
III
Sussmann’s orbits and unique continuation

In this chapter we will present various results on unique continuation for
solutions and approximate solutions of locally integrable structures. Our main
focus will be on those results where Sussmann’s orbits have played a decisive
role. We will begin with some general discussion of these orbits, taken mainly
from [Su] and [BM].

III.1 Sussmann’s orbits

Let � be a C�, paracompact manifold. Let D be a set of locally defined,
smooth real vector fields. That is, each X in D is defined on some open
subset of � and it is smooth there. Assume that the union of the domains
of the elements of D equals � . We define an equivalence relation on � as
follows: two points p and q are related if there is a curve �  
0� T� −→�
such that

(1) ��0�= p, ��T�= q;
(2) there exist t0 = 0 < t1 < · · · < tn = T and vector fields Xi ∈ D (i =

1� � � � � n) such that for each i, the restriction �  
ti−1� ti� −→� is an
integral curve of Xi or −Xi.

The equivalence classes of this relation will be called the orbits of D. In [Su],
Sussmann showed that these orbits can be equipped with a natural topology
and differentiable structure which makes them immersed submanifolds of � .
We will next briefly describe the orbit topology and C� structure (the reader
is referred to [Su] and [BER] for more details). If X ∈D is defined near p in
� , let !X

t �p� denote the integral curve of X which at t = 0 equals p and is
defined on a maximal interval. If Y = �X1� � � � �Xm� ∈Dm (i.e., each Xi ∈D),
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102 Sussmann’s orbits and unique continuation

s = �t1� � � � � tm� ∈ Rm, and p ∈� , we write

!Y
s �p�=!

X1
t1
�!

X2
t2
�� � �!

Xm
tm

�p� � � � ���

and let ��Y� denote the open subset of Rm×� consisting of the points �s�p�

where !Y
s �p� is defined. For p ∈� and Y ∈ Dn, let !Y �p� denote the map

s �−→ !Y
s �p�, and let ��Y�p� be its domain. Note that ��Y�p� is a subset

of Rn. Suppose that �= �x is an orbit of D through a point x. Observe that
� is the union of the sets !Y �x����Y�x��, where Y ∈ Dn for n = 1�2� � � �
The orbit � is topologized by giving it the strongest topology that makes all
the !Y �x� continuous (for all n, and for all Y ∈ Dn). Note that since each
!Y �x�  ��Y�x� −→� is continuous, it follows that the topology of � is
finer than the subspace topology. Equivalently, the inclusion map from � into
� is continuous. As the examples below will show, in general, this inclusion
won’t be a homeomorphism. For the independence of the topology of � on
the point x, we refer the reader to [Su, page 176]. We will briefly recall the
differentiable structure on � by describing the coordinate charts. Let +�D� be
the smallest set of locally defined C� vector fields on � satisfying:

(1) D ⊆ +�D�, and
(2) for any p ∈� , �Xp  X ∈ +�D�	 is a subspace of Tp� .

We will use +̂�D� to denote the smallest set of locally defined, smooth
vector fields which contains +�D� and is invariant under the group of local
diffeomorphisms generated by +�D�. It is not hard to see that the dimension

of the fibers +̂�D�x is constant as x varies in the orbit �. Suppose now q ∈�.
By lemmas 5.1 and 5.2 in [Su], there exist Y ∈ Dn for some n, q′ ∈ � and
s ∈��Y�q′� such that

!Y �q′��s�= q�

and the rank k of the differential of

!Y �q′�  ��Y�q′�−→�

at the point s is maximal, and that in fact, this rank equals dim +̂�D�x for
any x ∈�. By the rank theorem, we can find neighborhoods U of s in Rn, V
of q in � , diffeomorphisms F from U onto Cn, G from V onto CN (N =
dimension of �) such that

G
!Y �q′�
F−1�x1� � � � � xn�= �x1� � � � � xk�0� � � � �0��

Here Cl denotes the cube

��x1� � � � � xl� ∈ Rl  xi< 1 ∀i	�
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III.1 Sussmann’s orbits 103

Let # = !Y �q′��U�. # is an open subset of � (see [Su]). Moreover, # is a
submanifold of � since

G�#�= ��x1� � � � � xk�0� � � � �0�	�

The differentiable structure on the orbit � is defined by taking the pairs
��#�G#�	 as charts. One of the main results proved by Sussmann may be
stated as follows:

Theorem III.1.1 (Theorem 4.1 in [Su]). Let � be a C� manifold, and let
D be a set of locally defined, smooth vector fields such that the union of the
domains of the elements of D is � . Then

(1) If � is an orbit of D then � (with the topology described above) admits
a unique differentiable structure such that � is a submanifold of � .

(2) With the topology and differentiable structure as above, every orbit of D

is a maximal integral submanifold of +̂�D�.

We will next present several examples.

Example III.1.2. Let � be a manifold and suppose P is a sub-bundle of
the tangent bundle T� of dimension k. That is, for each x ∈� , the fiber
Px is a k-dimensional subspace of Tx� , and for each y ∈� , there exists
a neighborhood U of y and smooth vector fields X1�X2� � � � �Xk on U such
that �Xj�x�  1 ≤ j ≤ k	 is a basis of Px for each x ∈ U . We assume that P

is closed under Lie brackets. Then by the Frobenius theorem, the manifold
� is foliated by leaves each of which is an integral manifold of P. If we
set D to be equal to the set of smooth local sections of P, then these leaves
are precisely the orbits of D. Note that in this example, the orbits have the
same dimension. Thus the concept of Sussmann’s orbits may be viewed as a
generalization of Frobenius foliations. For a concrete example of this kind,
consider the 2-torus T2 = S1×S1. Use the angles ��1� �2� as coordinates for
points in T2, so �1 and �2 are determined modulo integral multiples of 2).
Pick two real numbers a and b, not both equal to zero, and consider the
sub-bundle of the tangent bundle of T2 generated by the vector field

L= a
�

��1

+b
�

��2

�

The orbits are the integral curves of L. If a and b are linearly dependent over
the rational numbers, then each orbit is diffeomorphic to S1. In this case, an
orbit is an embedded submanifold of T2 and so its orbit topology agrees with
the induced subspace topology. If a and b are linearly independent over the
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104 Sussmann’s orbits and unique continuation

rational numbers, each orbit is diffeomorphic to the real line. In this case the
orbits are dense in T2, and hence are not embedded submanifolds.

Example III.1.3. Let �1 = R2 and �2 = �x ∈�1  �x� < 1	. Let g�t� ∈
C��R�, g > 0 on (1, 2) and g ≡ 0 outside (1, 2). Let D =

{
�

�x1
� g�x1�

�
�x2

}
.

�1 is the only orbit for D. However, if we consider D on �2, the orbits are
the horizontal segments in �2. Notice also that the tangent space of the orbit
�1 at points �x1� x2� with x1 % �1�2� does not coincide with the fiber of the

Lie algebra generated by
�

�x1

and g�x1�
�

�x2

.

Example III.1.4. Consider the orbits of
{

�
�x2

� x1
�

�x1

}
in R2. There are three

orbits: �x1 > 0	, �x1 < 0	, and �x1 = 0	. Thus the dimension of orbits is not
locally constant. In general, if d�x� = the dimension of the orbit through x,
then d�x� is a lower semicontinuous function.

Example III.1.5. The analytic case: suppose � is a real-analytic manifold
and D is a set of real-analytic vector fields on � . Let D∗ be the smallest
Lie algebra (under brackets) of real-analytic vector fields that contains D.
It is well known (see [Su], for example) that if p ∈� , then there are a
finite number of elements X1� � � � �Xk of D∗ such that every X ∈ D∗ can be
expressed in a neighborhood of p as

k∑
j=1

fjXj

for some real-analytic functions fj . Moreover, in this case, if � is an orbit of
D and p ∈ �, then its tangent space

Tp�=D∗p where D∗p = �X�p�  X ∈D∗	�

This makes it easier to compute the dimensions of orbits in the analytic
case. The concept of orbits in the analytic case dates back to Nagano’s paper
([Na]). Orbits arise in a locally integrable structure ���� � by taking D as
the collection of the real parts of smooth, local sections of � . Below we will
give an example of orbits arising from the CR structure of a hypersurface in
C2. More examples will be given in the rest of the sections.

Example III.1.6. Let z = x+ iy, w = s+ it denote the variables in C2 and
suppose g = g�x� y� is a real-valued, real-analytic function defined on the
plane such that
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III.1 Sussmann’s orbits 105

(1) g�0�0�= 0, g�x� y� > 0 for �x� y� �= �0�0�; and

(2) $g < 2
,g2
g

.

Define

&�z�w�= s2+ �t−g�x� y��2−g�x� y�2

and let

� = ��z�w� ∈ C2\�0	  &�z�w�= 0	�

Notice that since d& �= 0 on � , � is a real-analytic hypersurface. We
consider the orbits arising from the CR structure of � . Observe first that the
complex line 0= C\�0	× �0	⊂� . Since the bundle � is tangent to 0, the
bracket 
X�Y� of any two smooth sections X and Y of �� is also tangent to
0. Hence by the remarks in Example III.1.5, 0 is an orbit. We will next show
that �\0 is strictly pseudo-convex. For any a= �a1� a2� ∈ C2, we have

#��̄&a�a$ = i
�w− w̄�gzz̄a12−gza1ā2+gz̄a2ā1+ ia22��
On the manifold � , w̄+ ig2 = g2 �= 0 and so if for a= �a1� a2�, #�&�a$ = 0
at a point of � , then

a2 =
(
i�w̄−w�gz

w̄+ ig

)
a1�

It follows that if #�&�a$ = 0, then

#��̄&a�a$ = ia12�w− w̄�

(
gzz̄−

2gz2
g

)
�

The latter, together with the assumptions on g, show that �\0 is strictly
pseudo-convex. Thus � has one orbit of dimension 2, and all other orbits
are of dimension 3. If we make a further assumption on g, say for example,
g�z� z̄�= g�z�, then �\0 is connected, and hence a single open orbit. When
g�x� y� = x2+ y2, this example appeared in [BM]. Our next objective is to
analyze the extent to which orbits behave like embedded submanifolds. We
begin with:

Lemma III.1.7. Let � be an orbit through p0 of dimension k, dimension
� = n. Then there exists a local chart �T ×V�*� on � about p0 with T

and V neighborhoods of 0 in Rk and Rn−k respectively, such that

�∩*�T ×V�= *�T ×P��� where

P� = �v ∈ V  *�0� v� ∈ �	�
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106 Sussmann’s orbits and unique continuation

Proof. Let S be a submanifold of � through p0 of dimension n− k such
that

Tp0
� = Tp0

S+Tp0
��

where we view Tp0
� as a subspace of Tp0

� . Let X1� � � � �Xk be locally

defined vector fields in +̂ spanning Tp0
� at p0. After contracting S about p0

if necessary, we can find a neighborhood T of 0 in Rk and a neighborhood
U of p0 in � such that the map

F  T ×S −→ U

given by

F�t1� � � � � tk� p�=!
X1
t1
�!

X2
t2
�� � �!

Xk
tk
�p� � � � ��

is a diffeomorphism. Suppose now that q ∈ �∩U . Then q = F�t� s� for a
unique �t� s� ∈ T ×S. Hence,

F�T × �s	�⊂ �∩U�

Therefore, �∩U = F�T ×P�� where P� = �∩S. After introducing a chart
on S about p, we get the lemma.

Observe that if an orbit � is an embedded submanifold, then the sets T and
V in Lemma III.1.7 can be chosen so that P� is a single point. For a general
orbit, we will next show that P� can be chosen to be a countable set. This
will follow from:

Lemma III.1.8. The topology on an orbit � is second countable.

Proof. For p ∈ � we will consider the charts �T ×V�*� of Lemma III.1.7.
The discussion on the differentiable structure of � shows that *�T ×V� is an
open set in �. Since � is second countable, the subspace topology on � is
second countable. Hence we can get a locally finite open cover for � of the
form

�Uj = *�Tj×Vj�	
�
j=1�

Recall that for each j, �∩*�Tj × Vj� = *�Tj ×Pj� where Pj = �v ∈ Vj 

*�0� v� ∈�	� If q ∈ Pj , we will call the set *�T ×�q	� a slice of � in Uj . Fix
p0 ∈ Uj0

∩� for some j0, and hence p0 ∈ *�Tj0
×�p′	�⊆� for some p′ ∈ Vj0

.
For every finite tuple i= �i1� � � � � im�, let Ai be the set of points x in � such
that x can be joined to p0 by a curve � consisting of m pieces �l where each
�l lies in Uil

, l = 1� � � � �m. From the definition, it is clear that each Ai is a
union of slices in Uim

. The family �Ai	 where i varies over all finite tuples of
positive integers is a countable collection of open subsets of � which form a
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III.1 Sussmann’s orbits 107

basis for the topology of �. Hence we only need to show that each Ai consists
of a countable number of slices in Uim

. We will do this by induction on m.
When m= 1, Ai1

contains at most one slice. Suppose the result holds for all
tuples j = �i1� � � � � ik−1� of length k− 1. Then Aj is the union of countably
many slices in Uik−1

. Fix a slice 0 in Aj . Since slices are open sets in �, the
intersection of 0 with each slice in Uik

is an open set. Moreover, since the
slices in Uik

are pairwise disjoint, and 0 is homeomorphic to an open set in
Rd, it follows that 0 can intersect only a countable number of slices in Uik

.
Thus each Ai is the union of a countable number of slices and therefore � is
second countable.

The preceding lemma can be used to show that orbits possess properties
not shared by a general immersed submanifold. To see one such property, call
an immersed submanifold N of a manifold � weakly embedded if whenever
A is a manifold and f  A−→� is smooth with f�A�⊆ N then f  A−→ N

is smooth. This notion was introduced by Pradines in [Pr]. For an example
of an immersed submanifold that is not weakly embedded, see remark 6.8 in
[Boo].

Proposition III.1.9. An orbit � in a manifold � is weakly embedded.

Proof. Suppose f  A−→� is C� and f�A�⊆ �. Let q ∈ A and p= f�q�.
Let dim�= k, dim� = n, and suppose �T ×V�*� is a chart on � about p
as in Lemma III.1.7 with T and V cubes centered about 0 in Rk and Rn−k.
Since f  A−→� is C�, we can choose a connected neighborhood W of q

such that

f�W�⊆ *�T ×V��

Recall from Lemma III.1.7 and Lemma III.1.8 that

�∩*�T ×V�= ⋃
v∈P

*�T × �v	��

where P ⊆ V is a countable set. The map *−1 
f  W −→ T ×V is C� and
*−1 
f�W�⊆⋃

v∈P T ×�v	. Since W is connected, there exists a unique v ∈ P

such that *−1 
f�W�⊆ T × �v	. Hence f  W −→ *�T × �v	�⊆� is C�.

Corollary III.1.10. If � is an orbit of � , then when topologized with
its orbit topology, it has a unique differentiable structure that makes it an
immersed submanifold of � .

Another property of orbits not shared by a general immersed submanifold
concerns the propagation of embeddedness. More precisely, we have
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108 Sussmann’s orbits and unique continuation

Proposition III.1.11. Let � be an orbit in � and suppose for a point p

in �, there is a neighborhood W in � such that W ∩� is an embedded
submanifold of W . Then � is an embedded submanifold of � .

Proof. Let q ∈ � and assume q = !X
t �p� for some X ∈ + and t ∈ R. Set

W ′ =!X
t �W�. Here we may assume W has been contracted enough to lie in

the domain of the flow of !X
t . Since !X

t  W −→W ′ is a diffeomorphism, the
submanifold !X

t �W ∩�� is an embedded submanifold of W ′. It is also easy
to see that

!X
t �W ∩��=W ′ ∩��

Hence � is an embedded submanifold of � .

Corollary III.1.12. If an orbit � is a closed subset of � , then it is an
embedded submanifold.

Proof. Let p ∈ �. Choose a chart �T ×V�*� about p as in Lemma III.1.7.
If such a chart can be selected so that P� is a finite subset of V , then
by Proposition III.1.11, � is embedded. Otherwise, such a selection is not
possible for any point in �. In particular, this means that for any v ∈ P�, the
point *�0� v� is an accumulation point of the set *�0×P��. Hence v ∈ P�

is an accumulation point of P�. Moreover, since � is closed, P� is a closed
subset of V . It follows that P� is a perfect set and hence it is uncountable.
This gives rise to the pairwise disjoint, uncountable family of open subsets
�*�T × �v	�  v ∈ P�	 of �, contradicting the second countability of �.

III.2 Propagation of support and global unique
continuation

This section discusses the relevance of orbits to a variety of global questions
of unique continuation in involutive structures. Suppose � is an involutive
structure on � for which uniqueness for solutions in the (noncharacteristic)
Cauchy problem holds, i.e., every solution defined in a neighborhood of a
noncharacteristic (with respect to � ) hypersurface 0 and whose trace on 0 is
zero vanishes in a neighborhood of 0. The uniqueness results of Chapter II
show that an example of such a � is provided by a locally integrable structure.
Our first goal is to present another proof of Corollary II.4.7, which is a result
on the propagation of the support of a solution along orbits. Special cases of
this theorem were proved by several authors (see the notes). The result stated
here is due to Treves ([T4]), but the proof is taken from [BM].
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III.2 Propagation of support and global unique continuation 109

Theorem III.2.1. Assume that � is an involutive structure for which unique-
ness in the Cauchy problem holds. If u is a solution, then the support of u is
a union of orbits.

Before we provide the proof, we will recall some definitions and results from
a paper of Bony ([Bo]).

Definition III.2.2. Let � be an open subset of Rn and F a closed subset of
�. A vector v is said to be normal to F at x0 ∈ F if there is an open ball
B ⊆�\F centered at x such that x0 ∈ �B and v= ��x−x0� for some � > 0.

Remark III.2.3. By considering cones of varying apertures, it is easy to see
that a closed set may have no normals or many normals at a boundary point.

Definition III.2.4. Suppose � is open in Rn and F ⊆� is closed. A vector
field X�x� is tangent to F if whenever v is normal to x0 in F , the vector X�x0�

is orthogonal to v.

In [Bo], Bony proved the following:

Theorem III.2.5. Suppose � is open in Rn and F a closed subset of �. Let
X�x� be a Lipschitz vector field in � which is tangent to F . If an integral
curve of X intersects F at a point, then it is entirely contained in F .

Proof of Theorem III.2.1. Let ) denote the projection map from T ∗�
onto � . Suppose u is a solution on � and F denotes the support of u. Let
�=�\F . Define N�F� to be the set of � ∈ T ∗�\�0	 over points in F such
that there exists f real-valued, smooth, defined near p= )��� and such that
f�p�= 0, df�p�= � and f ≤ 0 on F near p. Fix p ∈ F and suppose � ∈ N�F�

with )��� = p. Suppose we show that for any X = �L (for some smooth
section L of � ) defined near p, #��X$ = 0. Then by Bony’s theorem, the
integral curve of X through p will lie in F , thus proving the theorem. Let
f be chosen as above with df�p� = �. Note that near p, the zero set of f

is a smooth hypersurface, and u ≡ 0 on a side of this hypersurface. Since
p ∈ F = supp u, by the uniqueness in the Cauchy problem, � has to be
characteristic to �f = 0	 at p. Hence, #��X$ = 0.

We note that if � is an involutive structure for which uniqueness in the
Cauchy problem is not valid, then the support of a solution may not be a
union of orbits, as demonstrated by Cohen’s celebrated example ([Co]).

Definition III.2.6. A formally integrable structure ���� � satisfies the
global unique continuation property if every solution that vanishes on an
open subset vanishes everywhere on � .
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110 Sussmann’s orbits and unique continuation

According to Theorem III.2.1, global unique continuation holds in a locally
integrable structure ���� � whenever � is a single orbit for � . However,
global unique continuation may hold even when � is not a single orbit, as
shown by the structure on the 2-torus generated by a real vector field each
of whose integral curves is dense. The obstruction to the validity of global
unique continuation is the presence of proper, closed subsets of � which
are unions of orbits, since by Theorem III.2.1, such sets can potentially be
the supports of solutions. We will refer to sets that are unions of orbits as
invariant sets. In order to check the validity of global unique continuation,
one needs to understand when a given proper, closed, invariant set equals
the support of a solution. It turns out that in a general locally integrable
structure, a proper, closed orbit may not be the support of a solution. This is
illustrated by examples below. Some sufficient conditions for the existence of
a solution supported on a proper, closed orbit were studied in the work [BM].
In particular, the following theorem was proved (see also Theorem III.2.12
below):

Theorem III.2.7 (Theorem 5.8 in [BM].). Suppose � is an orientable,
connected analytic hypersurface in Cn. If � is not Levi flat and has a
codimension one orbit �, then there is a solution supported on �. Thus, on
an analytic, non-Levi flat hypersurface in Cn, the global unique continuation
property holds if and only if there is only one orbit.

Example III.2.8. We consider real-analytic vector fields L in the plane that
are rotation-invariant. That is, if � is the bundle generated by L, then

dR��� �= �

for every rotation R� (with angle �) of R2. In polar coordinates, such an L

takes the form (see [BMe])

L= g�r� ��

(
rY�r�

�

�r
+ iX�r�

�

��

)
where g, X, Y are real-analytic functions,

X

Y
is even in r away from the

zeros of Y and we may assume that X�0� = Y�0� = 1. The characteristic set
0= ���X�r�Y �r��= 0	 is a union of circles centered at 0 and 0 %0. Assume
0= �r = 1	. If L is of finite type at a point p in 0, then it is of the same type
at every point p in 0 and in this case, � has only one orbit. Suppose now L

is of � type at some and hence every point of 0. Then (see [BMe]) it can be
shown that � is generated by

L= �

��
−√−1rY�r�

�

�r
�
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III.2 Propagation of support and global unique continuation 111

where Y�r� = �1− r2�Nh�r�, h is real-analytic, h�r� �= 0, and h�0� ∈ �±1	.
Without loss of generality, assume h�0�= 1. Then, � has three orbits: �r < 1	,
�r > 1	, and 0= �r = 1	. We consider next whether 0 can be the support of
a distribution solution. When N ≥ 2, the distribution

#u�*�r� ��$ =
2)∫

0

*�1� ��d�

is a solution supported on 0. Assume N = 1. In this case, such a u exists if
and only if h�1� is a rational number ([BMe]).

Indeed, suppose Lu = 0 and u is supported on 0. Then there exist an
integer k≥ 0 and aj��� ∈
′�S1� �0 ≤ j ≤ k� such that

#u�*�r� ��$ =
k∑

m=0

2)∫
0

am���

(
�

�r

)m

*�1� ��d��

Since L is in the tangential direction on 0, each aj���∈C��0�. Let *j�n�r� ��=
fj�r� ein�, where fj�r� is C� and f

�l�
j �1� = �jl for 0 ≤ j ≤ k. Note that the

transpose of L is given by

tLw =−�w

��
+ irY�r�

�w

�r
+ i�2Y�r�+ rY ′�r��w

and so
tL*k�n = iein�
rY�r�f ′k�r�+ �2Y�r�+ rY ′�r�−n�fk��

Moreover, (
�

�r

)m

�rY�r�f ′k�r��r=1 =
{

0� m < k

kY ′�1�� m= k

and (
�

�r

)m


�2Y�r�+ rY ′�r�−n�fk�r��r=1 =
{

0� m < k

Y ′�1�−n� m= k�

Thus, we get:

0= #Lu�*k�n$
= #u�t L*k�n$
=

(∫ 2)

0
ak��� ein� d�

)

�k+1�Y ′�1�−n�� (III.1)

Since we may assume that ak��� does not vanish identically, there is an
integer M for which
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112 Sussmann’s orbits and unique continuation

2)∫
0

ak��� eiM� d� �= 0� (III.2)

From (III.1) and (III.2) it follows that

h�1�= −M

2�k+1�
∈Q� and

ak���= ce−iM�

for some c �= 0. Conversely, suppose k≥ 0 and M are integers satisfying

2�k+1�h�1�=−M�

We will seek a solution u of the form

#u�*�r� ��$ =
k∑

m=0

2)∫
0

bm���

(
�

�r

)m

*�1� ��d��

Set bk���= e−iM�. Each bj��� can be determined from the equation #Lu�*j�M$=
0. To see this, note that #Lu�*k−1�M$ = 0 is equivalent to

0= 2)
(

d
dr

)k


rYf ′k−1+ �rY ′ +2Y −M�fk−1��1�+
⎛⎝ 2)∫

0

bk−1��� eiM�d�

⎞⎠
×
(

d
dr

)k−1


rYf ′k−1+ �rY ′ +2Y −M�fk−1��1��

The coefficient of

2)∫
0

bk−1���e
iM�d� in the latter equation is −2kh�1�−M =

2h�1� �= 0, and hence we can get a constant ck−1 such that if we set

bk−1���= ck−1e−iM�, then #Lu�*k−1�M�r� ��$ = 0�

In general, we can determine bl��� from #Lu�*l�M$ = 0. This leads to bl���=
cle

−iM� for some constant cl since

(
d
dr

)l


rYf ′l + �2Y + rY ′ −M�fl��1�= 2�k− l�h�1� �= 0�
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III.2 Propagation of support and global unique continuation 113

Thus #Lu�*j�m$ = 0 for all m ∈ Z, and all j = 0� � � � � k. Since Lu is a distri-
bution of order k, it follows that Lu= 0.

Example III.2.9. (See [BM].) We denote the coordinates in R3 by �x� y� s�

and we will write R3 = Rx×Ry×Rs. Let �  R −→ R be a smooth, 2)-
periodic function, �≥ 0 and � not identically 0. Define

L= �

�x
+ i

�

�y
+��x� sin�s�

�

�s
= X+ iY�

The coefficients of L are 2)-periodic and so L induces a vector field L̃ on
T3 = S1× S1× S1. The involutive structure generated by L̃ is a Levi flat,
locally integrable CR structure. We will show the following:

(1) The orbits of L̃ through p1 = �1�1�1� and p2 = �1�1�−1� are compact
but all other orbits are noncompact.

(2) Depending on the value of ∫ 2)

0
��x�dx�

there may not be any solution supported on either of the compact orbits.

(3) Global unique continuation is valid for continuous solutions.

Let F  R3 −→ T3 be given by

F�x� y� s�= �eix� eiy� eis��

Consider the orbit �1 through the point p1 = �1�1�1�. F�0�0�0� = p1 and
the orbit in R3 of �X�Y	 through �0�0�0� is Rx×Ry× �0	. Therefore, �1 =
S1× S1× �1	. Likewise, for the point p2 = �1�1�−1�, the orbit �2 = S1×
S1× �−1	. Consider now a typical point p= �1�1� eis0� for some 0 < s0 < ).
If ��t� = �x�t�� s�t�� is the integral curve of X with ��0� = �0� s0�, we will
see that the orbit through p is given by

�= ��eit� eiy� eis�t��  t� y ∈ R	�

Indeed, x�t�= t and s′�t�=��t� sin�s�t��, s�0�= s0. If for some t0, s�t0�=),
then the curves ��t� and �1�t� = �t�)� will both be integral curves of X

passing through �t0�)� at t = t0. This implies that s�t�≡ ), contradicting the
assumption that s�0� = s0 < ). Likewise, s�t� can never equal zero. Thus,
0 ≤ s�t�≤ ) and s′�t�≥ 0. Suppose

lim
t→� s�t�= a < )�
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114 Sussmann’s orbits and unique continuation

Then s0 ≤ s�t� ≤ a for all t ≥ 0. Therefore, s′�t� ≥ c��t� for some c > 0,
which in turn leads to

lim
t→� s�t�=��

Hence,

lim
t→� s�t�= )

and by a similar reasoning,

lim
t→−� s�t�= 0�

Thus the closure of �= �∪�1∪�2.
We consider now the question of existence of a solution supported on

a compact orbit, say �1. Since L is tangent to �1 and defines a complex
structure there, any distribution solution u supported on this orbit has the
form

u�x� y�=
N∑
l=0

ul�x� y��l

where the ul are C� on S1×S1 and

#�k� g�x� y� s�$ =
∫ 2)

0

∫ 2)

0
�k
s g�x� y�0�dxdy�

We have

#L�k�g�x� y� s�$ = #�k�
tLg�x� y� s�$

= −
∫ 2)

0

∫ 2)

0
��x�

(
�

�s

)k [
�sin s�

�g

�s
+ �cos s�g

]
�x� y�0�dxdy

=−
∫ 2)

0

∫ 2)

0
��x�

(
�

�s

)k+1


�sin s�g��x� y�0�dxdy

=−
k+1∑
l=0

∫ 2)

0

∫ 2)

0

(
k+1

l

)(
�

�s

)k−l

cos s
(

�

�s

)l

g�x� y�0�dxdy�

Thus,

L�k =−�k+1���x��k−��x�
k−2∑
l=0

(
k+1

l

)
�k−l
s cos s�0��l�

Let Mk=
�

�x
+ i

�

�y
−�k+1���x�, for k= 0�1�2� � � � If v�x� y�∈C��S1×S1�,

it follows that

L�v�k�= �Mkv��k−v�
k−2∑
l=0

(
k+1

l

)(
�k−l
s cos s

)
�0��l�
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Suppose now

u=
N∑

k=0

uk�x� y��k

is a solution. Then

Lu=
N∑
l=0

�Mlul��l−�
N−2∑
l=0

N∑
k=l+2

(
k+1

l

)
uk

(
�k−l
s cos s

)
�0��l�

Let

�0 =
1

2)

∫ 2)

0
��x�dx

and define �1 = �−�0. Since Lu = 0 and uN may be assumed nontrivial,
we must have �N + 1��0 ∈ Z. Thus if �0 is not a rational number, there
are no solutions supported on the orbit �1. If �0 is rational, with �0 = p/q

where p and q are relatively prime, then N = q− 1 is the lowest possible
transversal order of a nontrivial solution supported on �1. This follows from
the injectivity of Ml for l < N and the fact that MN has a nontrivial kernel.
Since Ml is also surjective for l < N (as is easily seen using Fourier series),
one can correct the ‘errors’ to obtain a solution u iteratively.

Finally, we remark that there are solutions supported on the closure of any
noncompact orbit. This will follow from Theorem III.2.12 as stated below,
or can be constructed explicitly as in [BM]. Thus, global unique continuation
is not valid for distribution solutions. However, it is valid for continuous
solutions.

We will now place these two examples in a more general context following
[BM]. Given a locally integrable structure ���� �, let 0 be an orbit such
that dim0 < dim� =m+n, where n is the rank of � . Assume that 0 is an
embedded submanifold of � . Fix p ∈ 0 and let �Z1� � � � �Zm	 be a complete
set of first integrals defined in a neighborhood U in � of p. Let �L1� � � � �Ln	

be smooth, local generators of � in U such that the brackets 
Li�Lj�= 0 for
all i, j. Complete this to a basis

�L1� � � � �Ln�M1� � � � �Mm	

of CT� in U such that

(1) 
Li�Mk�= 0, and
(2) MkZi = �ik.

Let ��1� � � � ��n	 be smooth, exact one-forms in U such that

��1� � � � ��n�dZ1� � � � �dZm	
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is a dual basis to �L1� � � � �Ln�M1� � � � �Mm	.
If �0 denotes the restriction of � to 0, then �0 also has rank n. Hence if

dim0= k+n, then after shrinking U about p, the restrictions of exactly k of
�Z1� � � � �Zm	 have linearly independent differentials along 0. Without loss of
generality, assume that �Z1� � � � �Zk	 have this latter property. It follows that
�Mk+1� � � � �Mm	 is a basis of the complexified normal bundle of 0 in U .

Fix orientations in U and in U ∩0 so that distributions in U (resp. in
U ∩0) may be viewed as acting on forms of top degree. We wish to describe
all solutions in U that are supported on U ∩0.

Let M ′′ = �Mk+1� � � � �Mm�. If u is any distribution in U that is supported
on U ∩0, it is well known that there is an integer N and distributions u� on
U ∩0 for � ≤ N , such that for any � ∈ C�c �U�,

#u���∧dZ$ = ∑
�≤N

#u�� �M
′′����∧dZ′$

where � = �1 ∧ · · · ∧�n, dZ = dZ1 ∧ � � �dZm, dZ′ = dZ1 ∧ · · · ∧ dZk and
u� �= 0 for some �, � = N . Here and in what follows, by abusing notations,
we are denoting by �∧dZ′ the pullback to 0.

Observe now that if h ∈ C1�U�, then

dh=
m∑
i=1

MihdZi+
n∑

j=1

Ljh�j

as can be seen by applying both sides of the equation to the basis

�L1� � � � �Ln�M1� � � � �Mm	�

Hence if h ∈ C��U� and � ∈ C�c �U�, then

#Ljh���∧dZ$ =
∫
U
�Ljh���∧dZ

=�−1�j
∫
U

d�h��1∧· · ·∧ �̂j ∧· · ·∧�n∧dZ�

−
∫
U
h�Lj���∧dZ

=−
∫
U
h�Lj���∧dZ

=−#h�Lj��∧dZ$ ∀j = 1� � � � � n�

It follows that for the distribution u supported on U ∩0 as before, if � ∈
C�c �U�, we have:

#Lju���∧dZ$ = −#u�Lj��∧dZ$
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=− ∑
�≤N

#u�� �M
′′���Lj���∧dZ′$ ∀j = 1� � � � � n�

Assume now that u is also a solution. We will next show that each u� is a
solution of the induced structure �0. Fix a point q ∈ U ∩0. The restrictions
of Zl (l = k+ 1� � � � �m) to 0 are solutions of �0. By the Baouendi–Treves
approximation theorem, for each such Zl, there is a sequence �Pl

i 	
�
i=1 of

holomorphic polynomials such that

Zl = lim
i→�

Pl
i �Z1� � � � �Zk�

in C��V ∩0� for some neighborhood V of q in � . For each l= k+1� � � � �m,
define the sequence �f l

i 	
�
i=1 by

f l
i = Zl−Pl

i �Z1� � � � �Zk��

Each f l
i ∈ C��V� and for every l,

lim
i→�

f l
i = 0

in C��V ∩0�. Let fi = �f k+1
i � � � � � fm

i � for i = 1�2� � � � Fix a multi-index �

in Nm−k such that � = N . For any � ∈ C�c �V� and any j = 1� � � � � n,

0= #Lju� f
�
i ��∧dZ$

= −#u�Lj�f
�
i ���∧dZ$

= − ∑
�≤N

#u�� �M
′′���Lj�f

�
i ����∧dZ′$

= − ∑
�≤N

#u��Lj�M
′′���f�

i ���∧dZ′$

= − ∑
�≤N

#Lju�� �M
′′���f�

i ���∧dZ′$

= −#Lju����∧dZ′$+Ei�

since Ei−→ 0 on V ∩0 as i−→� and Msf
l
i = �sl. Hence Lju�= 0 whenever

� = N . Thus

0= #Lju�*�∧dZ$
= ∑
�≤N−1

#Lju�� �M
′′���*��∧dZ′$

for any * ∈ C�c �U�. Plugging * = f
�
i � with � = N −1 and � ∈ C�c �V� in

these latter equations will likewise lead to

Lju� = 0 whenever � = N −1�

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511543067.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511543067.004


118 Sussmann’s orbits and unique continuation

Continuing this way, we conclude: Lju� = 0 ∀j� ∀�.
Conversely, it is easy to see that if u has the form

#u���∧dZ$ = ∑
�≤N

#u�� �M
′′����∧dZ′$

where each u� is a solution of �0 and some u� is nontrivial, then u is a solution
in U supported on U ∩0. In particular, the distributions �� (�∈Nm−k) defined
by

#�����∧dZ$ =
∫
0
�M ′′����∧dZ′

are solutions in U supported on U ∩0. Observe that

�� = �M ′′���0�

Heuristically speaking then, we may say that each solution u in U supported
on U ∩0 can be expressed as

u= ∑
�≤N

u���

where the u� are solutions of �0 in U ∩0.
The distribution �0 was introduced by Treves ([T5]). The existence of

local solutions such as �0 supported on a nonopen orbit had previously
been established by Baouendi and Rothschild in their proof of the necessity
of Tumanov’s minimality condition for the holomorphic extension of CR
functions into wedges (see Section III.3). We have proved:

Theorem III.2.10. Let p∈0, U , Z1� � � � �Zm��1� � � � ��n and M ′′ = �Mk+1� � � � �

Mm� be chosen as above. Then, u is a solution in U supported on U ∩0 if
and only if u can be expressed as

#u���∧dZ$ = ∑
�≤N

#u�� �M
′′����∧dZ′$�

where the u� are solutions of �0 and u� is nontrivial for some � = N .

Suppose now u is a distribution supported on 0. In a chart U about p ∈ 0,
write as before

#u���∧dZ$ = ∑
�≤N

#u�� �M
′′����∧dZ′$�

Let N = N�p� be the minimum integer for which such a representation is
possible. We will call N�p� the transversal order of u at p. When u is also a
solution, we have:
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III.2 Propagation of support and global unique continuation 119

Theorem III.2.11. If u is a solution supported on 0, the transversal order
N�p�, p ∈ 0 is constant.

Proof. Let p ∈ 0. Choose a chart U as before such that U ∩0 is connected
and

#u���∧dZ$ = ∑
�≤N

#u�� �M
′′����∧dZ′$

where N = N�p�. Let �  
0�1� −→ 0 be an integral curve of X for some
smooth section of �� such that ��0�= p. We consider N���t�� for those t for
which ��t� ∈ U . In any neighborhood of such a ��t�, u has the representation
above. Moreover, if each u� for � = N vanishes in a neighborhood of such
��t�, then since the u� are solutions for �0, by Theorem III.2.1 the u� will
vanish identically in a neighborhood of p in 0 (for � = N ), leading to the
contradiction that N�p� < N . Thus whenever ��t� ∈ U , then N���t��= N�p�.
This argument shows that the set �t ∈ 
0�1�  N���t��= N�p�	 is both closed
and open, and hence N���1��=N�p�. Since any two points of 0 can be joined
by a finite number of such �’s, the theorem follows.

We will continue to assume that the orbit 0 is an embedded orbit. Let
�U�	� be a covering of 0 by open sets in � such that in each U� we have a
basis �L�

1 � � � � �L
�
n	 of � , a basis �L�

1 � � � � �L
�
n�M

�
1 � � � � �M

�
m	 of CTU�, a dual

basis

���
1 � � � � ��

�
n�dZ�

1 � � � � �dZ�
m	

where the ��
i are exact and �Z�

1 � � � � �Z
�
m	 is a complete set of first integrals.

We will assume that the restrictions of �Z�
1 � � � � �Z

�
k 	 to U�∩0 form a complete

set of first integrals for �0. If u is a solution supported on 0 of transversal
order zero, then we know that it is given by distributions u� in U�∩0 in the
sense that for any � ∈ C�c �U��,

#u��dZ�∧��$ = #u���d�Z��′ ∧��$
where in the right-hand side we mean the pullback of the form on 0. Let
V� = U�∩0 and whenever V�∩V� �= ∅, let g�� ∈ C��V�∩V�� satisfy

i∗�dZ�
1 ∧· · ·∧dZ�

k ∧���= g�� i∗�dZ�
1 ∧· · ·∧dZ�

k ∧����

where for a form � in � , i∗� denotes the pullback to 0. Note that the g�� are
nonvanishing and on V�∩V�, g��u� = u�. Therefore, 0= Lju� = �Ljg���u�.
If Ljg�� is not zero on an open set, then u� will be zero there. But then u

will vanish on this open set and hence on 0, contradicting the nontriviality
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120 Sussmann’s orbits and unique continuation

of u. Hence the g�� are solutions on V�∩V�. Thus 0 is covered by �V�	 and
whenever V�∩V� �= ∅, we have a nonvanishing, smooth solution

g��  V�∩V� −→ C�

It follows that we can construct a line bundle )  E −→ 0 having the g��

as transition functions. In particular, if �0��0� is a complex structure, the
bundle E becomes a holomorphic line bundle and solutions of � supported
on 0 of transversal order zero correspond to nontrivial holomorphic sections
of this bundle. In the situation where 0 is a Stein manifold, it is well known
that a holomorphic bundle always has a nontrivial holomorphic section. In
other words, we have:

Theorem III.2.12. Suppose 0 is an embedded orbit of � and �0��0� is a
complex structure. If 0 is a Stein manifold, there are solutions supported on
0 of transversal order 0.

III.3 The strong uniqueness property for locally integrable
solutions

In this section we will consider locally integrable structures � on an open
domain � in RN . The solutions we study will be assumed to be elements
of the space L1

loc of locally integrable functions with respect to Lebesgue
measure.

Definition III.3.1. The structure ���� � satisfies the strong uniqueness prop-
erty if every solution u ∈ L1

loc��� that is zero on a set of positive measure
vanishes identically.

Example III.3.2. Let � be the structure generated by the Cauchy–Riemann

vector fields
�

�z̄j

�1≤ j ≤ n� on a domain � in Cn. Then ���� � satisfies the

strong uniqueness property.

Example III.3.3. Let � be the structure generated by a real-analytic vector
field L on a domain � in the plane. Assume that there is only one orbit. Then
���� � satisfies the strong uniqueness property. Indeed, suppose u ∈ L1

loc���,
Lu = 0, and u vanishes on a set E of positive measure. Since there is only
one orbit, it follows that there is an open set �′ where L is elliptic and a
subset E′ ⊆ �′ of positive measure where u vanishes. By Corollary I.13.4,
the ellipticity of L implies that locally, coordinates can be found in which L
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III.3 Strong uniqueness for locally integrable solutions 121

becomes a nonvanishing multiple of the Cauchy–Riemann operator. Hence u

vanishes on �′. By Theorem III.2.1, u has to vanish on �.

Example III.3.4. Let � be the structure generated by
�

�xj

�1 ≤ j ≤ n� on a

domain � ⊆ RN . It is easy to see that if n < N , ���� � will not satisfy the
strong uniqueness property.

It turns out that orbits play a role in the validity of the strong uniqueness
property. Before stating the main results, we need to introduce refinements
of the concept of an orbit.

Definition III.3.5. The bundle � is called minimal at p ∈ � if, given an
open set p ∈ U ⊆ �, there exists a smaller open set p ∈ U ′ ⊆ U such that
every point in U ′ can be reached from p by a finite number of integral curves
of sections of �� and each integral curve lies in U .

Example III.3.6. If � is real-analytic and has an open orbit �, then � is
minimal at every p ∈ �. In this case, we can take U ′ = U .

Example III.3.7. Let � be the structure generated by the vector field

L= �

�x1

+ ig�x1�
�

�x2

where g ∈C��R�, g > 0 on �1�2� and g≡ 0 outside �1�2�. Observe that there
is only one orbit in the plane. However, � is minimal at a point p= �x1� x2�

if and only if x1 ∈ 
1�2�.

If � is a real hypersurface in Cn with the standard CR structure which
is a single orbit, it always has minimal points. This follows from the fact
that if there are no minimal points in � , then �� will be closed under
Lie brackets leading to a Frobenius foliation of � by orbits each of dimen-
sion 2n−2. Each of these orbits is a complex hypersurface. Indeed, the CR
bundle � induces on each orbit � a locally integrable structure that is CR
and elliptic. By Theorem I.10.1, near each p ∈ �, we can find coordinates
�x1� � � � � xm� y1� � � � � ym	 (m = n− 1) such that the induced structure on � is
generated by �

�zj
� j = 1� � � � �m. In particular, any solution on � is a holomor-

phic function of the first integrals �Z1� � � � �Zm�� Zj = xj+ iyj . Going back to
the complex coordinates �z1� � � � � zn� of Cn, it follows that the restriction to �
of one of these coordinates is a holomorphic function of the remaining coor-
dinates. In other words, � is a complex hypersurface—contradicting the fact
that � is a single orbit. However, there are CR manifolds in Cn consisting
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of a single orbit with no minimal points. Examples of such are provided by
the following, which appeared in [Jo1]:

Example III.3.8. Let � ⊆ C3 be given by

� = ��x1+ iy1� x2+ iy2� x3+ iy3�  x1 = h1�x3�� x2 = h2�x3�	�

where h1 ≡ 0 for x3 ≥ − 1
2 and h1 is strictly convex for x3 < − 1

2 , h2 ≡ 0
for x3 ≤ 1

2 and h2 is strictly convex for x3 > 1
2 . � is a CR submanifold of

codimension 2. It consists of a single orbit but has no minimal points.

The concept of minimality appeared in Tumanov’s theorem on the holo-
morphic extension of CR functions into wedges. Minimality is a necessary
and sufficient geometric condition for the holomorphic extension of all CR
functions into wedges. In [Tu1] Tumanov proved:

Theorem III.3.9. Let � be a generic CR submanifold of CN and p ∈� . If
� is minimal at p, then for every neighborhood U of p in � there exists a
wedge � with edge � centered at p such that every continuous CR function
in U extends holomorphically to the wedge � .

Conversely, if � is not minimal at p, Baouendi and Rothschild ([BR])
proved that there exists a continuous CR function defined in a neighborhood
of p in � which does not extend holomorphically to any wedge of edge �
centered at p.

Tumanov’s original definition of minimality was stated differently. He
called a CR submanifold of CN minimal at p if it contains no proper (i.e., of
smaller dimension) CR submanifold of the same CR dimension through p.
For the equivalence of the two definitions, we refer the reader to Marson’s
paper ([Ma]).

Definition III.3.10. Given an involutive structure � on an open subset �

of RN , we say that an orbit � is a.e. minimal if � is minimal at p for almost
every p ∈ � in the sense of Lebesgue measure in RN .

Note that if an orbit � is a.e. minimal, then it is an open orbit.

Example III.3.11. If � is real-analytic and � is an open orbit, then � is a.e.
minimal since � is minimal at every p ∈ �.

Here is a simple example of an a.e. minimal orbit which is not minimal
everywhere:
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Example III.3.12. Let � = R2 and � be the structure generated by

L= �

�x
+ ib�x� y�

�

�y

where b�x� y� is smooth, real-valued, and b = 0 only on �−1�1�× �0	. Then
� is minimal exactly at the points in �\��−1�1�× �0	�.

We can now state the main result on strong uniqueness:

Theorem III.3.13. Let � be a locally integrable structure defined on a
connected open set � in RN . Assume that � = �∪F where � is an open
a.e. minimal orbit of � and F is a set of measure zero. Then any solution
u ∈L1

loc��� that vanishes on a set of positive measure must vanish identically.

Theorem III.3.13 was proved in [BH2]. According to the theorem, if �

satisfies the hypotheses, then almost every point p ∈� can be reached from a
fixed point q ∈� by a piecewise smooth curve consisting of integral curves of
smooth sections of �� . We may say that � has an a.e. reachability property
with respect to � . Thus � satisfies the a.e. reachability property if and only
if � admits a trivial decomposition, that is, if it can be expressed as the
union of an open orbit and a set of measure zero. We note, however, that this
a.e. reachability condition is not necessary for the conclusion of the theorem.
For example, the structure � generated on the 2-torus T2 by a real globally
hypoelliptic vector field L has the strong uniqueness property although the
torus does not admit a trivial decomposition. However, local a.e. reachability
is necessary if the conclusion of Theorem III.3.13 is to hold on any base of
connected neighborhoods of a given point. Indeed, we have the following
[BH2] partial converse to Theorem III.3.13:

Theorem III.3.14. Let � be a sub-bundle of CT� where � ⊆ RN is open.
Assume there is a base ��j	

�
j=1 of connected neighborhoods of p which

do not admit a trivial decomposition. Then there is a base of connected
neighborhoods Uk ⊆�k of p and nontrivial solutions uk ∈ L1�Uk� for which
the sets �uk = 0	 all have positive measure.

We remark that in Theorem III.3.14, � is not assumed to be locally integrable.
It is not even assumed that it is involutive. Thus for analytic involutive struc-
tures � (which are always locally integrable), Theorems III.3.13 and III.3.14
establish the local equivalence between a.e. reachability and the uniqueness
property that local solutions are determined on sets of positive measure.

We will prove Theorem III.3.13 in the important situation where � is
the tangential Cauchy–Riemann bundle of a CR manifold embedded in CN
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(see Theorem III.3.15 below). In fact, by using Marson’s ([Ma]) trick of
embedding a general locally integrable structure � into a CR structure, one can
deduce Theorem III.3.13 from Theorem III.3.15 (see [BH2] for the details).
Theorem III.3.15 states that the strong uniqueness property that holomorphic
functions have—that of being determined on any domain by their values
on any subset of positive measure or, equivalently, that their zero sets have
measure zero except in a trivial case—is inherited by their boundary values at
the edge of the wedge where they are defined. In the particular classical case
of a holomorphic function of one variable defined on a disk, this principle is
well known and is attributed to Priwaloff and Riesz. Thus Theorem III.3.15 is,
to a certain extent, a higher-dimensional version of the theorem of Priwaloff
and Riesz.

Theorem III.3.15. Let � ⊆CN be a generic CR manifold of codimension d

(N = n+d). Assume that � ⊆ CN is a wedge with edge � . Suppose F is a
holomorphic function of tempered growth on � with distribution boundary
value f ∈ L1

loc���. If f vanishes on a subset E of positive measure, then
f ≡ 0 in a neighborhood of any Lebesgue density point of E.

In the proof of Theorem III.3.15, we will use the following lemma where
0 is a smooth hypersurface in Cn, f is a CR function on 0, and f ∈ Lp�0�

for some 1≤ p ≤�. Suppose also that f extends to a holomorphic function
F on a side 0+, that is, f is the boundary value of F in the distribution sense.
Then we have:

Lemma III.3.16. For any 0′ ⊂⊂ 0, and a sufficiently small ball B in Cn

containing zero, the restrictions of F to the hypersurfaces �z∈B  dist �z�0′�=
t	 have uniformly bounded Lp norms. In particular, F ∈ Lp�B∩0+�.

Proof. Without loss of generality, we may assume that 0 is part of the
boundary of a bounded open set D with smooth boundary such that D⊆ 0+�
Let H be harmonic in D with boundary value f on 0 and 0 off 0. By
the classical hp theory for harmonic functions, the restrictions Ht of H to
the hypersurfaces St = �z ∈ D  dist �z� �D� = t	 (t small) are all in Lp and
�Ht�Lp�St�

≤ �f�Lp�0�� Moreover, it is well known that ‘dist �z� �D�’ can be
replaced by any defining function for �D. Since F is holomorphic in 0+ and
has a boundary value on 0, there exist C�k > 0 such that for any z ∈D,

F�z� ≤ C dist �z�0�
−k

�

This may require contracting 0. It follows that F has a boundary value which
is a distribution on �D. Let

u= F −H�
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u is harmonic in D, has a distributional boundary value bu on �D which is
0 on the piece 0. We wish to show u is smooth up to 0. Let G�x� y� be the
Green’s function for D and P�x� y� its Poisson kernel. We recall that

P�x� y�=−NyG�x� y� for x ∈D�y ∈ �D

where Ny = the unit outer normal to D at y. Fix x ∈ D. The function y �−→
G�x� y� is 0 on �D and positive on D\�x	� By Hopf’s lemma, NyG�x� y� �= 0
for all y ∈ �D. Hence for % small enough, the open sets

D% = �y ∈D  G�x� y� > %	

have smooth boundaries. Observe that if G̃%�z� y� is the Green’s function for
D%, then

G̃%�x� y�=G�x� y�− %�

Hence the Poisson kernel P%�z� y� for D% satisfies

P%�x� y�=−N%
y G�x� y��

where N%
y is the unit outer normal to D% at y. We thus have

u�x�=
∫
�D%

P%�x� y�u�y�d�%�y�

=
∫
�D

P%�x�1
−1
% �y��u�1−1

% �y��J%�y�d��y��

where 1%  �D% −→ �D is the normal projection map and J% is the Jacobian
of 1−1

% . Since P%�x� y�=−N%
y G�x� y�� as %−→ 0+,

P%�x�1
−1
% �y��J%�y�−→ P�x� y�

in C���D�. It follows that for any x ∈D,

u�x�= #bu�P�x� ��$�
This latter formula, together with the vanishing of bu on 0, tells us that u

is C� up to the boundary piece 0. Since F = H + u and H ∈ hp�D�� the
assertions of the theorem follow.

Corollary III.3.17. [Nontangential Convergence] Let f and F be as in the
lemma and D be as in the proof of the lemma. For � > 1 and A ∈ 0, define

+��A�= �z ∈D  z−A< ���z�	�

where ��z�= dist �z� �D�� Then
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lim
+��A��z→A

F�z�= f�A�

for almost all A in 0.

Proof. Recall from the proof that F = H +u. Since u is smooth up to the
piece 0 and bu vanishes on 0, limD�z→A u�z�= 0 for all A ∈0. The corollary
therefore follows from the fact that H ∈ hp�D� and that on 0, H = f .

III.4 Proof of Theorem III.3.15

To prove Theorem III.3.15, we may assume that 0 ∈� is a density point of
E and that � near 0 is defined by �w= ��x� y��w�, where z= x+ iy ∈Cn

and w ∈Cd�N = n+d. The function � is real-valued, smooth, ��0�= 0, and
d��0�= 0. We may also assume that the wedge � contains a wedge of the
form

��z�w�  w = s+ i��x� y� s�+ iv� z< 2�� s< 2�� v< 2�� v ∈ +	

for some open convex cone + ⊂ Rd and � > 0. We may suppose that
�d��x� y� s�� < 1

4 for x� y� s < 2�. Without loss of generality, assume
that

+ = �v= �v′� vd�  v′< 2�vd	�

Let

+̃ = ��y� t� ∈ Rn+d  �y� t′�< �td� t = �t′� td�	�

For y0< �, the set

�y0
= ��x+ iy0+ iy� s+ i��x� y0� s�+ it�  �y� t� ∈ +̃ � x� y� s� t< �	

is contained in the wedge � . Indeed, this follows from the definitions of +

and +̃ and the assumption on the norm of d�. Observe that �y0
is a wedge

in CN with a maximally totally real edge

�y0
= ��x+ iy0� s+ i��x� y0� s�  x< �� s< �	�

Fix y0, y0< � such that
�x� s� �−→ f�x� y0� s�

is in L1 and the �n+d�-dimensional set �y0
intersects E in a set of positive

measure. Note that F is holomorphic and of tempered growth in the wedge
�y0

. Hence F has a distribution boundary value bF on �y0
. We will eventu-

ally show that bF agrees with f on �y0
for almost all y0. Assuming this for
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now, it is clear that Theorem III.3.15 would follow if we show that F ≡ 0 on
�y0

. This kind of reduction to a maximally totally real manifold also appears
in the proof of theorem 7.2.6 in [BER].

We are thus led to consider a maximally totally real submanifold 0 of Cm

given in a neighborhood U of 0 ∈ Cm by

t = ��s�� s ∈ U�

where w = s+ it are standard complex coordinates in Cm, � is a smooth
Rm-valued function defined near 0 ∈ Rm, and ��0� = d��0� = 0. We recall
that a Cm-valued analytic disk is a map A  $→ Cm of class C1+� from
the closed unit disk of the complex plane which is holomorphic on $ (here
0 < � < 1 is fixed once from now on). An analytic disk A is said to be
partially attached to 0 at p if (i) A�ei�� ∈ 0 for � ≤ )

2 and (ii) A�1� = p.
The Banach space of Cm-valued analytic disks will be denoted by 	m. We
recall theorem 7.4.12 of [BER] on the existence of analytic disks partially
attached to 0:

Theorem III.4.1 ([BER].). There exist a neighborhood U ×V of the origin
�0�0� ∈ Rm×Rm and a smooth map U ×V � �s� v� �→ As�v ∈	m satisfying
the following properties for all �s� v� ∈ U ×V :

(i) As�v�1�= s+ i��s�;

(ii) As�v�e
i�� ∈ 0 for � ≤ )/2;

(iii) d
d� �As�v��e

i���=0 = v+ i�′�s� ·v.

(iv) d
dr �As�v��r�r=1 = iv−�′�s� ·v.

Notice that we have included (iv) here since it follows from (iii) and the
Cauchy–Riemann equations satisfied by � �→ As�v��� at � = 1. The meaning
of (i) and (ii) is that As�v is partially attached to 0 at p = �s���s�� and (iii)
implies that we can choose a neighborhood Ũ ⊂ U of the origin and a small
% > 0 such that for every p= s0+ i��s0�, s0 ∈ Ũ , the map

�0� %�×Sm−1�0� %� � ����� �−→ As0��
�ei�� ∈ 0

yields a C1+� local system of polar coordinates centered at p on 0, where
Sm−1�0� %� denotes the sphere of radius % centered at 0 ∈ Rm. In particular,
given v0 ∈Rm, v0 = %, and p1 = s1+ i��s1�, s1 ∈ Ũ , we may find s0 ∈U and
�0 ∈ �0� %� such that

p1 = As0�v0
�ei�0��
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Assume that p1 is a density point of a measurable set E ⊆ 0 (in particular E

has positive measure) and let U0 � s0 and V0 � v0 be open sets of diameter
< %. Consider the set

Ẽ% =
{
�s� v� ∈ U0× �Sm−1�0� %�∩V0� 

∫ %

0
(E�As�v�e

i���d� > 0
}

where (E denotes the characteristic function of E. We observe that we may
assume without loss of generality that Ẽ% has positive �2m−1�-dimensional
measure. Indeed, the function

� �−→
∫
s−s0<%
v−v0<2%

(E�As�v�e
i���ds dv

is continuous and assumes a positive value at � = 0 because As�v�1� = s+
i��s�. Hence, ∫

s−s0<%
v−v0<2%

(∫ %

0
(E�As�v�e

i���d�
)

ds dv > 0

and writing v in polar coordinates we see that for some 0 < %′ < 2% our claim
is true for Ẽ%′ . We fix such an %′ > 0 and, dropping any reference to the
dependence on %′, simply write Ẽ%′ = Ẽ.

Consider now the map

U0× �Sm−1�0� %�∩V0�× �1− %�1� � �s� v� r� �−→ As�v�r� ∈ Cm� (III.3)

Taking account of (iv) we note that this map has rank 2m for small % > 0 and
maps �s	× �Sm−1�0� %�∩V0�× �1− %�1� onto Bp\�p	, where Bp is a C1+�-
differentiable m-ball that intersects 0 orthogonally at p = s+ i��s�. Indeed,
the respective tangent spaces at p are

Tp0= �s+ i��s�+v+ i�′�s� ·v� v ∈ Rm	 and

TpBp = �s+ i��s�+ iv−�′�s� ·v� v ∈ Rm	 �

Since the map (III.3) is a local diffeomorphism, it takes Ẽ onto a set of positive
measure Ê which is contained in the union of the disks

⋃
�As�v  �s� v� ∈ Ẽ	.

We could say that these disks are strongly attached to E in the sense that for
any �s� v� ∈ Ẽ the set of boundary points �As�v�e

i��  0 < � < %	 intersects E

at a non-negligible set of values of �. Consider now a holomorphic function F

of slow growth defined in a wedge � =0×+ with edge 0 possessing a weak
trace f ∈ Lp�0� and assume that f vanishes on E. Assume furthermore that
v0 ∈ + . We will now sketch how we try to prove that F must vanish. First one
proves that if % > 0 is small enough and �s� v� ∈ Ẽ the portion A%

s�v of the disk
As�v described by the inequalities −% < �< % and 1−% < r< 1 is contained in
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the wedge � . Then the composition F�As�v�rei��� is defined for −% < � < %,
1− % < r < 1, is holomorphic and has a weak boundary value which, for
a.e. �s� v� ∈ Ẽ, is given by—and the proof of this fact is our second step—
f�As�v�e

i���. The third step is to prove that for a.e. �s� v�, the restriction of f to
the curve �%/2� %� � � �→ As�v�e

i�� is in Lp. Hence, by Corollary III.3.17 and
the classical theorem of Priwaloff, the holomorphic function of one complex
variable F�As�v�rei��� vanishes identically for −% < � < %, 1− % < r < 1, in
particular for � = 0. But we know that letting �s� v� r� vary on Ẽ× �1− %�1�
and keeping � = 0, the union of �As�v�rei��	 covers Ê. Thus, F vanishes a.e.
on Ê and so must vanish identically. The proof of the second step involves a
discussion about the trace which will be developed next.

We begin our considerations by looking at the simplest case of a holomor-
phic function of one complex variable F�x+ iy� defined for x< 1, 0 < y< 2
which satisfies the inequality

F�x+ iy� ≤ C logy � x< 1� 0 < y < 2� (III.4)

We assume (III.4) for simplicity but the argument below can be iterated to
handle the case F�x+ iy� ≤ Cy−N . The standard manner of defining the
weak trace f of F as an element of 
′ is through the formula

#f�*$ = lim
-↘0

∫
F�x+ i-�*�x�dx� * ∈ C�c �−1�1�� (III.5)

In formula (III.5) we see that for each fixed x the argument of F describes
a straight vertical segment - �→ x+ i- that flows toward x as -→ 0. We
wish to see what happens if we change each vertical segment to a curve
- �→ x+��x�-�+ i-. We will assume that �−1�1�× 
0�1� � �x�-� �→ � is of
class C2 (we would need class CN+2 if we were assuming F�x+ iy� ≤Cy−N

instead of (III.4)) and that ��x�0�= 0, x< 1. The latter assumption simply
means that the curve - �→ x+��x�-�+ i- flows toward x as -→ 0. Thus,(

�

�x

)j

��x�0�= 0� j = 0�1�2� (III.6)

We now define

#̃f�*$ = lim
-↘0

∫
F�x+��x�-�+ i-�*�x�dx� * ∈ C�c �−1�1�

and wish to prove that f = f̃ . To that end we write

F�x+��x�-�+ i-�= F�x+��x�-�+ i�− i
∫ 1

-
F ′�x+��x�-�+ it�dt�

It follows from (III.6) that if x belongs to a compact part of �−1�1� and - is
small, �x�x�-�< 1/2. We will assume for simplicity that �x�x�-�< 1/2
holds everywhere. Then
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∫
F�x+��x�-�+ i-�*�x�dx=

∫
F�x+��x�-�+ i�*�x�dx

+ i
∫ ∫ 1

-
F�x+��x�-�+ it�dt

�

�x

(
*�x�

1+�x�x�-�

)
dx�

Letting -→ 0 and taking account of (III.6), we obtain #f�*$ = #̃f�*$ as we
wished.

From now on we return to the general situation of a maximally totally
real submanifold 0 of Cm and a holomorphic function F defined on a wedge
� = 0×+ and possessing a trace f ∈ Lp�0�. We will now take advantage
of two facts:

(1) The formula

#f�*$ = lim
-→0

∫
F�s+��s�-�+ i���s�+-v0+��s�-��*�s�ds

is independent of the family of curves

��s�-�= �s+��s�-�� -v0+��s�-��

as long as all curves - �→ ��-� s� are contained in � , they have the
right number of bounded derivatives, and ��s�0� = ��s�0� = 0, s ∈ U

(the assumptions imply that vo ∈ +).

(2) The analytic disks described in theorem 7.4.12 of [BER] can be taken of
class Ck+� rather than C1+� where k is a large positive integer.

The first fact follows from proposition 7.2.22 in [BER]. The second fact is
true because theorems 6.5.4 and 7.4.12 in [BER] are valid with the same
proofs if the analytic disks are taken to be in Ck�� for a fixed positive integer
k. In the proof of theorem 7.4.12, the function �h has to be modified so that
one gets a Ck extension.

Set s′ = �s1� � � � � sm−1�. We will assume without loss of generality that

(i) For any % > 0 the set

�s′  s′< % and �s′�0� v0� ∈ Ẽ	 (III.7)

has positive measure.

(ii) v0 = �0� � � � �0� a� for some small a > 0.

For s′< %, �< % consider the map

�s′� �� �−→ A�s′�0��v0
�ei��
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which for small % has an injective differential. We consider a family of curves
��p�-� defined by

p= A�s′�0��v0
�ei��� ��p�-�= A�s′�0��v0


�1−-�ei���

Observe that ��p�0� = p and that we are implicitly using �s′� �� as local
coordinates. For small - the curves - �→ ��p�-� are contained in � and it
follows from our assumptions that for any test function * with small support
around s = 0,

#f�*$ = lim
-→0

∫
F�p+���p�-�+ i���p�-��*�p�ds

= lim
-→0

∫
F�A�s′�0��v0


�1−-�ei���*�s′� �� J�s′� ��ds′d��

Assuming that f ∈ Lp�0� and using Fubini’s theorem in the coordinates
�s′� ��, we see that for a.e. s′ < %, the function � �→ A�s′�0��v0


ei�� is in Lp.
Fixing such an s′ is equivalent to fixing an analytic disk with the property
that the restriction of f to a portion of its boundary that is contained in 0

is in Lp. We now take test functions such that *J has separated variables,
i.e., *�s′� ��J�s′� ��= *1�s

′�*2���. Since F has tempered growth, so does the
compose F 
A�s′�0��v0

and it follows that

#f̃s′ �*2$ = lim
-→0

∫
F�A�s′�0��v0


�1−-�ei���*2���d�

defines a distribution in � that depends continuously on s′ as a parameter (use
the usual method to define the trace, integrating by parts with respect to �).
We further have ∫

#f̃s′ �*2$*1�s
′�ds′ = #f�*$�

We may now reason as in Lemma II.3.2 to conclude that for a.e. s′, s′< %,
f̃s′ ∈Lp�−%� %� and f̃s′���= f�s′� ��. If s′ is in the set (III.7) and f̃s′���= f�s′� ��
holds, then � �→ F�A�s′�0��v0

���� has an Lp boundary value that vanishes on
a set of positive measure which implies that � �→ F�A�s′�0��v0

���� vanishes
identically. We conclude that for a.e. s′ on the set (III.7), F�A�s′�0��v0

����= 0,
or equivalently, that the set

E�0� v0�= �s′  s′< % such that F 
A�s′�0��v0
���≡ 0	

has positive measure. A similar conclusion could have been reached for the set

E�sm� v�= �s′  s′< %� such that F 
A�s′�sm��v���≡ 0	�

where sm is a small number and v− v0 is small. Thus, the set ��s� v�	

such that F 
As�v��� ≡ 0 has positive measure and so does the union of the
corresponding partially attached disks.
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III.5 Uniqueness for approximate solutions

In this and the following sections we will present uniqueness results for
the approximate solutions of two structures: locally integrable structures in
the plane defined by vector fields which are of a fixed finite type on their
characteristic set and real-analytic structures with m= 1. The theorems were
proved by Cordaro ([Cor2]).

Suppose � is a locally integrable structure defined on a manifold �, dim
���= N =m+n, and the fiber dimension of � over C equals n. By going
to the quotient, the exterior derivative defines a differential operator

C����
d′0→ C����CT ∗�/T ′�

where T ′ = �⊥. Equip the manifold C����CT ∗�/T ′� with a hermitian
metric. Observe that a solution for the structure � is a function or distri-
bution u that satisfies d′0u = 0. If u ∈ L1

loc���, we will say that u is an
approximate solution for the structure � if the coefficients of d′0u are locally
in L1 and given any p ∈�, there is a number M > 0 such that near p,

d′0u ≤Mu a.e. in U�

One way in which approximate solutions may arise is as follows: suppose
F  �×C→ C����CT ∗�/T ′� satisfies F�p� z�−F�p� z′� ≤Mz− z′ and
u and v are two C1 solutions of the semilinear equation

d′0w�p�= F�p�w�p���

Then the function u− v is an approximate solution for the structure � .
Recall next from Corollary I.10.2 that near a point in �, coordinates �x1� � � � �

xm� t1� � � � � tn� for � and local generators L1� � � � �Ln for � can be chosen
so that dtj�Lk� = �jk� j� k = 1� � � � � n. With such a choice of coordinates
and generators, we can identify the bundle C����CT ∗�/T ′� with the one
spanned by the forms dt1� � � � �dtn and the operator d′0 can be realized as

Lu=
n∑

j=1

Ljudtj�

Before we discuss the uniqueness results, we will present a description of
smooth, planar vector fields which have a uniform finite type on their char-
acteristic set.

Proposition III.5.1. Let L be a C� nonvanishing vector field defined near
the origin in R2 and let 0 denote its characteristic set. If L is of uniform finite
type k on 0, then 0 is contained in a one-dimensional manifold. Moreover,
if 0 is a one-dimensional manifold, then L is never tangent to 0.
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Proof. We may choose coordinates �x� y� near 0 so that L is a nonvanishing
multiple of

L′ = �

�y
+ ib�x� y�

�

�x
�

with b real-valued and C� near 0. Without loss of generality, let L=L′. Then

0= �p  b�p�= 0	�

The uniform type condition implies that

�jb

�yj
≡ 0

on 0 for j < k−1 and

�kb

�yk
�= 0

on 0. Hence if

f�x� y�= �k−1b

�yk−1
�x� y��

then 0 is contained in the manifold �f�x� y�= 0	 which has a parametrization
��x� y�x��	 for some smooth y�x�.

Proposition III.5.2. Suppose L and 0 are as in Proposition III.5.1 and
that 0 is a one-dimensional manifold. Assume L is locally integrable in a
neighborhood of 0. Then we can find coordinates �s� t� about 0 in which

Z�s� t�= s+ i��s� t�

is a first integral of L where ��s� t� is real-valued and

��s� t�= ��s�+ tk��s� t�

for some nonvanishing � near 0.

Proof. We first flatten 0 near the origin so that in coordinates �x� y�, 0 =
��x�0�	. By Proposition III.5.1, L is not tangent to 0 and so if Z�x� y� is
a first integral near the origin, then Zx�0�0� �= 0. Assume Z�0�0� = 0. Let
s =�Z�x� y� and t = y. Then in �s� t� coordinates,

Z = s+ i��s� t�

and we may take

L= �

�t
−
(

i�t

1+ i�s

)
�

�s
�
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134 Sussmann’s orbits and unique continuation

The finite type assumption then implies that

��s� t�= ��s�+ tk��s� t�� ��0� �= 0�

for some smooth �.

Proposition III.5.3. Suppose L and 0 are as in Proposition III.5.2. If the
uniform type k is even, then there are coordinates in which Z�x� y�= x+ iyk

is a first integral.

Proof. By Proposition III.5.2, we have a first integral

Z�s� t�= s+ i��s� t�� where

��s� t�= ��s�+ tk��s� t�� ��0� �= 0�

We may assume � > 0 near the origin. For % small, let �= Z�D%�0�� where
D%�0� denotes the disk centered at 0 of radius %. Let �′ be a smooth subdomain
of � such that 0 ∈ ��′ and the boundary part of �′ near 0 is ��s���s��	. By
the Riemann mapping theorem, there exists a holomorphic function H which
is a diffeomorphism up to ��′ such that

H��′�⊂ ��x� y�  y > 0	�

and H�s+ i��s�� ∈ R. Let W�s� t� = H 
Z�s� t�. Then LW = 0 and dW �= 0
in a neighborhood of the origin. From the form of � and the fact that
�H 
Z�s�0�= 0, we have

�H 
Z�s� t�= tk�̃�s� t��

where �̃ > 0 near the origin. Let x = �H 
Z�s� t� and y = t�̃�s� t�
1
k . It can

easily be checked that these are coordinates near 0 and in these coordinates,

W�x� y�= x+ iyk

is a first integral.

Definition III.5.4. A locally integrable structure ���� � is called hypocom-
plex if every solution u is locally of the form H 
Z where H is holomorphic
and Z = �Z1� � � � �Zm� is a complete set of first integrals.

Proposition III.5.5. Suppose L and 0 are as in Proposition III.5.2. If k

is odd, then there are coordinates �x� y� in which Z�x� y� = x+ iyk is a
first integral of L if and only if for any first integral W of L, there is a
biholomorphism near 0 mapping W�0� into the real axis.
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Proof. Since k is odd, if we take the first integral Z�s� t�= s+ i��s� t� with
��s� t� = ��s�+ tk��s� t�, ��0� �= 0 as in Proposition III.5.2, we see that L

is hypocomplex. Therefore, to prove the necessity, we only need to do it for
this first integral. Suppose then �x� y� are coordinates in which x+ iyk is a
solution. Let F = U + iV denote this diffeomorphism and we may assume
F�0�= 0. Then F maps the characteristic set of L to that of

�

�y
− ikyk−1 �

�x
�

and so V�s�0�= 0 for s near 0. Moreover, by the hypocomplexity of L, there
is a holomorphic function H defined near the origin such that

U�s� t�+ iV�s� t�k =H�s+ i��s� t���

Since U + iV k and Z are homeomorphisms, H is a biholomorphism (near 0).
We also have

H�s+ i��s��= U�s�0� ∈ R�

showing that H�Z�0��⊆ R. Note also that from the equations

�H�s���s��= 0 and d�H�0� �= 0�

we conclude that ��s� is real-analytic. In the latter statement, we have assumed
as we may that �′�0� = 0 and used the consequent fact that H ′�0� is real.
Conversely, suppose H is a biholomorphism near 0 such that H 
Z�0�⊆ R

where we take Z�s� t� as before. Thus H�s+ i��s�� ∈ R. Define F�s� t� =
W−1 
H 
Z�s� t�, where W�x� y�= x+ iyk. F is a homeomorphism and away
from t = 0, it is a diffeomorphism. Since �F�s� t�=�H 
Z�s� t�, �F�s� t� is
smooth. Next note that since �H 
Z�s� t� vanishes to order k at t = 0 and
��F�k = �H 
Z, there is a nonvanishing smooth function g�s� t� near the
origin such that

�F�s� t�= g�s� t�t�

The latter, together with the fact that H ′�0� ∈ R (we assume �′�0� = 0),
implies that F is a diffeomorphism near the origin. Clearly, using ��F��F�
as new coordinates, we get x+ iyk as a first integral for L.

Remark III.5.6. In Proposition III.5.5, whenZ�s� t�=s+i��s� t� with ��s� t�=
��s�+ itk��s� t�, the proof shows that the two equivalent conditions are equiv-
alent to the real-analyticity of ��s�.
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136 Sussmann’s orbits and unique continuation

Thus, we have:

Corollary III.5.7. Suppose L and 0 are as in Proposition III.5.2 and L

is real-analytic. Then there are real-analytic coordinates �x� y� in which the
function x+ iyk is a first integral of L. In other words, when L is real-analytic
and 0 is a manifold of dimension 1, up to a real-analytic local diffeomorphism
(and up to a nonvanishing multiple), there is only one real-analytic vector
field of uniform type k.

The preceding corollary was also proved in [Me1]. Proposition III.5.5 can
be generalized as follows:

Proposition III.5.8. Suppose L1 and L2 are two vector fields of the same
uniform odd type on their respective characteristic sets 01 and 02. Then there
exists a local diffeomorphism mapping the structure generated by L1 to the
one generated by L2 if and only if for any first integrals Z1 and Z2 of L1 and
L2 respectively, there exists a local biholomorphism mapping Z1�01� onto
Z2�02�.

The proof is similar to that of Proposition III.5.5.
In Proposition III.5.2 and the subsequent discussion, we assumed that 0 is

a one-dimensional manifold. However, in general, as the following examples
show, 0 may not be one-dimensional.

Example III.5.9. Let �1 be the structure in the plane defined by

Z1 = x+ i�x2y+y3��

Then the characteristic set 01 = ��0�0�	 and the type there is 3.

Example III.5.10. Let �2 be the structure defined by

Z2 = x+ i�x4y+y3��

Again the characteristic set 02 = ��0�0�	 and the type is 3.

We remark that in any neighborhood of the origin, the structures �1 and
�2 are not equivalent. More generally, we have:

Proposition III.5.11. Suppose L is elliptic except at the origin and is of
finite type there. Then the type is odd. In particular, L is hypocomplex.

Proof. Write L= �

�y
+ ib�x� y�

�

�x
, with b real-valued. Then b�p�≡ 0 if and

only if p= 0. Hence b cannot change sign in any neighborhood of the origin.
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III.5 Uniqueness for approximate solutions 137

It follows that the type at the origin is odd. Since b does not change sign, L
is locally solvable (Theorem IV.1.6) and hence locally integrable.

We are now ready to state and prove the key lemma from [Cor2] concerning
approximate solutions:

Lemma III.5.12. Let L be a locally integrable, planar vector field of uniform
finite type on its characteristic set 0 which we assume is a one-dimensional
manifold. Assume that u is a nontrivial approximate solution on a side of 0

and that u is continuous up to the boundary piece 0. Then the set

�p ∈ 0  u�p�= 0	

has zero measure with respect to arclength on 0.

In view of the preceding propositions, Lemma III.5.12 will be a conse-
quence of:

Lemma III.5.13. Let L be locally integrable near the origin with a first
integral Z�x� t�= x+ i!�x� t�. Suppose that

!t�x� t�= a�x� t�tk�

where k is a positive integer and a is never zero for x, t ≤ �, �� > 0�. Let
u be a nontrivial function satisfying on x< �, 0 < t < �,

Lu�x� t� ≤Mu�x� t�
and continuous up to t = 0. Then the set

�x  x< ��u�x�0�= 0	

has zero Lebesgue measure.

Proof. We may assume that a�x� t� > 0 for every �x� t�. The map �x� t� �→
�x�!�x� t�� is a diffeomorphism from the region x< �, 0 < t < � onto the
open set in the plane:

�= �z= x+ iy  x< ��!�x�0� < y < !�x���	�

Denote by z→ �x�.�x� y�� the inverse of this diffeomorphism and set

v�x� y�= u�x�.�x� y��� x+ iy ∈�� (III.8)

By the chain rule, we have∣∣∣∣( �v

�x
+ i

�v

�y

)
�x� y�

∣∣∣∣≤ K!t�x�.�x� y��−1v�x� y�� (III.9)
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138 Sussmann’s orbits and unique continuation

Now we have for t ≥ 0

!�x� t�−!�x�0�= tk+1A�x� t�

where A > 0 for x ≤ �, 0 ≤ t ≤ �. Hence

y−!�x�0�=.�x� y�k+1A�x�.�x� y��� x+ iy ∈��

Since

!t�x� t�≥ %tk� % > 0�

we get

!t�x�.�x� y��≥ %.�x� y�k = %

(
y−!�x�0�

A�x�.�x� y��

)k/�k+1�

�

Consequently, (III.9) implies for x+ iy ∈�:∣∣∣∣( �v

�x
+ i

�v

�y

)
�x� y�

∣∣∣∣≤ K′
y−!�x�0��−k/�k+1�v�x� y�� (III.9′)

Observe that since �x� t� �→ �x�!�x� t�� is also a homeomorphism from x<
�, 0 ≤ t < � onto

�′ = �z= x+ iy  x< ��!�x�0�≤ y < !�x���	�

the function v is in fact continuous on �′.
Fix 0 < �′ < � arbitrary. It suffices to show that the Lebesgue measure of

the set

�x  x< �′� v�x�!�x�0��= 0	

is zero. Consider now a simply connected open subset U of � that is bounded
by a smooth Jordan curve � for which there is a decomposition � = �1∪�2

with

�1 = �x+ i!�x�0�  x ≤ �′	� �2 ⊂�′�

By the Riemann mapping theorem there is a biholomorphism � =G�z� from
U onto the unit disk �< 1. Since G is necessarily a smooth diffeomorphism
from U onto � ≤ 1, v′��� = v�G−1���� will be continuous on � ≤ 1 and
will satisfy (III.9′):∣∣∣∣�v′��̄

���

∣∣∣∣≤ K�1−��− k
k+1 v′���� �< 1�

The lemma now follows from Lemma III.5.14.
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Lemma III.5.14. Let D be the unit disk in the complex z-plane and let v∈C�D�

be not identically zero and satisfy∣∣∣∣�v�z̄ �z�
∣∣∣∣≤ K�1−z�−�v�z�� z ∈D� (III.10)

for some 0 ≤ � < 1. Then the set

�� ∈ T  v���= 0	

has zero Lebesgue measure (here T denotes the boundary of D).

Proof. The main step in the proof is to show the following property:

There is a solution S ∈⋂
�<1 C

��D� of the equation

�S

�z̄
= 1

v

�v

�z̄
in D satisfying (∗)

sup
r<1

∫ 2)

0
S�rei��d� <��

Let us show right away that (∗) implies the conclusion of Lemma III.5.14.
Write v= exp�S	h with h∈��D�. There is p∈Z+ such that v/zp is continuous
in D and does not vanish at the origin. Moreover, (III.10) is satisfied when
v/zp is substituted for v. Summing up, this argument shows that there is
no loss of generality in assuming from the outset that v�0� �= 0. Applying
Jensen’s inequality to the holomorphic function h gives, if r < 1,

log v�0� ≤ �S�0�− 1
2)

∫ 2)

0
�S�rei��d�+ 1

2)

∫ 2)

0
log v�rei��d�

and consequently (∗) implies

log v�0� ≤ C+ 1
2)

∫ 2)

0
log v�rei��d� (III.11)

where C> 0 is independent of r. A standard application of Fatou’s lemma in
(III.11) shows that log− v�ei�� ∈ L1�T�, whence the sought conclusion.

We now proceed to the proof of (∗). To simplify the notation, we set
F = vz̄/v. We observe that there is p > 1 such that F ∈ Lp�D� (indeed it
suffices to take 1 < p < 1/�). We set

S�z�= 1

)

∫ ∫
D

F�z′�
z− z′

dx′dy′�

Then
�S

�z̄
= F�
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moreover, since p > 1, it also follows (cf. [V], theorem 1.35) that

�S

�z
=1�F��

where 1 denotes the singular integral operator

1�g��z�=− 1

)

∫ ∫
D

g�z′�
�z− z′�2

dx′dy′�

Since 1 is a bounded linear operator in Lp�D� if 1 < p <� (cf. [V], page
64) we obtain S ∈ L

p
1�D�.

Since F ∈ L���z< R	� for R < 1, any solution of the equation �u/�z̄=
F belongs to

⋂
�<1 C

��D�. Hence (∗) will follow if we can establish the
following property:

sup
1/2≤r<1

∫ 2)

0
S�rei��d� <�� (III.12)

We observe that �/�r = ei��/�z+ e−i��/�z̄, �/�� = ir�ei��/�z− e−i��/�z̄�

from which we derive that �r� �� �→ S�rei�� belongs to the Sobolev space
L1

1��1/4�1
×�0�2)
�. Thus r �→ S�rei�� is absolutely continuous for almost all
�. By first integrating on 
1/2� r� and afterwards on 
0�2)� we conclude that∫ 2)

0
S�rei��d� ≤

∫ 2)

0

∣∣∣∣S(
1
2

ei�

)∣∣∣∣d�+
∫ 2)

0

∫ 1

1/2

∣∣∣∣�S�r �r ′ei��

∣∣∣∣dr ′d��

for every r ∈ 
1/2�1�, from which (III.12) follows. This completes the proof
of Lemma III.5.14.

III.6 Real-analytic structures in the plane

We will continue using the notation of the previous section and assume in
addition that ! is real-analytic. If !t�0�0� �= 0 then L is elliptic near the
origin, and the results we will discuss are well known in this case. We
next discuss the case when !t�0�0� = 0 but !t is not identically zero. We
factor out !t�x� t� = xl.�x� t�, where . is real-analytic and .�0� ·� does
not vanish identically. Applying the Weierstrass preparation theorem to .

allows us to describe the zero set 00 of the function !t as the zero set of
�x� t� �→ xlp�x� t�, where p is a distinguished polynomial in the t-variable
with no multiple factors. Hence we can state:

There is a disjoint decomposition

00 = F0∪V+1 ∪· · ·∪V+� ∪V−1 ∪· · ·∪V−� (∗∗)
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III.6 Real-analytic structures in the plane 141

in a small neighborhood of the origin x < %, t < %, where F0 is
either ��0�0�	 or is equal to the segment �0	× �−%� %� (according to
either l= 0 or l > 0), and each V+j (resp. V−k ) is defined by an analytic
graph ��x��j�x��  0 < x < �	 (resp. ��x��k�x��  −� < x < 0	), where
�1 < �2 < · · ·< �� (resp. �1 < �2 < · · ·< ��) and

lim
x→0−

�k�x�= lim
x→0+

�j�x�= 0� ∀j� k�

As a consequence we observe that in a neighborhood of each point �x0� t0� ∈
00\F0 we can write !t�x� t� = �t− g�x��ka�x� t�, where k ≥ 1, a and g are
real-analytic and a never vanishes.

In what follows, for any set S and a number k, � k�S� will denote the
k-dimensional Hausdorff measure of S.

We can now prove:

Proposition III.6.1. Suppose that !t�0�0�= 0, !t �≡ 0. Let u be a nontrivial
C1 function defined for x< %, t< % and satisfying:

Lu�x� t� ≤Mu�x� t�
and denote its zero set by S. Then:

(1) If u does not vanish identically on �0 < x < %� t< %	, then S∩ �x > 0	
has a trivial one-dimensional Hausdorff measure (likewise for x < 0).

(2) If F0 = �0	× �−%� %�, then S∩F0 �= ∅⇒ F0 ⊂ S.
(3) If F0 = ��0�0�	 and if u does not vanish identically then S has a trivial

one-dimensional Hausdorff measure.

Proof. Assume first that F0 = �0	× �−%� %�. Then L= �u/�t over F0 (since
Zt�0� t�= i!t�0� t�= 0), which gives∣∣∣∣�u�t �0� t�

∣∣∣∣≤Mu�0� t��

By Gronwall’s inequality, it follows that if u�0� t0� = 0 for some t0, then
u�0� t�= 0 for all t.

Now we consider the general case. Fix a point �x0� t0� ∈ 00\F0 and write
!t�x� t�= �t−g�x��ka�x� t� in a neighborhood of �x0� t0� as before. After the
change of variables x′ = x, t′ = t− g�x�, the analysis near �x0� t0� reduces
to the situation treated in Lemma III.5.13. In particular, we obtain that u

cannot vanish identically in any component of the set W+ = ��x� t�  0 < x <

%� t< %�!t�x� t� �= 0	 and also that the one-dimensional Hausdorff measure
of S∩ �00\F0� is trivial. Since the vector field L defines a complex structure
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142 Sussmann’s orbits and unique continuation

on W+, it follows that the one-dimensional Hausdorff measure of S∩W+ is
also trivial. The proof of Proposition III.6.1 follows from these arguments.

Corollary III.6.2. Suppose u is a C1-approximate solution defined for
x< %� t< % and vanishing for t = 0. Then u vanishes identically.

Proof. Consider the new C1-approximate solution ũ defined as u for t > 0
and zero for t ≤ 0. If !t does not vanish identically, it follows from Proposi-
tion III.6.1 and the discussion that precedes it that ũ vanishes identically. If
however !t ≡ 0, then L= �

�t
and we reach the same conclusion by applying

Gronwall’s inequality.

III.6.1 Real-analytic structures with m=1

As a consequence of Corollary III.6.2 we obtain:

Theorem III.6.3. Uniqueness in the Cauchy problem for C1-approximate
solutions holds for real-analytic locally integrable structures with m= 1.

Proof. Since this is a local statement we can work in local coordinates
�x� t�= �x� t1� � � � � tn� centered at the origin for which there is a real-analytic,
real-valued function !�x� t� satisfying

!�0�0�=!x�0�0�= 0 (III.13)

such that, if

Z�x� t�= x+ i!�x� t��

then the bundle � is spanned by the linearly independent, pairwise commuting
vector fields

Lj =
�

�tj
− Ztj

Zx

�

�x
� j = 1� � � � � n� (III.14)

Let u be a C1-approximate solution defined for x< �, t< �:

Lu ≤Mu�
The conclusion will follow after we show that if u vanishes for t = 0 then u

vanishes identically.
Fix t0, 0 < t0< � and define

Z0�x� s�= Z�x� st0�� x< �� s< 1�

Consider also the vector field

L0 =
�

�s
− Z0s

Z0x

�

�x

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511543067.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511543067.004
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as well as the C1 function

u0�x� s�= u�x� st0��

We have

L0u0�x� s�=
n∑

j=1

�Lju��x� st0�t0j

and thus

L0u0�x� s� ≤M ′u0�x� s��
showing that u0 is a C1-approximate solution for the structure defined by L0

in x< �, s< 1. Moreover, u0 vanishes for s = 0. Therefore, by Corollary
III.6.2 and a standard propagation argument, u0 vanishes identically for x<
�� s< 1. Hence u�x� t0�= 0 for all x< �.

Let � be a real-analytic locally integrable structure over a connected, real-
analytic manifold � of dimension N . When m = 1 (� has then dimension
n+1) the orbits of the structure � have either dimension n+1 (open subsets
of �) or dimension n.

Introduce the projection over � of the characteristic set of � :

0= �p ∈�  T ′p∩T ′p �= 0	�

It is easy to see that 0 is an analytic subset of �. Since � is connected we
either have dim0≤ n or 0=�.

Assume first that 0 =�: in this case � defines a real structure on � in
the sense that � = C⊗�0, where �0 is an involutive vector sub-bundle of
T� of rank n. The leaves of the foliation defined by �0 are precisely the
n-dimensional (Nagano) leaves.

Next suppose that the dimension of the analytic set 0 is ≤ n. On �\0
the bundle � defines an elliptic structure and every n-dimensional leaf is
contained in 0; in particular, it follows that the union of all n-dimensional
leaves is a set of �n+1�-dimensional measure zero. We now prove:

Theorem III.6.4. Let � be a real-analytic locally integrable structure over
a connected, real-analytic, �n+1�-dimensional manifold � with m= 1. Let
u be a nontrivial C1-approximate solution on � and let S denote its zero set.
Then:

(1) If � is an �n+1�-dimensional leaf, then either � ∩S =� or � n�� ∩
S�= 0.

(2) If S has nonempty intersection with some n-dimensional leaf � , then
� ⊂ S.
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Proof. Suppose that 0 =�. By the preceding discussion any point p ∈�

is the center of a system of coordinates �U�x� t1� � � � � tn� over which � is
spanned by the vector fields �/�tj , j = 1� � � � � n. On U we have dtu ≤Mu
and consequently if u�0�0�= 0 then u�0� t�= 0 for all t thanks to Gronwall’s
inequality.

This argument also provides a proof of (2): if � is an n-dimensional
leaf then � � ⊂ CT� and it defines a real structure over � for which
u� is also a C1-approximate solution. Again Gronwall’s inequality gives
S∩� �= �⇒� ⊂ S.

Next we observe first that (1) is valid when n = 1. Indeed, let � be a
two-dimensional leaf on which u is not identically zero and p ∈� . Then
p is the center of a system of coordinates �x� t� as in Proposition III.6.1 for
which there is Z�x� t�= x+ i!�x� t�, whose differential spans T ′ and !t �≡ 0.
Either !t�0�0� �= 0 or !t�0�0� = 0 and F0 = ��0�0�	. In any of these cases
we obtain that the one-dimensional Hausdorff measure of the zero set of the
restriction of u to a small neighborhood of p is trivial.

Hence it remains to prove property (1) assuming that the full result has
been proved for smaller values of n. Since any �n+1�-dimensional leaf is a
connected open subset of �, we can assume that � itself is a leaf.

Decompose 0 into its regular and singular parts, 0= 0r ∪0s. The dimen-
sion of 0s is ≤ n−1 and then it follows that �′ =�\0s is open, connected,
and that � n�0s�= 0. This observation allows us to assume from the outset that
0 is an embedded, real-analytic hypersurface of �. Denote by '  CT ∗�0−→
CT ∗0 the pullback map, let � = '�T ′0� and

0∗ = �p ∈ 0  dim�p = 1	�

Since any component of 0 cannot be a leaf it follows that 0\0∗ is an analytic
subset of 0 of dimension ≤ n−1 and consequently has trivial n-dimensional
Hausdorff measure. Any point p0 ∈0∗ is the center of a system of coordinates
�U0� x� t1� � � � � tn� for which all properties described at the beginning of the
proof of Theorem III.6.3 hold and that

U0∩0= �tn = 0	�

We make the following claim:

(�) If v is a C1-approximate solution that vanishes on a nonempty open
subset of �, then v vanishes identically.

Proof of (�). Let pl be a sequence of points in �, pl→ p such that v vanishes
identically in a neighborhood of each pl. If p % 0 then v vanishes identically
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near p since � is an elliptic structure in �\0. Suppose now that p ∈ 0 and
take a coordinate system �V� y1� � � � � yn+1�, V = �y< r	, centered at p such
that 0∩V = �y1 = 0	. Since � is an elliptic structure in �y ∈ V  y1 �= 0	 and
since pl ∈ V for some l it follows necessarily that v vanishes identically on
one of the sides y1 > 0 or y1 < 0. Suppose that the first case occurs and take
y∗ ∈0∗ ∩V . By Theorem III.6.3 it follows that v vanishes identically in a full
neighborhood of y∗ and consequently in the whole component y1 < 0.

Since u is a C1-approximate solution on �\0 with respect to an elliptic
structure (with m= 1, �= n−1 according to the notation of Chapter I), which
does not vanish identically on any component of �\0, we have � n�S ∩
��\0�� = 0. Hence it suffices to show that � n�S ∩0∗� = 0 or, for that
matter, that

� n�S∩ �U0∩0��= 0 (III.15)

according to the preceding notation.
The differential of Ztn=0 defines a locally integrable structure on U0 ∩0

with m = 1. Moreover, the restriction of u to U0 ∩0 is a C1-approximate
solution for this structure, which is furthermore not identically zero on any
n-dimensional leaf thanks to Theorem III.6.3 and (�). If such a structure is
not real, then (III.15) holds by the induction hypothesis. Suppose now that
this structure is real, which is the same as saying that !tn=0 depends only
on x. Taking

U0∩0= ��x� t′�  x< �� t′< �	�

Gronwall’s inequality gives

S∩ �U0∩0�= �x  x< ��u�x�0�0�= 0	× �t′  t′< �	� (III.16)

Since moreover !t is not identically zero, there is a line segment p through
the origin in t-space such that ! restricted to �−����× p is not a function
of x alone. This means that the differential of the restriction of Z defines a
locally integrable structure on �−����× p which satisfies the hypothesis of
Proposition III.6.1. The restriction of u to �−����× p is a C1-approximate
solution and does not vanish on any nonempty open subset of �−����×
p, once more thanks to Theorem III.6.3 and (�). But then we can apply
Proposition III.6.1 in order to infer that the Lebesgue measure of �x  x <
��u�x�0�0�= 0	 is zero, which according to (III.16) gives (III.15).

The proof of Theorem III.6.4 is now complete.

Corollary III.6.5. Let u be a C1-approximate solution on �. Then d′0u/u
which can be regarded as a section of CT ∗�/T ′ with L� coefficients, is
d′1-closed.
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Proof. We can of course assume that u is not identically equal to zero. By
[HaP] (corollary 2.4) in conjunction with Theorem III.6.4 (1) it follows that
d′1�d

′
0u/u�= 0 on the union of all �n+1�-dimensional leaves. Now let p be a

point belonging to an n-dimensional leaf; we have to show that d′1�d
′
0u/u�= 0

in a neighborhood of p.
We can find a coordinate system �U�x� t1� � � � � tn� centered at p, with U =

��x� t�  x < �� t < �	 such that T ′ is spanned, over U , by the differential
of the function Z�x� t� = x+ i!�x� t�, where ! is real-valued, real-analytic,
and satisfies (III.13). We necessarily have !�0� ·�= 0, since p belongs to an
n-dimensional leaf. We must analyze two cases: either (i) ! ≡ 0 or else, by
taking � > 0 small, (ii) !�x� ·� �= 0 for all x ∈ �−����, x �= 0.

Under case (i) the complex d′ over U equals the complex dt, and our claim
can easily be checked. We consider case (ii). Since ��x� t� ∈ U  x > 0	 and
��x� t� ∈ U  x < 0	 are contained in �n+ 1�-dimensional leaves, taking into
account the representation of the operator d′0 given by

Lu=
n∑

j=1

Ljudtj�

it suffices to show that

L(%∧Lu/u→ 0 in L1�U�#2��CT ∗�/T ′��� (III.17)

where (% ∈ ���R� depends only on x and satisfies (% = 1 for x> %, (% = 0
for x ≤ %/2, and ( ′% ≤ C%−1. Now

L(% =−i( ′%�x�
dt!�x� t�

Zx�x� t�

and thus, since dt!�x� t�=O�x�, the L� norm of L(% is bounded uniformly
in %. From this (III.17) follows immediately, and the proof is complete.

III.7 Further applications of Sussmann’s orbits

In this chapter, the focus has been on the applications of Sussmann’s orbits to a
variety of questions on unique continuation. However, Sussmann’s orbits have
also been applied to several problems in involutive structures. In particular, it
is now known that many properties of CR functions propagate along orbits.
Here we will very briefly mention some of the results that involved orbits.

As mentioned in Section III.3, orbits were used by Tumanov ([Tu1]) and
Baouendi and Rothschild ([BR]) to prove necessary and sufficient conditions
for the holomorphic extension of all CR functions into wedges. In [Tr],
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Trepreau showed that the wedge extendability of continuous CR functions
propagates along the orbits of a CR manifold in Cn. Another proof of this
result appeared in [Jo2]. In the same paper [Tr], Trepreau also described the
variation of the direction of extendability along orbits by proving that the
wave front set of a CR function is a union of orbits in the conormal bundle
with respect to a natural CR structure there. These results were generalized by
Tumanov in [Tu2], where he showed that CR-extendability of a CR function
on a generic CR manifold � in Cn propagates along orbits. A CR function
on � is said to be CR-extendable at p ∈� if it extends to be CR on
some manifold with boundary attached to � near p. Moreover, Tumanov
described the variation of the directions of CR extendability in terms of a
certain differential geometric partial connection and the corresponding parallel
displacement in a quotient bundle of the normal bundle of � . This description
is dual to that of Trepreau. Merker ([Mer1]) gave a simplified presentation
of Tumanov’s connection and used it to prove that if � is a generic CR
manifold consisting of a single orbit, then each continuous CR function on
� is wedge-extendable at each point of � . This result was also obtained by
[Jo2] independently using a different proof. In Joricke’s approach, the key
idea is the deformation of the manifold � so as to produce minimal points
in such a way that all points outside a truncated cone C (in suitable local
coordinates on �) are left fixed. The cone C has an axis in �� , a vertex p,
and the deformed CR manifold is minimal at the central point p.

The concept of Sussmann’s orbit has been used to characterize the first-
order linear partial differential operators which are locally solvable (see [T5]).
Orbits were used by Hounie ([Ho1] and [Ho2]) in his work on globally
solvable and globally hypoelliptic complex vector fields on manifolds.

For tube structures, Hounie and Tavares [HT5] have given a necessary and
sufficient condition for the validity of Hartog’s phenomenon for solutions in
terms of the behavior of orbits. Orbits have also been relevant in the study
of removable singularities, as shown in numerous works including [HT2],
[Jo1], [Mer2], [KR], [MP1], [MP2], and [MP3]. The paper [CR1] of Chirka
and Rea uses orbits to study the regularity of CR mappings. For earlier works
exhibiting orbits as propagators of support and singularities, see [DH], [HS],
and [Z].

Notes

As indicated in the introduction, the concept of orbits and its basic prop-
erties were presented in Sussmann’s paper [Su]. Lemma III.1.8 and some
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of its consequences appeared in [BM]. The theorems on the strong unique
continuation for L1

loc solutions were proved in [BH2]. The propagation of
support for solutions and the link to the uniqueness for the noncharacter-
istic Cauchy problem has been studied by many mathematicians: Strauss
and Treves in [ST], and Cardoso and Hounie in [CH] studied the Cauchy
problem for a single smooth vector field satisfying the solvability condition �
of Nirenberg and Treves. Hunt, Polking and Strauss ([HPS]) considered the
uniqueness problem for a hypersurface in a complex manifold. Hunt ([Hu])
proved uniqueness for the noncharacteristic Cauchy problem for locally real-
izable CR manifolds under some hypotheses on the Levi form. Treves proved
his theorem on propagation of support along orbits by using the unique-
ness theorem for the noncharacteristic Cauchy problem in locally integrable
structures—a consequence of the Baouendi–Treves approximation formula.

The description of the zero set of approximate solutions in real-analytic
structures where m= 1 and for certain planar vector fields follows Cordaro’s
paper ([Cor2]).

For additional references to the concept of orbits and their applications, we
mention the books by Baouendi, Ebenfelt and Rothschild ([BER]), Treves
([T5]), and the manuscript [MP3] by Merker and Porten.
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