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LOWER BOUNDS ON THE NUMBER OF POINTS IN THE 
LOWER SPECTRUM OF ELLIPTIC OPERATORS 

WALTER ALLEGRETTO 

Let G denote an unbounded domain of Euclidean m-space Em with regular 
boundary, and let L be a self-adjoint operator generated in L2(G) by a second 
order elliptic expression. We denote by S(L) the spectrum of L, by /x the least 
point of the essential spectrum Se(L) and by N ( L ) the number of bound states 
of L ; t ha t is, the number of points in ( —oo,/x) C\ S (L) . There are many 
results in the l i terature dealing with the localization, significance and properties 
of jji, of Sg(L) and of ( — oo , /x) P\ S (Z) , with most of the emphasis on the cases 
where G = Em or G is the exterior of a closed surface in Em. We refer the reader 
to the books by Glazman [12], Schechter [19], Reed and Simon [18], and Paris 
[9], where extensive references are also found. We observe tha t it is often 
possible to give upper estimates for N ( L ) in terms of coefficient norms (see, for 
example, the recent paper by Cwikel [7], and the references therein) . We 
further note t ha t by observing the behaviour of G and of L a t infinity, it is 
often easy to est imate JU from below, and, by the spectral theorem, to est imate 
from above the first n points Xi, . . . , Xn in ( —oo , /*) P\ S(L) for some n ^ 1. 
Assume tha t such an estimate has been obtained for Xi (the simplest case). I t 
seems reasonable to expect t ha t if /x/Xi is ' ' la rge" then so ought to be N ( L ) . I t 
is the purpose of this paper to obtain calculable lower bounds on N ( L ) which 
will show that , under conditions to be specified below, this is the case. In 
general, no lower est imate for N (L) can remain valid if in the problem we allow 
finite regular, bu t otherwise arbi t rary perturbations. However, since our 
bounds will depend only on estimates for /x and Xi, . . . , \n, and the coefficients, 
then they will continue to remain valid after any perturbat ion which does not 
affect these estimates, regardless of the effect such a per turbat ion may have on 
the other par ts of the spectrum of L. Because of this generality, our est imates 
will usually be worse than those obtained by considering only a calculable 
specific case from the start . 

Our main tool will be an extension of a fundamental result of Payne, Polya, 
and Weinberger [15] for Laplace's equation in the bounded subdomains of E2. 
We shall also make use of variational arguments and of oscillation theory. 

Finally, we observe tha t n can be connected to the oscillation properties of L 
and tha t , under suitable hypotheses (specified in [2], [17], [16]), N ( L ) is infi­
nite if and only if Lu — \xu — 0 is oscillatory. Consequently, we shall always 
assume in the sequel tha t such situations where N ( L ) is known to be infinite 
are excluded from consideration. 
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Let x = (xi, . . . , xm) denote a point of Em, m ^ 3, and let Dt denote 
differentiation with respect to xt for i = 1, . . . , m. Let Q denote any domain in 
Em and write || \\p for the LP(Q) norm, ( , ) (Q) for the L2(Q) inner product. We 
define, for u £ Co°°(G), the elliptic expression: 

m 

^£u = — ^ DiÇdijDju) + gw, 

where we shall always at least assume that: (1) the coefficients of ££ are real ; 
(2) dij € Cl(G), dij = djù (3) if a(x),/3(x) denote the smallest and largest 
eigenvalues of (a if) then there exist constants iV, ikf such that 0 < N ^ a(x) 
^ /3(x) < M for all x in G; (4) g G C(G). These assumptions are made so 
that the only singularity in the problem comes from the unboundedness of G, 
and therefore the standard oscillation theory results may be directly applied. 
A considerable weakening of these assumptions would imply the need to 
introduce a more general oscillation theory which would allow for oscillations 
at finite points of G, as well as at infinity. We do not pursue this approach here, 
but we remark that several of the results (for example Theorem 1) may clearly 
be established by the same proof under weaker conditions then those stated 
above. We may assume that ££ is bounded below, and we let L denote its 
Friedrichs extension. This is the only extension considered in the sequel. If Q is 
any subdomain of G, then we denote by L(Q) the extension of ££ restricted to 
Co°°(<2). If Q is obvious from the context we write L for L(Q), \\ \\p for || ||P(Q), 
etc. Finally, we shall use e to denote a generic positive constant, whose value 
may vary within the same proof, and we shall set g+ = max(g, 0), 
g_ = max( —g, 0). 

The first theorem is an extension of a result of [15], (where only the case of 
a bounded domain, m = 2, ai3, = ô^, g = 0 was considered) and of 
Thompson [22] (where the results of [15] were extended to the case m ^ 2). 
We emphasize that, as in [15], no other restrictions are placed on G. 

THEOREM 1. Assume that \ t £ S (L) fori = 1, . . . ,n and that jf\\q-\\m,2 < N 
where J ^ = (m — l)2(w — 2)~2ra~1. Define for e ^ 0 the interval 

1(e) = (_oo,XIl + ^ { Z Ï X 4 } ( i V - J r | | g _ | U / î ) - 1 + e ] . 

Then 1(0) P\ S(L) has at least n + 1 points. 

Proof. We first note that by the Gagliardo-Niremberg Theorem [10, p. 24] 
for any <f> Ç CQCO(G) we have: 

(1) (g_4>,4>) ^ Jf iMIî -IL^*, -Zp.iDpfa.JDd)) 

Assume next that Q is a bounded regular subdomain of G, Q C G. Then L(Q) 
has a discrete spectrum and we let {Ui}in denote the first n normalized eigen-
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functions corresponding to the first eigenvalues Xi, . . . , Xn. Following [15] we set 
n 

<Pt =fut— J2 (fut, uk)uk for i = 1, . . . , », 

where/ is any regular function. Clearly <j>t £ Dom(L) in the Friedrichs norm, 
and by the spectral theorem we obtain: 

(<t>if<t>i)K+i ^ i^uLttn) = (fUi,L(fUi)) - J2k (fuuuk)(ukfL(fu{)) = 

(ut
2, Y*v,ia>p,iPvfDif) + Xi(/Wi,/«<) - Z* (fuituk)(uk,L(fut))' 

Consequently, 

(2) (<t)U 0z)(Xw+i — X») g (ut
2, Y,v,iav,iDvfDif) - Hk (fuit uk) 

X (ukf - Y,Dp(aPllDif)ui) + 2j^k (fui}uk)(uk, Y,p,t apt JDpfDtut). 

Summing over i we find that the sum of the last two terms on the right hand 
side of (2) is zero by symmetry. Consequently, 

(3) K+i - K è U {Ui\ Hp,iav,lDvjDlf)/j:\ (*„ 4>t) 

Clearly there exists a £ such that 

Without loss of generality, let £ = 1 and se t / = x\. As in [15] we observe the in­
equality 

mn2 ^ ±YA (4>t, 4>i)YÂ («<» —àut). 

It follows from (3) that 

(4) \n+1 - \ à \Mm-H-lYX (uit -Aut) 

£ ±M(Nnni)-lZni (uit ~ZP,I Dp(aplDlui)). 

By (1) and a limit argument we find 

(u>i, —YéP.iDp(aPiPiUi)) ^ (q-uitUi) + \i 

^XN-l\\q^\\m,2(uu —T,p,iDp(apiDiUt)) + \ t . 

Substituting into (4) gives 

(5) \n+1 - K ^ 4 M ( £ Ï \t)n-im~i(N -Jf\\q-\\m/i)-K 

Next, we may assume that Xi, . . . , \n are the first n points of S(L) in G and 
that Se(L) C\ 1(0) = 0. Let ui, . . . , un denote the associated normalized 
eigenvectors and let e ^ 0 be given. Choose functions <pu such that (pi £ Co°°, 
(<pi — uu L(<pi — ui)) < e for i = 1, . . . , n. By orthonormalizing (in L2{G)) 
the set {(fi\ we construct the set {v{} such that (vi}Lvi) < \ t + e, and 
(vit LVJ) < e for i 9^ j . Let Q denote any bounded regular subdomain such that 
Uin supp(fli) C Q C Q C G. We apply the spectral theorem to the subspace 
generated by the vt and conclude that L(Q) has eigenvalues et such that 
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e% ^ X* + € for i = 1, . . . , w. By (5) and the min-max principle we conclude 
tha t L has a t least w + 1 eigenvalues in 1(e). Since e is arbi t rary , the result 
follows. 

We observe t ha t the calculations leading to (3) are somewhat different from 
the analogous calculations given in [15], al though the underlying ideas are the 
same. 

COROLLARY 1. Assume that the spectrum of L(G) is discrete and let Xi, . . . , Xn 

denote the first n eigenvalues. Then 

(6) \n+l S K + 4Mn-'m-i(Zni^i)(N - X\\q.\\m„)-\ 

Furthermore, if g_ = 0 then (6) is also valid for m = 2. 

We remark on the differences between (6) and the analogous est imate given 
in [15]. I t is clear tha t g_ must appear in the est imate, since if g_ is sufficiently 
large then Xi could vanish and X2/Xi could not be bounded. Similarily if 
q- = 0, bu t dtj 9^ dij, then calculations for a related problem in a paper by 
Gent ry and Banks [11] indicate t ha t if MN~l is chosen large then X2/Xi can be 
made large by suitable choices of {a if). 

By the min-max principle we have the following useful corollary. 

COROLLARY 2. Let X/, . . . , \n' denote upper estimates on the first n eigenvalues 
of L(Q) with Q C G, and let 5 denote a lower estimate on jz. Then (6) holds with 
Xi;, . . . , Xn' in place of \ u . . . , \n. In particular, 

(7) N(L) ^ / { l n ( 5 / X / ) ( i n ( 4 M w - 1 ) i V - \\q4\m/2jf)^ + l ) ) - 1 } , 

where J(x) denotes the integer part of x if x is nonnegative and is zero otherwise. 

Since it is obvious t ha t the addit ion of a cons tant multiple of the ident i ty to 
L does not change N(L), we have the following improvement on Corollary 2 
(with similar improvements on the previous results) : 

COROLLARY 3. Let the above conditions hold. Then 

(8) N(L) ^ supa^EJ(\n((n + a)/(\i + a)){\n{4,Mm-l(N - Jf 

\\(a + q)4U)-i + l\}-i). 

Corollary 3 is useful for cases where N — | jg_ | |w / 2J^ ^ 0 but , for some 
a, N — 11 (a + q)-\\m/2.jC > 0. For simplicity of notat ion, we shall however 
assume in the sequel t h a t the opt imum ai has already been added to L and we 
will use formula (7) as opposed to the more cumbersome (8). 

We next recall some of the terminology of oscillation theory, [2], [13], [16], 
[21], [20]. T h e operator L is termed oscillatory in G if and only if given any 
sphere R there exists a bounded domain N (called a nodal domain) in 
G r\ {x\ \x\ > R} such t h a t S(L(N)) C\ ( - c o , 0] ^ 0. We define 
a = sup{&| L — k does not oscillate) to be the oscillation constant of L in G. 
In view of our assumptions on the coefficients of L it is possible, by means of 
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[16] and [1, p. 129], to extend the decomposition theorem of Glazman and 
conclude that a: == /*. These observations enable us to use the known oscillation 
and nonoscillation criteria to estimate N(L). We simplify somewhat the 
presentation by restricting our considerations to the operator L\ generated by 

££ \U = — Au + qu. 

The analogous results for L will be obvious from the presentation and Corol" 
laries 2 and 3. 

THEOREM 2. Assume that G contains the set {x\ \x\ ^ Ro} for some Ro, and that 
there exists a ô > 0 such that for all e > 0 

(a) for some e0 G [0, 1), g £ Lm/2(G), and all x near oo 

q(x) - Ô + e ^ -(m - 2)2e04-1|x|-2 + g(x); 

(if g(%) = 0 we maJ set eo = 1) ; 
(b) \imR_Jj{R0<lxl<Rl \x\*-m(q - ô - e)dG + ix{U) (m - 2)~24~1 InR] = -oo , 

where ix(U) is the measure of the surface of the unit sphere. Define E by the expres­
sion 

E = mit\nlR^R^\i{R) + f\Ro<\x\<R\ q(x)w2(x, R)dG) 

where \t(R) denotes the ith eigenvalue of — A in \Ro < \x\ < R} and œ(x, R) 
is the associated normalized eigenfunction. Then ô = /z and furthermore, 

(9) N(L0 è /{ln(8/£)(ln{4w-Hl - Hg-IL/ijO"1 + l})-1}-

Proof. Condition (a) is an extension of Kneser's classical result which implies 
that L\ — ô + e is nonoscillatory [3] while condition (b) implies that 
Li — 8 — e oscillates [14]. Consequently, ô = pt for L\. Let e > 0 be given. By 
the min-max principle it follows that for some R\ > R we have 

S(L1({^0 < |*| <Ri}))n ( - oo , £ + e) 9* 0. 

Consequently, S(Li) P \ ( — co , E -{- e) 7e 0. Letting e —» 0 shows that 
S(Li) P I ( — oo, E] 7e- 0. Corollary 2 then gives the desired result. 

COROLLARY 4. Theorem 2 remains valid if condition (a) is replaced by 

l i m ^ r I MOd* > - 1 / 4 

A(0 = min ,* , . , ^* ) ) + (m - l)(m - 3)/4/2 - ô + e. 

This corollary shows the nonoscillation of Lx — 5 + e at oo by replacing the 
Kneser criterion by an extension of Hille's Theorem [20]. By restricting, for 
simplicity, our attention to the first eigenvalue of —A, we obtain: 
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THEOREM 3. Assume that G contains the infinite rectangle R given by 

R = {x| Xi > 0, 0 < %i < a, i = 2, . . . , m}, 

and that for some r sufficiently large (G — R) H {x\ \x\ > r) = 0. Assume 
further that for all e > 0 

(a) for all \x\ sufficiently large 

q(x) - Ô + e + (m - 1)TT2«-2 ^ -4"1Xi~2; 

(b) the ordinary differential equation 

(10) -y"{t) + y(t)(C(t) + Tr*a-*(m - 1)) = 0 

is oscillatory, where 

C(t) = 2m~1a1-mjxeR,Xl = t (q(x) - ô - e) I I ? sin 'Ora"-1*,)^, . . . , dxm. 

Define E by 

E = inf;>o{(m - l)7T2a-2 + 7r2r2 + 2ma1-mt-ijRn[xl0<xl<t] q(x) X 

11^ sin2(7rxfoj~1) X sin2(7r%i/_1)rfxi, . . . , dxm\. 

Then ô = /*, awd (9) Ao/ds. 

Proof. Following the procedure of [5] we observe that condition (a) implies 
that L\ — 5 + e does not oscillate. Indeed, this is a consequence of making the 
explicit choice 00 = X11 sin(7ra:~1Xi) in the well known formula 

(11) I <p(-A<p) è I ^(-Aco)co-1 

which is valid for any <p £ C0
œ(G) and any co G C2(G), co > 0 in G. Similarity, 

we observe that if (10) oscillates then for any 6 there is a f > 0 and a solution \j/ 
of (10) with ^(f) = ^(0) = 0. We set ^ = 0 outside (0, f) and define 
<p(x) = ^ (x i ) l l ? sin (7ra-1Xi). A direct calculation shows that condition (b) 
implies that (<p, (L\ — ô — e)<p) S 0 and, consequently, that L\ — <5 — e 
oscillates. Conditions (a) and (b) thus imply that ô = JU. Finally we observe 
that E is an upper bound on the first point of the spectrum of Li, obtained by 
choosing <p(x) = sin(7rxi^~"1) 1Ï2 sin {irXia~l) in the functional (Licp, <p)/(<p, <p). 
The validity of (9) then follows from Corollary 2. 

THEOREM 4. Assume that G contains the rectangles 

Rk = {x\ a / < Xj < af + tk, j = 1, . . . , w}, 

where k = 1, . . . , 00 , and for any r, Rk CZ {x\ \x\ > r} for k sufficiently large. 
Define 

A(t,ri, €,&) = WTT2/-2 + (2/t)mJ (g — 77 — e)IlT sin2(7r(x,- - aftt-^dG, 

the integral being taken over Rk P\ {x\ 0 < Xj — a / < /}, a?zd let ô > 0 be such 
that for all e > 0 
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(a) there exists an integer R and a function co, positive in G C\ [x\ \x\ > R) 
such that q — ô + e ^ + Ato/co for \x\ > R; 

(b) lim inf^œ A (tk, <5, e, k) < 0. 
Define E = inffc inf0<^^(^4 (/, 0, 0, k)). Then ô = /x, and (9) /w/cfc. 

Proof. We first note t ha t condition (a) is sufficient for the nonoscillation of 
L\ — ô + e as a consequence of inequality (11). Next, we observe tha t by the 
spectral theorem, see [21], condition (b) implies t ha t there exist arbitrari ly 
large values of k such t ha t S(Li - ô - e(Rh)) C\ ( —oo , 0] 7̂  0. I t follows t ha t 
ô = jd. Finally, we observe tha t once again E gives an upper bound on the first 
point of S (L i ) , this t ime by choosing <p = IÏ^Lisin(7r(x;- — a / ) / - 1 ) in 
(<p, Li(p)/(<p, <p). The conclusion then follows from Corollary 2. 

COROLLARY 5. Let condition (b) be deleted from the respective statements of 
Theorems 2, 3, 4. Then ix ^ ô and (9) still holds. 

Observe tha t positive radial functions can always be used in condition (a) of 
Theorem 4, bu t other types of functions may sometimes be used so as to take 
advantage of the shape of G near infinity. This was done in Theorem 3, where it 
was postulated tha t G was rectangular near infinity. Note also tha t any of the 
well known oscillation criteria may now be used in Theorem 3. Clearly the 
rectangle of Theorem 3 can be subst i tuted by a cone if obvious changes are 
made in the s ta tement of the theorem. 

W e consider the following simple example to illustrate the results obtained. 
Assume tha t m = 3 and tha t G = E3 . Let q be regular, nonpositive, with 
q = p — 1 and p ^ 0. Fur ther , let q approach zero a t infinity. Assume tha t for 
some positive integer S we have: 

2jlxKRp(xW(xfR)dG ^ exp ( -S ln (7 /3 ) ) , 

where co denotes the first normalized eigenfunction of the Laplacian in 
{x\ \x\ < R], and R2 ^ (97r22_1 exp(5 In (7 /3 ) ) . In this case a simple varia­
tion in Theorem 2 applied to Li + / leads to the est imate N ( L i ) ^ S. 

By the methods developed above it may be possible in some cases to obtain 
bet ter numerical results by using the estimates of Brands [6] and DeVries [8] 
for the calculation of the lower eigenvalues. 

Finally, we observe t ha t none of the above results took advantage of q+. 
Better est imates should be obtainable by suitably using properties of q+J bu t 
how this is to be done is not clear. 
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