with
stratification strength varying from 0 to 0.8 at two different Re of 3450 and 10 000. The
main objectives of the study are to investigate: (1) the effects of the stratification strength
on the cylindrical release gravity current in terms of the propagation of the front and (2)
the scaling in the slumping phase for the stratified current. To the best of our knowledge,
direct numerical simulations of fully 3-D, full-depth lock release of cylindrical gravity
currents in a stratified ambient at a moderate Reynolds number have not been conducted
before.

The front location and front velocity of the gravity current in both unstratified and
stratified ambient were measured. It was observed that in all cases, the front location
of the current decreases with increasing stratification strength, which is consistent with
the findings reported in previous studies (Lam et al. 2018a,b; Dai et al. 2021). Similarly,
the peak front velocity during the acceleration phase and the constant velocity during the
slumping phase decrease with increasing stratification strength and increase with Re.

The transition of the current slows by the stratification strength and the gravity current
with S = 0.8 has a longer period of the slumping phase compared with that for the other
cases. In the slumping phase, the front velocity of the present simulations is lower than
the theoretical prediction of 1/2 (Benjamin 1968; Shin et al. 2004) for both low- and
high-Re cases with S = 0. The mean front velocity of the unstratified case during the
slumping phase is approximately 0.38 for the low-Re case and 0.41 for the high-Re case.
These values are in good agreement with the best-fit value of approximately 0.42 reported
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Figure 16. Ratio of the dimensionless mean lobe size, λ̃l/h̄H against the front Reynolds number, ReF =
Reh̄Huf . The simulation results at Re = (a,c) 3450 and (b,d) 10 000 with S = (a,b) 0 and (c,d) 0.8 are
plotted at different phases. The solid black line represents the empirical prediction by Simpson (1972):
λ̃l/h̄H = 7.4Re−0.39±0.02

F . The figure includes experimental data by Simpson (1972) (×), Dai & Huang (2022)
(+) and Cantero et al. (2007a) (open symbols for Re = 3450 and solid symbols for Re = 8950). The coloured
symbol (	 and 
 for S = 0 and 0.8 at Re = 3450; � and � for S = 0 and 0.8 at Re = 10 000): green, slumping
phase; blue, inertial phase and cyan, viscous phase.

by Cantero et al. (2007b) for the cylindrical current at large Re. However, when the
stratification is introduced to the ambient fluid, the models proposed by Benjamin (1968),
Shin et al. (2004), Huppert & Simpson (1980) are not suitable as they do not consider the
effects of stratification. Consequently, the constant front velocity in the slumping phase
of the stratified cases is inconsistent with the constant front velocity predicted by the
models. Instead, the scaling proposed by Ungarish & Huppert (2002) and Ungarish (2006),
modified with the empirical fit to the front velocity in the slumping phase by Cantero et al.
(2007b), effectively captures the effect of stratification, where the front velocity decreases
as S increases. Remarkably, the present simulations agree well with the modified scaling,
with only a 7 % difference observed for the low-Reynolds-number cases.
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Interestingly, for the high-Reynolds-number case, the difference decreases to 3 %. These
results suggest that the modified scaling is valid across a range of Reynolds numbers
and can be used to predict the front velocity in the slumping phase for gravity currents
propagating in a stratified ambient. The current transitions into the inertial phase after the
end of the slumping phase which is observed in cases with weak stratification strength
(S ≤ 0.5). The front velocity in these cases shows very good agreement with the empirical
model proposed by Huppert & Simpson (1980) in the inertial phase. In the case with
S = 0.8, the propagation of the current in the inertial phase becomes negligible due to
an insufficient density difference between the current and the ambient at the bottom wall.
For the cases with S = 0 and 0.2, a transition to the viscous phase is observed. However,
both the viscous scaling proposed by Hoult (1972) and Huppert (1982) underpredict the
simulation results even when considering the virtual time origin.

Subcritical flow is obtained for the cases with S = 0.8 where the propagation of the
linear internal gravity wave (N∗H∗/π) is faster than that of the gravity current. In the
subcritical regime, the gravity current is smooth and contains minimal vortices. This
behaviour is clearly in the contour of the equivalent height in figure 5(d). Gravity currents
in the supercritical regime were observed for the remaining cases where the internal
gravity wave is locked together with the gravity current head. In the supercritical regime,
the gravity current becomes turbulent and strong K–H billows are observed behind the
gravity current head. As the gravity current propagates, it gradually slows down due to
the entrainment of the linearly stratified ambient fluid. Eventually, the Froude number of
the current reaches a critical value (Fr = 1/π), triggering a transition to a subcritical flow
regime. During this transition, internal gravity waves start to separate from the current
head and overtake the current, further decelerating it.

The evolution and breakdown of the turbulent structures are analysed by comparing the
isosurfaces of λ2 at high Re are compared when varying S. Strong interaction between the
inner vortex rings is observed in the slumping phase. Hairpin vortices, aligned radially, can
be observed on the gravity current head during the early stage of the slumping phase for
the weakly stratified case (S < 0.5), as shown by the isosurfaces of density. In contrast, for
the strongly stratified case (S = 0.8), these hairpin vortices do not form until the middle of
the slumping phase. The gravity current with S = 0.8 is less turbulent and the interaction
between the inner vortex rings is less prominent. During the transition into the inertial
phase, the vortex rings are broken down into smaller rotating vortical structures. The lobes
and clefts on the gravity current head are clearly visible on the isosurface of density for
S = 0.2 and 0.5.

The lobes and clefts of the advancing front are compared at both low and high
Re with S = 0. At high Reynolds numbers, the splitting and merging processes are
more pronounced, resulting in an asymmetrical appearance of the radial front of the
gravity current when visualised by the density contour. In contrast, the radial front of
the low-Reynolds-number case appears to be more symmetrical. The lobes and clefts
of the advancing front at high Re are also compared when varying S. The present
simulations reveal that the splitting and merging processes of the gravity current are
more significant for weak stratification (S = 0.2), but less significant for moderate to
strong stratification (S = 0.5 and S = 0.8). Additionally, the radial front of the current
appears more asymmetrical at higher Reynolds numbers but becomes more symmetrical
and smaller with increasing S. These findings provide valuable insights into the dynamics
of gravity currents in stratified environments. The number of lobes in the high-Re cases is
significantly greater than in the low-Re cases, but does not vary significantly over time. As
the stratification strength increases, the mean wavelength of the lobes decreases. This is
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attributed to the occurrence of more splitting and merging processes during the self-similar
inertial and viscous phases. However, it should be noted that the current slows down at an
earlier time as the stratification strength increases. The mean lobe size for both low- and
high-Re cases with S = 0 and 0.8 is consistent with the findings reported by Cantero et al.
(2007a).

In this study, the front location and front velocity of the gravity current were examined
with respect to their dependencies on S and Re. It was observed that increasing Re leads to
higher front velocities of the gravity current. Conversely, increasing S results in lower front
velocities of the gravity current. These findings have practical implications for predicting
the propagation of gravity currents in natural phenomena such as bushfires, where the
hot smoke from the fire spreads into a stratified atmosphere. The enhanced stratification
slows down the transition of the current and alters the evolution of the gravity current
compared with a non-stratified ambient. While previous studies by Dai & Huang (2022)
and Cantero et al. (2007a) have reported the splitting and merging processes of 3-D
planar and cylindrical currents in a non-stratified ambient, there is currently no literature
documenting the splitting and merging processes of lobe-and-cleft structures of cylindrical
currents in a stratified ambient. Future extensions of this study could explore different
lock aspect ratios or investigate particle-laden flows to further understand the dynamics of
cylindrical currents in a stratified ambient.
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Appendix A. Method to determine the front of gravity current in a stratified ambient

To measure the front location, a robust procedure is employed using the equivalent height
h̄ (Shin et al. 2004; Marino et al. 2005; Birman et al. 2007a; Cantero et al. 2007b; Dai
2015) of the gravity current which is defined as

h̄(x, y, t) =
∫ 1

0
ρ dz. (A1)

The azimuthally averaged current height of a 3-D cylindrical current is expressed as

h̄(r, t) = 1
2π

∫ H

0

∫ 2π

0
ρ(r, θ, z, t)r dθ dz −

∫ H

0
ρa(z) dz, (A2)

where the equation is identical to (4.1). The second term in (A2) is zero for an unstratified
case where ρa = 0. The equivalent height method is applicable only for cases with weak
stratification (S ≤ 0.2). The steepness of h̄ shown in figure 17(b) diminishes over time
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Figure 17. Plot of the azimuthal-averaged equivalent height (h̄) for S = (a) 0 and (b) 0.5 at Re = 3450; time
interval for each frame is five dimensionless time units. The red box shows the details of the plot.

making it challenging to determine the accurate position of the front. Moreover, the same
threshold value cannot be used for increasing S, and the technique lacks robustness as even
a small change in the threshold value can result in a significant shift in the front location
for stratified cases (Sutherland et al. 2022). To address these challenges, the radial gradient
of equivalent height (∂ h̄/∂r) of the gravity current is used to determine the front location
of the gravity current for cases with large stratification (S > 0.2) by differentiating h̄.

Figure 18 shows the plot of the azimuthal-averaged radial gradient equivalent height for
the case with stratification strengths of 0 and 0.5. Similar to the equivalent height method,
a threshold based on 50 % of the maximum of ∂ h̄/∂r is used to define the front location
(the highest peak of ∂ h̄/∂r from the right is selected) and is calculated every �t = 0.2.
This method of determining the front location is also consistent with the equivalent height
method for cases with low stratification strengths.

An alternate method used to determine the front location of the gravity current is defined
as the inflection point (IP) method. The maximum azimuthal-averaged density at each
streamwise location x and for each time t along the current has the expression

ρmax(r, t) = max

(
1

2π

∫ 2π

0
ρ(r, θ, z, t) dθ

)
, (A3)

where ρmax is the maximum of the unmixed heavy fluid at each streamwise location x,
sharply decreasing to the minimum at the front interface between the current and the
ambient. The inflection point along this curve is the front location of the gravity current
(Anjum, Mcelwaine & Caulfield 2013; Borden & Meiburg 2013; Zgheib, Bonometti &
Balachandar 2015b; Bhaganagar & Pillalamarri 2017) without specifying a small threshold
value to determine the front location. A cubic spline curve is fitted through the data and
obtains an inflection point of ρmax(r, t).

Figure 19 shows the plot of the front location and velocity of a cylindrical release gravity
current against time with S = 0 at Re = 10 000. Three methods, namely the equivalent
height method (h̄), radial gradient equivalent height method (∂ h̄/∂r) and inflection point
method, were used to compute the front location and identify the most effective method
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Figure 18. Plot of the azimuthal-averaged radial gradient equivalent height (∂ h̄/∂r) for S = (a) 0 and (b) 0.5
at Re = 3450; time interval for each frame is five dimensionless time units. The red box shows the details of
the plot.

for determining the front of a gravity current in a stratified ambient. The equivalent
height method was used for benchmarking. All methods computed the front location of
the gravity current with good agreement. We observe that the front location computed
using the inflection point method has a slightly lower value at 15 ≤ t ≤ 45 compared with
the other methods, while the gradient method has a slightly larger value at 30 ≤ t ≤ 50
compared with the h̄ and inflection point methods. In the plot of the front velocity against
time (see figure 19b), the inflection point method has good agreement with the h̄ method
but does not provide a smooth plot at later times t > 11. The gradient method, however,
underestimates the front velocity in the acceleration phase and overestimates the maximum
front velocity compared with the h̄ and inflection point method. The difference between
the h̄ and ∂ h̄/∂r method is less than 5 %, and the gradient equivalent height method shows
a better agreement with h̄ compared with the other methods. While the inflection point
method provides good agreement with the equivalent height method up to the slumping
phase, its plot appears jagged at later times compared with both the equivalent height
and radial gradient equivalent height methods. This could potentially lead to incorrect
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Figure 19. Plot of the (a) front location and (b) velocity against time for cylindrical release gravity current with
S = 0 at Re = 10 000. The method is represented with a different line where, —, h̄; - - -, ∂ h̄/∂r and · · · · · · ,
inflection point method.

Method Cost Storage Type of study

h̄ Low Low Unstratified and weak stratified
∂ h̄/∂r Low Low Unstratified and stratified
Passive tracer 20 % larger 20 % larger Unstratified and stratified

Table 3. Summary of how the method in determining the front of the unstratified and stratified gravity
current corresponds to the cost required.

predictions for current transitions. Therefore, the gradient equivalent height method is
selected as the most effective method for determining the front location of a gravity current
propagating in a stratified ambient.

Pelmard et al. (2018) determine the front of the gravity current from the
spanwise-averaged concentration field of the channel. The maximum value on the
streamwise direction (x) is chosen on the concentration isocontour c = 0.1 and will be the
front location of the gravity current. This method is valid to determine the front location of
the gravity current, but is unable to accurately determine the front location of the gravity
current in a stratified ambient at a later time due to the density difference between the
heavy fluid (ρc) and the density of the fluid at the bottom boundary (ρb) being very small.
Dai et al. (2021) implemented a passive tracer for the heavy fluid (ρc) contained within
the lock region and follows the mass transport equation as the density field. The passive
tracer in the lock region is identical to adding dye to the heavy fluid in the experiment.
This method efficiently determines the front of the gravity current in a stratified ambient.
However, implementing a passive tracer in the simulation will increase the computational
cost and storage required. The time for a simulation will be increased as it is required to
solve an additional mass transport equation and the output file size is more extensive. It is
also undeserving for the low-Reynolds-number simulation where the methods discussed
above are sufficient to determine the front of the gravity current. The summary for the
method corresponding to the simulation cost is tabulated in table 3.
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Figure 20. Plot of the (a,b) front location and (c,d) velocity against time for cylindrical release gravity current
with S = 0 at Re = 10 000. The threshold δ is represented with a different line where —, h̄ with δ = 0.01 (50 %
of the local maximum of ∂ h̄/∂r); - - -, h̄ with δ = 0.008 (30 % of the local maximum of ∂ h̄/∂r) and · · · · · · , h̄
with δ = 0.005 (15 % of the local maximum of ∂ h̄/∂r).

Appendix B. Comparison of the front location with different thresholds

The plot of the front location and velocity of the cylindrical release gravity current with
S = 0 at Re = 10 000 is plotted in figure 20. Three threshold values, δ = 0.01, 0.008
and 0.005, are selected to determine the front location of the gravity current using the
azimuthal-averaged equivalent height method (h̄). The results are shown in figure 20(a).
The plot of the front location using different threshold values shows good agreement up
to t = 15, and it is observed that the front location determined with the smallest threshold
(δ = 0.005) has a slightly larger value compared with the results with larger thresholds.
However, using δ = 0.01 is inadequate to accurately capture the front location of the
gravity current in the viscous phase due to the azimuthal-averaged equivalent height has a
smaller value than the threshold value. To determine the front location of the unstratified
cases in the self-similar regime, a smaller threshold such as δ = 0.008 or 0.005 (equivalent
to 0.8 % or 0.5 % of the height of the domain) is preferred. The front velocities determined
using different thresholds agree well up to t ≈ 45 (see figure 20c). However, for later times,
it is observed that the front velocity determined using δ = 0.01 decreases significantly as
the acceleration approaches zero.
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Figure 21. Plot of the (a,b) front location and (c,d) velocity against time for cylindrical release gravity current
with S = 0.2 at Re = 10 000. The threshold value δ is represented with a different line where —, h̄ with δ =
0.01 (50 % of the local maximum of ∂ h̄/∂r); - - -, h̄ with δ = 0.008 (30 % of the local maximum of ∂ h̄/∂r) and
· · · · · · , h̄ with δ = 0.005 (15 % of the local maximum of ∂ h̄/∂r).

Figure 20(b,d) shows the plot of the front location and front velocity, respectively,
computed using the radial gradient equivalent height method (∂ h̄/∂r) for the case with S =
0 and 0.2. In this method, the threshold selection is based on the local maximum of ∂ h̄/∂r.
Three different thresholds, corresponding to 50 %, 35 % and 15 % of the local maximum
of ∂ h̄/∂r, are selected in this study. The front location determined by the radial gradient
method shows good agreement with the results obtained using the azimuthal-averaged
equivalent height method up to t = 15. However, the front location obtained with a smaller
threshold tends to be slightly higher compared with the results obtained with a larger
threshold. In the front velocity plot shown in figure 20(d), the case with the smallest
threshold exhibits a higher front velocity during the initial acceleration phase and has
the lowest maximum front velocity compared with the other cases. Undulation is observed
in all cases for t > 20. When a smaller threshold is selected, the undulation becomes less
significant compared with the results obtained with a larger threshold.

The plot in figure 21 shows the front location and front velocity of the cylindrical
release gravity current with S = 0.2 at Re = 10 000. Three different thresholds, δ = 0.108,
0.105 and 0.102, are selected to determine the front location of the gravity current using
the azimuthal-averaged equivalent height method (h̄) as shown in figure 21(a). The front
location and front velocity from the tracer is taken as the ‘true’ results. For the stratified
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cases, the equivalent height method cannot accurately determine the front location due to
the lack of clear distinction between the density of the fluid at the bottom boundary (ρb)
and the density of the heavy fluid, which reduces after mixing with the ambient fluid. A
higher threshold is used to determine the front location in stratified cases compared with
unstratified cases. The front locations obtained using different thresholds are unable to
accurately capture the front location of gravity current propagating in a stratified ambient.
These results overestimate the ‘true’ front location measured from the tracer. The front
location determined using ∂ h̄/∂r is shown in figure 21(b). Good agreement is observed up
to t = 20 and the front location has a slightly larger value when measured using a smaller
threshold. There is approximately a maximum 4 % difference between gradient method
with 50 % of the local maximum of ∂ h̄/∂r and the tracer method.

The plot in figure 21 shows the front velocity determined using h̄ and ∂ h̄/∂r, as shown
in figure 21(c,d), respectively. During the acceleration phase, the front velocity obtained
using h̄ tends to be overestimated and fails to accurately capture the front velocity in the
initial acceleration and slumping phase. However, the front velocity obtained using ∂ h̄/∂r
with different threshold values shows good agreement, except for the initial acceleration
phase where it significantly underestimates the front velocity and overestimates the
maximum front velocity. From the slumping phase to the inertial phase, good agreement
is observed for the front velocities obtained using both methods when compared with the
front velocity determined from the tracer. Undulations occur at later times in the inertial
phase when using ∂ h̄/∂r to determine the front velocity, and using a smaller threshold
leads to a reduction in undulation.
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