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A COMMUTATIVITY THEOREM FOR RINGS
AND GROUPS

BY
W. K. NICHOLSON' AND ADIL YAQUB

ABsTRACT. The following theorem is proved: SupposeR is a ring
with identity which satisfies the identities x*y* =y*x* and x¢y¢=
y*®x*, where k and € are positive relatively prime integers. Then R is
commutative. This theorem also holds for a group G. Furthermore,
examples are given which show that neither R nor G need be
commutative if either of the above identities is dropped. The proof
of the commutativity of R uses the fact that G is commutative,
where G is taken to be the group R* of units in R.

1. Groups. Throughout this section, G will denote a multiplicative group
and, for x, y in G, we write

[x, y]=xyx'y"

to denote the commutator of x and y. The commutator subgroup and center of
a group G will be denoted by G’ and Z respectively. In preparation for the
proof of the main theorem, we first note the following easily verified facts.

LemmAa 1. Let x and y be elements of a group G. If [x, y] commutes with x
then

[x", y1=[x, yT"

holds for all positive integers n.

LemMa 2. If G is a group and G = AB where A and B are normal, abelian
subgroups, then G'c ANBc Z.

The commutativity theorem for groups is the following:
THEOREM 1. Let G be a group such that, for all x,y in G
xyk =y*xk  and  x%y¢ =yt
where k and € are fixed non-zero relatively prime integers. Then G is abelian.

Proof. Given an integer m, let A, denote the (normal) subgroup of G
generated by {x™ | x € G}. Our hypotheses imply that both A, and A, are
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abelian. Moreover the fact that k and ¢ are relatively prime shows that
G =A,A,. Thus G'= Z by Lemma 2. Combining this with Lemma 1, we have
that

L=[x" y*1=[x y*I* =[x, y]*

for all x, y in G. Similarly [x, y]¢ = 1. Since k> and ¢ are relatively prime, this
implies [x, y]=1, so G is abelian as required.

We remark that the result fails if one of the hypotheses is dropped as any
non-abelian group of finite exponent shows.

2. Rings. Throughout this section, R will denote an associative ring with
identity 1 and, for x, y in R, we now write

[x, y]=xy—yx

to denote the (additive) commutator of x and y. The following known result [1;
p. 221] is the ring-theoretic analogue of Lemma 1.

Lemma 3. If x, y are elements in a ring R such that [x, y] commutes with x,
then

[x", y]=nx"""[x, y]

holds for all positive integers n.

There is no analogue in a general ring of the technique of cancelling
elements in a group. However, the following lemma allows enough cancellation
for our purposes.

LEmMMA 4. Let R be a ring and let f:R— R be a function such that
f(x+1)=f(x) holds for all x € R. If for some positive integer n, x"f(x) =0 for all
X € R, then necessarily f(x)=0 for all x.

1

Proof. Clearly (x+1)"f(x) =0 for all x so, multiplying on the left by x"~
and expanding by the binomial theorem yields

Zn: (Z)x’”""lf(x) =0.

k=0

Since x"f(x) =0 the sum reduces to x" 'f(x) =0. The process continues until
xf(x) =0 whence f(x)=(x+1)f(x)=0.

In our application of this lemma, f(x) will usually be of the form f(x)=
[x, y]z where y and z do not depend upon x.
We shall now prove the following ring-theoretic version of Theorem 1.
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THEOREM 2. Let R be an associative ring with identity 1, and suppose that for
all x,y in R,
xkyk=ykxk’ and x€y€=y€x€’
where k and € are fixed relatively prime positive integers. Then R is commutative.

Proof. The argument will be broken into a series of partial results. Through-
out the proof, J, Z, R* will denote respectively the Jacobson radical, the
center, and the group of units of R.

Claim 1. R* is abelian and R/J is commutative.

Proof. By Theorem 1, R* is abelian. Observe that the hypotheses are
inherited by subrings and by homomorphic images of R. Also, note that no
n X n complete matrix ring over a division ring can satisfy our hypotheses if
n>1, since these imply that all the idempotents are in the center. It follows
from Jacobson’s Density Theorem [1; p. 33] that a primitive ring which satisfies
the hypotheses of Theorem 2 must be a division ring and hence is commuta-
tive, by Theorem 1. Since R/J is a subdirect sum of primitive rings, Claim 1
follows.

Claim 2. J is a commutative ring and J*< Z.

Proof. Suppose acJ, beJ. Then 1+a and 1+b are units in R, and hence
commute, by Claim 1. Thus ab = ba and J is commutative. Now, let y e R.
Then, for all a, b in J,

(ab)y = a(by) = (by)a = b(ya) =(ya)b = y(ab).

Hence J>< Z, and Claim 2 is proved.
Now, since k and ¢ are relatively prime, assume rk —s€ = 1 where r and s are
positive integers. If n=s¢ then rk =n+1 and we have

xnyn:ynxn’ xn+lyn+1 ____yn+1xn+l
for all x, y in R. We may assume n > 1.
Claim 3. n[a,y"]=0=m+1D[a, y"*'] forall acJ, ye R.

Proof. [a, y"]eJ by Claim 1 and so commutes with u=1+a by Claim 2.
Hence nu" '[u, y"]=[u", y"]=0 by Lemma 3 and so O0=n[l+a,y"]=
n[a, y*]. The same argument works for n+1 so Claim 3 is established.

Claim 4. [a,y"™']=0 forall acJ, yeR.

Proof. Since J?< Z by Claim 2, the only terms in the expansion of (y +a)"*!
which do not commute with y"*' are those involving a exactly once. Hence

") 0=[(y+a)"", y" =y a+y " ray+- - - +yay" T +ay", y L

https://doi.org/10.4153/CMB-1979-055-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1979-055-9

422 W. K. NICHOLSON AND ADIL YAQUB [December

Now nay" =ny"a by Claim 3 and hence

2n+1

=n(y*ay+---+y"ay")+nay ,

n+1

n(y"a+y"tay+---+ay")y

2n+1

ny*"'(yra+y lay +- - -+ay") =ny>"a+n(y>ay +- - - +y"lay").

Since these are equal by (*) we obtain (using n[a, y"]=0)

2n+1_ _2n+1
y

0=n(ay a)=ny*"[a, y].
Hence nf[a, y]=0 by Lemma 4. But (n+1)[a, y"*']=0 by Claim 3 so
0=n[a, y""'1+[a, y""1=[a, y"*'].
This proves Claim 4.
Claim 5. J= Z.
Proof. As in the proof of Claim 4 we obtain, for acJ, ye R:

(x%)  0=[(y+a)", y"]=[y"la+y " Pay+---+yay" *+ay" ', y"].

We have ay"*' =y"*'a by Claim 4 so
(yn-la+yn72ay+_ . .+yayn72+ayn41)yn

— yn—layn +(y2n—1a+y2n—2ay +-- .+yn+layn72)
yr(y"laty" Cay - yay" T Hay" )

=y a+y™ Cay+- - +y"lay" ) +y"ay" .

Since these expressions are equal by (**), it follows that y" 'ay" =y"ay™ .
Multiply by y on left and right and use Claim 4 to obtain y*"*'a =ay®***'. On
the other hand, a commutes with y>"*2, again by Claim 4. Combining these
facts we obtain

0=ay?2—y2n+2g = y2n+[g y]
for all ye R, a€J. Hence [a, y]=0 by Lemma 4 and it follows that J < Z. This
proves Claim 5.

We can now complete the proof of Theorem 2. Choose x, y in R. Since all
commutators lie in Z by Claims 1 and 5, we have 0=[x", y*]=nx"""[x, y"] by
Lemma 3. Thus n[x, y"]=0 by Lemma 4, and so 0=n?y" '[x, y], again by
Lemma 3. A final application of Lemma 4 yields n?*[x, y]=0. Similarly
(n+1)[x,y]=0, so [x, y]=0.

ExampLE. Given an integer k>1, choose any prime p dividing k. Let R,
denote the ring of all 3 X3 upper-triangular matrices over GF(p) with equal
entries on the main diagonal. Then R, is non-commutative but x*y* = y*x*
holds for all x, y in R,. Thus Theorem 2 is not true if one of the hypotheses is
dropped.
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