
2 Single-Phase Flow Equations
and Regimes

The primary assumptions and formulations for single-phase flow regimes are reviewed in
this chapter. The governing partial differential equations for general fluid dynamics are
developed in §2.1, while equations of state and associated flow regimes are developed in
§2.2. Assuming incompressible conditions, flow rotation and the stream function are
discussed in §2.3, while inviscid hydrodynamics are presented in §2.4. Viscous effects are
reintroduced in §2.5 along with the Reynolds number. The various viscous regimes are
characterized via the Reynolds number in §2.6 and flow instability mechanisms are
introduced in §2.7. For additional discussion of single-phase fluid dynamics equations,
the reader is referred to White (2016) and Schlichting and Gertsen (2017).

It should be noted that the fluid dynamic discussion and governing equations in this
chapter assume a continuum flow (§1.5) whereby the flow properties vary smoothly in
space and time. For a body in such a continuum surrounding gas, the length scale of
any fluid gradients must be much larger than the mean free path of the molecules, that
is, the Knudsen number based on a differential length scale must be very small.

In terms of notation, the single-phase fluid velocity and pressure in this chapter will
be defined using u and p, but the equations apply equally with U and Pf as the
variables for single-phase flow. As such, the Chapter 2 single-phase equations can be
extended to multiphase flow for either the unhindered or resolved-surface flow fields
as discussed in §1.4. These equations can also be used to describe the flow inside a
particle using V and Pp as the variables.

2.1 Conservation Equations and Fluid Properties

The transport partial differential equations (PDEs) that govern single-phase flows are
based on the conservation of mass, momentum, energy, and species. These equations
can be developed using the Reynolds transport theorem (RTT) and the associated fluid
properties. In the following, this transport theorem is defined and then employed to
develop transport PDEs for fluid density, velocity, temperature, and species concen-
tration. For use in these transport equations, we will define fluid properties such as
bulk and kinematic viscosity, total and internal fluid energy, as well as thermal and
molecular diffusivity. In addition, this chapter will present several dimensionless
parameters to characterize flow regimes, including the Froude, Mach, Prandtl,
Reynolds, and Schmidt numbers.
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2.1.1 Reynolds Transport Theorem and Mass Conservation

Reynolds Transport Theorem of a Fluid
The Reynolds transport theorem states that the time rate of change of a transport
quantity within a control volume is equal to the sum of the net inward flux through the
control volume’s surface and the internal generation rate of the same quantity within
the volume. In more concise terms, the rate of increase of a quantity in a volume
equals the flux rate across the boundary plus the generation rate within the volume.

The RTT concept can determine the time rate of change of a moving quantity for a
wide range of scenarios. For example, the rate change of a specific animal population
in a game reserve is the sum of the flux through the region’s boundary (which will be
positive if more animals cross into the region) and the rate of internal generation
(which will be positive if the birth rate exceeds the death rate). The RTT concept can
be applied to other transported quantities, such as goods, money, diseases, and so on.
In some cases, a quantity can move by convection, and in other cases it can be spread
by diffusion. For example, a chemical in a still pond can diffuse by molecular motion
(spread out) within the pond or it can convect downstream (move with fluid velocity)
and be released in a river. In other cases, only convection is important. For example,
the mass of water in a still pond does not diffuse (assuming the containing surface is
not porous), but it can convect downstream in a river.

The RTT can also be applied in fluid dynamics to determine the relevant equations
of motion. To do this, we must first differentiate between an “intensive” quantity and
an “extensive” fluid quantity. An extensive property is proportional to the volume
considered for uniform conditions. For example, the mass of a fluid is extensive as it
will increase as the measuring volume increases. In contrast, an intensive quantity is
one that is independent of the measuring volume size for uniform conditions. For
example, density (mass of fluid per unit volume) is intensive since it will be the same
throughout a uniform flow, regardless of the size of measuring volume employed.

To convert the RTT text into a PDE, consider an intensive quantity qð Þ that moves
locally at a velocity uð Þ throughout a fixed control volume (8) with a defined control
surface area Að Þ and outward normal unit vector nð Þ, as shown in Figure 2.1. The RTT
volume-based terms can be expressed as volume integrals of the intensive quantity
qð Þ, while the flux-based terms can be expressed as surface integrals based on
convection uð Þ and diffusion rate Qð Þ, as follows:

∂
∂t
�
ððð
8
q d8 ¼ ��

ðð
A

q u �nð Þ dA��
ðð
A

Q � n dAþ�
ððð
8

_q d8: (2.1)

Each term in this equation is discussed in the following paragraph.
The left-hand side (LHS) of (2.1) is the time rate of change of q integrated over the

control volume based on the Eulerian time derivative (i.e., based on a fixed point in
space). As a result of the volume integral, the integrated time rate of change repre-
sented by the LHS is an extensive quantity. For example, if q is density, the LHS
represents the time rate of change of the control volume mass. The first term on the
right-hand side (RHS) is the flux across the boundary due to convection. This term can
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be obtained by considering a fluid element crossing a differential surface area ΔAð Þ, as
shown in Figure 2.1b. Note that only the movement perpendicular to the surface
contributes to the flux since tangential movement makes no contribution. Over a time
Δt, the fluid element moving perpendicularly into this surface has a length displacement
given by �u � n Δt, where the negative sign is required to describe inward flux. Taking
Δt and ΔA to be infinitesimally small, the flux rate (the first term on the RHS of (2.1)
becomes the surface integral of the product of the quantity per unit volume qð Þ and the
penetration volume per unit time �u � n dAð Þ. The second term on the RHS includes the
diffusive flux rate Qð Þ, which is the rate of flux of q through the surface that spreads due
to nonconvective effects. This nonconvective flux rate is zero for mass and momentum
conservation, but it is nonzero for energy transport (due to thermal conduction) and
species transport (due to species diffusion). The third and final term on the RHS of (2.1)
is the volume integral of the internal generation rate ( _q), which is the net rate at which a
quantity is created (or destroyed if a negative value) within the control volume.

The integral-based RTT form shown in (2.1) for fluid dynamics can be transformed
into a PDE, which is often more practical to employ, by first converting the surface
integrals into volume integrals. For this, we assume that q and u are finite and
continuously differentiable in space and that the control volume is time invariant
(e.g., the volume has fixed shape and a single fixed speed or is stationary). Based on
these assumptions, one can employ the Gauss divergence theorem so that the surface
integral of the flux terms (using the surface outward normal n) can be transformed into
a volume integral, as follows:
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Figure 2.1 (a) Reynolds transport theorem schematic for an arbitrary control volume (8) where
total change in time of a transported intensive quantity is equal to the sum of its (convective and
nonconvective) flux through the boundary (which has surface area A and outward normal vector
n) and of its internal generation, and (b) representation of the convective flux through a local
surface element area (ΔA) where the fluid moves at velocity u such that the amount of fluid that
fluxes into the domain over a time Δt is given by –(u � n)(Δt)(ΔA).
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q u � nð Þ þQ � n½ � dA ¼�
ððð
8

r � quð Þ þ r �Q½ � d8: (2.2)

By combining (2.1) and (2.2), all the terms can be consistently expressed as volume
integrals. Since the size and location of the volume integral is arbitrary, an infini-
tesimally small volume with locally uniform flow allows the integrands to be equated,
yielding the following:

∂q
∂t

þr � quþQð Þ ¼ _q: (2.3)

This is the Eulerian Reynolds transport PDE for an intensive fluid quantity.
The Lagrangian version of this equation can be obtained by employing (1.17b) for

the time derivative of q and rewriting the dot product term using the following
gradient product vector identity:

Dq
D t

� ∂q
∂t

þ u � rq ¼ ∂q
∂t

þr � quð Þ � q r � uð Þ: (2.4)

Combining this result with (2.3) yields the Lagrangian Reynolds transport PDE (along
the fluid path):

Dq
D t

þ q r � uð Þ þ r �Q ¼ _q: (2.5)

These results for the Reynolds transport of an intensive fluid quantity can be used to
obtain the transport equations for fluid mass, momentum, total energy, and species per
unit volume. In cases where diffusion can be neglected (as will be shown for transport
of fluid mass or momentum), Q ¼ 0, so this equation is simplified accordingly.

Transport of Mass
For the mass transport equation, the transport PDE is obtained by setting q to be the
fluid density ρfð Þ: If we assume that mass is neither created nor destroyed (no nuclear
reactions), then _ρf ¼ 0 for a single-phase flow. Furthermore, we can assume that mass
only moves by convection so that the diffusive fluxes can be neglected Q ¼ 0ð Þ: As
such, application of (2.3) and (2.5) yields the following Eulerian and Lagrangian mass
transport PDEs for fluid mass:

∂ρf
∂t

þr � ρfuð Þ ¼ 0: (2.6a)

Dρf
Dt

þ ρf r � uð Þ ¼ 0: (2.6b)

These PDEs are referred to as the conservation of mass or the continuity equations.
The Eulerian PDE (2.6a) shows that the rate of density change at a point is related to
the divergence of momentum per unit volume, while the Lagrangian PDE (2.6b)
shows that the rate of density change along a fluid streamline is related to the
divergence of the fluid velocity.
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The Eulerian transport PDE (2.6a) can be expressed in Cartesian component form
or in tensor form as shown in the following:

∂ρf
∂t

þ ∂
∂x

ρfuxð Þ þ ∂
∂y

ρfuy
� �þ ∂

∂z
ρfuzð Þ ¼ 0, (2.7a)

∂ρf
∂t

þ ∂
∂Xi

ρfuið Þ ¼ 0 for i ¼ 1, 2, and 3: (2.7b)

The Lagrangian version can be similarly expanded in Cartesian component or tensor
form. Furthermore, spherical versions of the Eulerian and Lagrangian mass transport
PDEs can be obtained using the divergence defined in (1.11a).

If the volume of the fluid element can change in shape but does not change in size
because it is incompressible and the quantity does not diffuse, it has constant mass and
thus constant density along the fluid path This is defined as an isochoric flow and its
Lagrangian time derivative is zero. Based on (2.6b), this indicates that the divergence
of the velocity field must then also be zero:

r � u ¼ 0 for constant density along fluid path: (2.8)

As such, the “divergence-free” flow of (2.8) is equivalent to stating that the fluid
density is constant (and incompressible) along its fluid path. This is a convenient
mathematical simplification that will be used later for appropriate flow conditions.

2.1.2 Transport of Momentum

The momentum transport equation can be obtained by setting the intensive transport
quantity as the fluid momentum per unit volume q ¼ ρfuð Þ and applying RTT using
(2.1)–(2.5). In doing so, we note that fluid momentum cannot diffuse (it can only be
transported by velocity), soQ ¼ 0 for each of the three momentum components. Next,
we consider the last term in (2.1), which describes internal generation rate, for fluid
momentum. Since momentum can be changed (accelerated or decelerated) via
Newton’s second law F ¼ mað Þ, the rate of this change per unit volume at a fixed
location is equal to the sum of the applied forces per unit volume:

_qmom ¼ Ffluid=8f ¼ Fbody þ Fsurf
� �

=8f : (2.9)

The RHS shows that the forces acting on a fluid element include body forces
(proportional to mass) and surface forces (proportional to surface area), where both
are discussed in the following.

Body forces are those forces which are proportional to the mass of an object and can
generally include gravitational, electrostatic, and magnetic body forces. Since electro-
static and magnetic forces are generally weak in two-phase flows, they will be neglected
in this textbook so gravitational force is the only body force. This force is based on the
mass of fluid and gravity (where g is the gravity acceleration vector), as follows:

Fbody ¼ mfg ¼ ρf8fg (2.10)
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As shown by the RHS using fluid density, the gravity force per unit volume is ρfg:
The surface forces in fluid dynamics are the pressure forces and the viscous forces,

where both are a product of stress and an area. The pressure acts perpendicular to a surface
area with a stress given by the pressure pð Þ: The viscous stresses can act both perpendicu-
larly and tangentially to a surface and are related to the flow viscosity and the gradients in
flow velocity. In the following, we obtain their combined effect in mathematical form.

The pressure and viscous stresses can be obtained by considering an elemental
volume ΔxΔyΔzð Þ, as shown in Figure 2.2. For example, we can consider the effects
of the pressure force in the y-direction and assume there is a pressure difference Δpð Þ
due to a gradient, as shown in Figure 2.2a. Since pressure only acts normal to a
surface, the y-direction force is based only on the top and bottom surfaces, whose area
is ΔxΔz: Since the pressure acts on the volume toward the surface (inward normal),
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Figure 2.2 Fluid dynamic stresses on a fluid element with a discrete volume (ΔxΔyΔz). (a)
Pressures on the top and bottom y-faces that act over area ΔA ¼ ΔxΔz but differ due a pressure
gradient. (b) Shear stresses, Kij, where first index is the face where the stress acts (the face
outward normal is in the i-direction) and second index is the direction of the resulting force (the
force acts in the j-direction).
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the net force in the y-direction per unit volume is �Δp=Δy, which approaches
�∂p=∂y in the limit of an infinitesimally small volume. Applying a similar approach
for the x-direction and the y-direction, the net pressure force Fpress

� �
in the limit of an

infinitesimally small volume is based on the pressure gradient.
A similar result can be obtained for the viscous stresses, except that there are three

components of stress applied to each surface face, as shown in Figure 2.2b. The
viscous stress tensor, Kij, has two indices, where the first indicates face and the second
indicates direction. In particular, the stress acts on the face whose outward normal is in
the i-direction and the resulting force is directed in the j-direction. Notably, the
viscous stress tensor is symmetric Kij ¼ Kji

� �
, as will be shown later.

If the viscous stresses on a given face are approximately uniform, the top face
(pointing in the y-direction) with area ΔxΔz would include shear stresses Kyx in the x-
direction and Kyz in the z-direction, as well as a normal viscous stress Kyy in the y-
direction. Similarly, the bottom face would include shear stresses Kyx in the negative
x-direction Kyz and the negative z-direction as well as a normal viscous stress Kyy in
the negative y-direction. Therefore (as with pressure gradients), a shear-stress gradient
is needed to impart a net force on the fluid volume. Assuming a uniform gradient in
the i-direction for each of the stresses and applying the limit of an infinitesimally small
volume, the resulting viscous force per unit volume Gð Þ can be written in tensor or
vector form as follows:

Gi � Fvisc,i
8f ¼ ∂Kij

∂Xj
for j ¼ 1, 2, and 3: (2.11a)

G � Fvisc

8f : (2.11b)

It should be noted that the result of (2.11a) employs tensor symmetry.
Combining the preceding forces, the momentum generation rate can be written as

follows:

_qmom ¼ Fbody þ Fsurf

8f ¼ Fbody þ Fpress þ Fvisc

8f ¼ ρfg�rpþG: (2.12)

Including this generation rate into (2.3) and (2.4) with q ¼ ρfu, the resulting momen-
tum transport PDEs in Eulerian and Lagrangian form are given (after some manipula-
tion) as follows:

∂ ρfuð Þ
∂t

þr � ρfu� uð Þ ¼ ρfg�rpþG: (2.13a)

ρf
Du
Dt

¼ ρfg�rpþG: (2.13b)

These are the celebrated Navier–Stokes equations, and these two forms can be related
using mass conservation (2.6a) by writing the outer product for (2.13a) as follows:

r � ρfu� uð Þ ¼ ρf u � rð Þu ¼ ur � ρfuð Þ: (2.14)
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Note that (2.13b) could also have been derived by applying Newton’s second law
along the fluid path of a fluid element, where the LHS is the product of mass and
acceleration of a fluid parcel (per unit volume), while the RHS is the total force being
applied to the fluid element (per unit volume). In both cases, the viscous stresses are
related to the flow field, as discussed later.

The relationship between the fluid viscous stress and the fluid element changes is
effectively similar to relating stress and strain for a solid. In particular, the strain on a
fluid element can be related to the rates of shape deformation and volumetric change,
which can be expressed in terms of the fluid element velocity gradients. For Cartesian
coordinates, the resulting linear relationship between viscous stresses and these rates is
given as follows (White, 2016):

Kij ¼ μf
∂ui
∂Xj

þ ∂uj
∂Xi

� �
þ μbulk,fδij

∂uk
∂Xk

for k ¼ 1, 2, and 3: (2.15a)

δij ¼
¼ 1 if i ¼ j

¼ 0 if i 6¼ j

�
: (2.15b)

The first term on the RHS of (2.15a) is the stress based on the rate of deformation
strain, whereas the second term is based on the rate of volumetric strain, which
employs the Kronecker delta δij

� �
of (2.15b). The proportionality between stress

and strain is based on two viscosities: the shear viscosity μfð Þ for the deformation
strain, and the bulk viscosity μbulk,f

� �
for the volumetric strain. The bulk viscosity

μbulk,f
� �

, is sometimes called the second viscosity coefficient and is typically modeled
with Stokes’ hypothesis as follows:

μbulk,f ¼ �2μf=3: (2.16)

This result is formally appropriate for monoatomic gases with moderate compressibil-
ity but has been found to be quite reasonable for a wide range of flows, and so will be
employed for the rest of this text. However, it may not hold under extreme conditions
such as within a shock wave where extreme compressibility occurs over a short
distance (Gad-el-Hak, 1995).

If one considers fluids where the density can be considered constant along the fluid
path, the velocity divergence will be zero (2.8) so that the last term in (2.15a) is also
zero. Such a divergence-free flow (2.8) yields the following:

Kij ¼ μf
∂ui
∂Xj

þ ∂uj
∂Xi

� �
for density constant along fluid path: (2.17)

This result shows that the viscous stress tensor is symmetric Kij ¼ Kji
� �

, such as
Kxy ¼ Kyx.

For spherical coordinates, the corresponding spherical stress tensor components for
divergence-free flowwith azimuthal symmetry (Figure 1.23) can be expressed as follows:

Krr ¼ 2μf
∂ur
∂r

: (2.18a)
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Krθ ¼ μf r
∂
∂r

uθ
r

� �
þ 1

r
∂ur
∂θ

	 

: (2.18b)

Kθθ ¼ 2μf
ur
r
þ 1

r
∂uθ
∂θ

	 

: (2.18c)

uϕ ¼ 0 and
∂uθ
∂ϕ

¼ ∂ur
∂ϕ

0 for azimuthal symmetry: (2.18d)

Note that the spherical stress tensor is also symmetric (e.g., Krθ ¼ Kθr).
If there is a solid surface, the viscous stresses will give rise to a shear force on the

surface when there are velocity gradients. These gradients can arise since the fluid at
the surface must accomodate the surface velocity (equivalent to 1.13). If we consider a
stationary surface relative to our velocity reference frame (the surface velocity is zero),
then this condition is given as follows:

u ¼ 0 at Xsurf no-slip condition at a stationary surface: (2.19)

If there is also a finite flow speed some distance away from the wall, this leads to a
velocity gradient. For example, consider a flow in the x-direction, which has a linear
velocity gradient in the y-direction, and is acting on a wall defined by y ¼ 0, as shown
in Figure 2.3. In this case, the wall shear stress Kwall equals Kyx since the face is
normal to the y-direction and the shear force is in the x-direction. The no-slip
condition in (2.19) yields ux ¼ 0 at y ¼ 0, and the near-wall velocity gradient can
be used to obtain the wall shear stress from (2.17) as follows:

Kwall ¼ μf ∂ux=∂yð Þy¼0: (2.20)

This stress acts along the wall surface and yields a force on the wall in the direction of
the fluid (so the force of the wall on the fluid in the opposite direction).

u

y

uwall = 0

Kwall

Figure 2.3 Shear stress acting on a stationary wall due to a velocity gradient caused by the
no-slip condition, where direction of shear stress on the wall (Kwall) is in the direction of the
flow. Due to an equal and opposite reaction, the stationary wall applies a shear stress on the fluid
that is in the reverse direction.
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Returning to our governing equation, substituting either (2.17) or (2.18) into the
momentum equation of (2.13a) and, assuming constant density and viscosity, yields
the following:

ρf
∂u
∂t

þ ρf u � rð Þu ¼ ρfg�rpþ μfr2u for constant density and viscosity:

(2.21)

This is the Eulerian momentum transport PDE for constant density and viscosity. The
last term of the RHS includes the Laplacian of the fluid velocity, indicating that the
viscous stresses effectively diffuse momentum. For example, consider the role of
shear stress away from a wall, such as in a shear layer where there is a velocity
gradient. In such flows, the higher-speed fluid imparts a shear stress in the direction of
the flow and will transfer increased momentum to the lower-speed fluid. Similarly, the
lower-speed fluid will impart a shear stress in the opposite direction on the higher-
speed fluid and can serve to decrease its momentum. As such, viscous stresses tend to
diffuse velocity gradients. Thus, one may consider viscosity as the effective diffusivity
of fluid momentum caused by viscous stresses.

The assumption of constant viscosity used in (2.21) will generally be used in this
text. However, it is worth noting that the viscosity can change with temperature.
Interestingly, a temperature increase generally causes a decrease in liquid viscosity but
causes an increase in gas viscosity. White (2016) provides viscosity–temperature
relationships for several fluids. For dry air, the sensitivity for temperature in the range
of 250–750K can be approximated as follows:

μf ¼ μf,ref T=Trefð Þ2=3: (2.22)

In this expression, μf,ref is the viscosity at Tref ¼ 293K based on NTP conditions (per
Table A.1). This relationship with a 2/3 exponent and a reference viscosity is also
reasonable for several other gases in the range of 250–400K (White, 2016).

Viscosity can also vary with fluid strain for some fluids, which are referred to as
“non-Newtonian fluids.” In particular, molten polymers and colloidal suspensions
(e.g., paint) can have a nonlinear relationship between the velocity gradients and the
viscous stresses, whereby the viscosity varies with the strain. However, this text will
generally assume all fluids are “Newtonian” in that the viscosity does not depends on
the strain on the fluid.

2.1.3 Transport of Energy and Species

Transport of Energy
For the fluid energy transport equation, we should consider both thermal and kinetic
energy. The thermal (or internal) energy is related to the temperature of the fluid
(stemming from vibration and random molecular motions of the fluid, which only
come to rest when the temperature reaches 0 K). In contrast, the kinetic energy is
related to the velocity of the fluid (stemming from mean molecular motion of the
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fluid). Combining these energies, the thermal energy per unit mass eð Þ plus the kinetic
energy per unit mass ½u2ð Þ yield the total fluid energy per unit mass etotð Þ, as follows:

etot � eþ 1
2
u2 (2.23)

Setting the total fluid energy per unit volume q ¼ ρfetotð Þ as the intensive scalar, the
transport equation of energy can then be obtained by applying the Reynolds transport
theorem. For energy, this is equivalent to using the first law of thermodynamics,
whereby the energy change of a system per unit time is equal to the heat fluxing
through the surfaces and the internal generation rate (the sum of internal energy
release and work done on the fluid per unit time).

The fluid total energy transport equation can be obtained using (2.3) as follows:

∂ ρfetotð Þ
∂t

þr � ρfetotuð Þ þ r �Qe ¼ ρf _etot: (2.24)

Special attention must be paid to the diffusive flux (last term on the LHS) and the
internal generation (RHS).

The diffusive flux is nonzero because thermal energy can conduct due to molecular
diffusion. This conduction can be obtained with Fourier’s law, which states that the
heat flux per unit area is equal to the product of the fluid thermal conductivity k fð Þ and
the gradient of fluid temperature, as follows:

Qe ¼ �k frT: (2.25)

where the negative sign indicates that the energy moves from high temperature to
low temperature.

The rate of internal generation of the total fluid energy inside a control volume can
generally include the release of thermal energy by chemical reaction or phase change, as
well as the increase of total energy by mechanical work on the fluid (e.g., a pump) or a
decrease by fluid dynamic work done by the fluid within the control volume. Herein, we
will generally neglect chemical reactions, radiation, phase changes, and mechanical work
so that energy generation is only due to the fluid dynamic work done on the fluid. This
work can be expressed as the dot product of the fluid dynamic forces and the fluid
velocity. For example, the work rate per unit volume due to gravity forces is ρfg � u. The
pressure work rate on a fluid volume element can be considered as in Figure 2.2a.
By considering pressure forces in all three directions, the pressure work rate per unit
volume is�r � puð Þ. Similarly, the viscous stress work per unit volume can be obtained
asG � u. Combining these elements with (2.24) and (2.25), the total fluid energy transport
equation becomes

∂ ρfetotð Þ
∂t|fflfflfflffl{zfflfflfflffl}

time rate of change

of total energy

þr� ρfetotuð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Convective flux

of total energy

¼ ρfg �u|fflffl{zfflffl}
Body force work

þ G �u|ffl{zffl}
Viscous

stress work

�r� puð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Pressure

stress work

þ r� k frTð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Heat flux due to

thermal conductivity

:

(2.26)
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This PDE includes LHS terms of the time rate of change of total energy and the convective
fluxwithRHS terms for the body forcework, thefluid-stress work, and the heatfluxdue to
thermal conductivity. As noted previously, this PDE neglects phase change (such as fluid
evaporation or condensation), combustion or chemical reaction (which can lead to energy
release), and radiation (which can lead to energy deposition or release) while also
neglecting mechanical work and/or external heat transfer applied to the fluid.

In some cases, it is helpful to consider a transport PDE for the fluid temperature
changes. In this case, the fluid internal energy per unit volume ρfeð Þ can be set as the
transport quantity using (2.3) and the internal energy can be related to the fluid
temperature and the specific heat at constant volume (c8). If one further assumes an
ideal gas with constant thermal conductivity, the internal energy and the temperature
transport PDE can be expressed as follows:

e ¼ c8T: (2.27a)

∂ ρfc8Tð Þ
∂t

þr � ρfc8T uð Þ ¼ G � u�r � puð Þ þ k fr2T: (2.27b)

The corresponding Lagrangian form for incompressible flow is then

ρf
D c8Tð Þ
Dt

¼ G � u�r � puð Þ þ k fr2T: (2.28)

The last RHS term in (2.27b) and in (2.28) includes a Laplacian of the temperature and
is thus a diffusion term. As such, thermal conductivity acts to diffuse temperature
gradients in a fluid (similar to how viscosity diffuses momentum gradients).

It is interesting to compare the rates at which thermal energy and momentum
diffuse in a flow, where the effective diffusivity of momentum is proportional to
viscosity (μf , with units of mass per distance per time), while the diffusivity of thermal
energy is proportional to conductivity (k f , with units of energy per distance per time
per degrees Kelvin). To compare these diffusivities with the same units, the thermal
conductivity can be divided by the fluid specific heat at constant pressure (cp,f , with
units of energy per mass per degrees Kelvin). The resulting nondimensional ratio of
the momentum to thermal diffusivities is defined as the Prandtl number:

Prf � viscous momentumð Þ diffusivity
molecular thermal diffusivity

� μfcp,f
k f

: (2.29)

As such, the Prandtl number of a fluid indicates how fast a velocity gradient is diffused
compared to how fast a temperature gradient is diffused. Thus, a high Prandtl number
indicates that velocity differences diffuse faster as compared to temperature differ-
ences. For steady conditions where diffusion and conduction are balanced, faster rates
can be equated to achieving a fixed amount of diffusion over shorter distances. Thus,
the Prandtl number will be proportional to the thickness of a thermal diffusion layer
relative to a momentum diffusion layer.

For gases, the Prandtl number is on the order of unity (e.g., 0.7 for air at NTP),
which indicates that rates of thermal and momentum diffusivity in a gas are similar.
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Thus, a thermal boundary layer (caused by the temperature difference between a
freestream fluid and the surface) will have roughly the same thickness as that of a
momentum boundary layer (caused by the velocity difference between a freestream
fluid and the surface). However, the Prandtl number for liquids varies widely
depending on the fluid type and temperature. For example, Prf ranges from
0.004–0.03 for liquid metals (very good heat conductors), ranges from 1.7–13.7 for
water (a moderate conductor), and ranges from 50–100,000 for oils and polymer melts
(poor heat conductors). For a fluid with a small Prandtl number (such as that seen in
liquid metals), the thermal layers will be much thinner (or shorter lived) compared to
the momentum layer so that thermal equilibrium can be expected to be achieved more
quickly. The opposite would occur for fluids with a high Prandtl number.

Transport of Molecular Species
The final transport equation considered in this section is for molecular species.
A species is a component of the fluid that has a singular molecule type. For example,
nitrogen is a component species of air. The component fraction of a species in a fluid
can be expressed in terms of the species mass fraction Mð Þ or the species density ρMð Þ,
where the two are related by the overall fluid density ρfð Þ as follows:

M � mass of a species
mass of fluid mixture

: (2.30a)

ρM � mass of species
volume of fluid mixture

¼ ρfM: (2.30b)

Since the species density equals the mass fraction of a species per unit volume, it can
be summed over all species in the fluid to obtain the overall fluid density:

ρf �
mass of fluid

volume of fluid
¼
XNspecies

i¼1

ρM,i: (2.31)

In this expression, Nspecies is the total number of species in a fluid (and i is a
summation index).

Since the density of an individual species ρMð Þ is an intensive quantity, its rate of
change in a control volume is governed by the Reynolds transport theorem. If there are
no chemical reactions (molecules do not change), the generation term for species will
be zero, like that for mass. Species, such as mass and momentum, can be transported
across the surface boundary by convection based on u (which represents the mean
motion of molecules at a point). However, a species, can also be spread by diffusion
through the random motion of molecules. For example, consider the spread of dye in
water, where the dye represents an individual species (dye has a distinct chemical
structure). If a drop of concentrated dye is released at one point in a container of still
water u ¼ 0ð Þ, the dye will slowly spread until its concentration is uniform and diluted
throughout the container. Its spread is due to molecular diffusivity of one species
(in this case, dye molecules) within a fluid (in this case, water molecules), where the
mass diffusivity is denoted ΘM .
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The molecular flux of a species in a miscible fluid can be described by Fick’s law.
This law states that the molecular flux per unit area for a species QMð Þ is the product
of the molecular diffusivity ΘMð Þ and the magnitude of the gradient of the species
mass concentration ρMð Þ:

QM ¼ �ΘMrρM ¼ �ΘMr ρfMð Þ: (2.32)

The negative sign on the RHS indicates that a species will flux in the direction from
high-concentration to low-concentration regions. Note that ΘM is the diffusivity of
species of mass fraction M relative to the overall fluid mixture, and thus is defined by
both the species being considered and that of the surrounding fluid. For example, the
diffusivity of oxygen in air is different from that in helium.

Applying the preceding diffusive flux to the RTT of (2.3) yields the Eulerian
molecular species transport PDE, which is expressed as follows in terms of the species
density and then in terms of the species mass fraction (both for the case where fluid
density and molecular diffusivity are constant):

∂ρM
∂t

þr � ρMuð Þ ¼ r � ΘMrρM½ �: (2.33a)

∂M
∂t

þr � Muð Þ ¼ ΘMr2M for constant ρf and ΘM : (2.33b)

Note that the RHS of both equations includes no generation terms, since we have
assumed no chemical reactions.

The PDEs of (2.33) state that the time rate of changes of species (the first term on
LHS) stems from convective flux (the second term on LHS) and molecular diffusion
(the RHS term). To understand the physics better, one may consider two limiting cases:
(a) no time dependence and (b) no convection. For these two limits, (2.33b) becomes

u ¼ ΘM
rM

M

� �
for steady local concentration field: (2.34a)

∂M
∂t

¼ ΘMr2M for diffusion with no convection: (2.34b)

These two PDEs are considered in the following discussion.
For the steady condition with finite concentration gradients, the transport of species

by convection in one direction must be balanced by diffusion in the other direction.
Therefore, the effective diffusion speed is the RHS of (2.34a). This speed is based on
the product of the species diffusivity (ΘM , with units of length2=time) and the
normalized gradient (the term in in parentheses, with units of length�1). Therefore,
diffusion speed increases with the normalized concentration gradient, which scales
inversely with the mixing layer thickness. For example, water vapor has a diffusivity
of about 0:26 cm2=s in air, so a gradient region of about 2 cm in thickness yields a
local diffusion speed of about 0.13 cm/s.

For the zero-convection limit, (2.34b) indicates that the diffusion rate will be fastest
when the Laplacian of the concentration is highest. For example, Figure 2.4a shows a
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species (indicated by the blue color) that has a higher concentration in the right half of
a container with still fluid. There will be a high gradient of this species at the mixing
region (Figure 2.4b), causing the species to spread to the left, where the concentration
is lower (consistent with negative RHS of 2.32). Over time, this spreading reduces the
concentration gradients (Figure 2.4c), so the diffusion rate will lessen. Eventually, the
species concentration will be uniformly distributed throughout the container. In this
case, there are no more concentration gradients, so this uniform concentration will be
the steady-state condition.

For most gas species, the species diffusivity is of the order of 10�5 � 10�4 m2=s.
For most liquids, the species diffusivity is of the order 10�10 to 10�8 m2=s, which is
many times smaller than that for a gas. Thus, the scent of a flower diffuses in a room of
still air much faster than dye moves in a still pool. An increase in temperature will
increase ΘM for both gases and liquids since temperature increases the random motion
of molecules. Therefore, a fragrance diffuses faster in warm air. Molecular diffusivity
is generally measured and empirically defined (like that for viscosity and thermal
conductivity) at a reference temperature. For example, Table A.1 gives the NTP
diffusivity of methane in air and of ethanol in water.

High 2M
M 

(a)

(b)

(c)

M

M

D

Figure 2.4 Mixing of fluids: (a) a white fluid on the left and a blue fluid on the right, showing an
intermediate region where the two fluids are mixed; (b) instantaneous mass concentration of the
blue fluid (M), which will diffuse the fastest where the gradient is steepest and the diffusion
direction will be the opposite direction of its gradient (blue fluid diffuses to the left); and
(c) resulting mixing of both fluids at a later time due to molecular diffusion.
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To compare the spread rates of species to that for momentum, one may use the
Schmidt number, which is defined as the momentum diffusivity normalized by the
mass diffusivity:

Sc � momentum diffusivity
mass diffusivity

� μf
ρfΘM

: (2.35)

For air and most gases, the Schmidt number is of order unity, indicating that the mass
and momentum diffusion rates are similar. However, water and most liquids have
small diffusivities (as noted earlier), which leads to high Schmidt numbers (e.g., on the
order of 103). Mass diffusion is therefore much slower than momentum diffusion for a
liquid. Thus, a small region of dye in still water will take much longer to spread out (to
uniform concentration) compared to the time it takes for a small vortex in water to
dissipate its velocity (to a still fluid).

2.2 Thermodynamic Closure and Flow Compressibility

In order to apply the previous conservation equations (for mass, momentum, energy,
and species) when density and temperature vary, relations are needed to determine
how these changes are related to changes in pressure and fluid energy. The relations
are needed to ensure a closed set of equations for solution, and thus can be considered
as the thermodynamic “closure” relations. These relationships are discussed in the
following for both gases and liquids, followed by a discussion of flow compressi-
bility’s impact on velocity.

2.2.1 Thermodynamic Closures

The thermodynamic closure between pressure and density is often termed the equation
of state. For gases, changes in pressure generally lead to significant changes in density.
However, liquid density changes with pressure are often so weak that these changes
are generally ignored. To determine when this is a reasonable assumption, one may
consider a generalized equation of state that can apply to both liquid and gas
compressibility via the empirical Tait equation:

ρ
ρref

� �K

¼ pþ B pref
1þ Bð Þpref

Tait equation of state: (2.36)

This equation employs a compressibility exponent Kð Þ, a pressure factor Bð Þ, and
reference values for density and pressure (ρref and pref ) at NTP conditions (Table A.1).

For liquids at isothermal (constant temperature) conditions, the constants B and K
are much greater than unity; for example, values for water are Bl ¼ 2, 955 and
K l ¼ 7:15 (Thompson, 1972, p. 289). These high values indicate that liquid density
is a very weak function of pressure. For example, a 1% increase in water density at
NTP conditions requires 200 atmospheres of pressure! Thus, water and most liquids
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are generally considered to be incompressible, so the density can be assumed to
be constant.

For gases, there is no pressure factor Bg ¼ 0
� �

, and the pressure–density relation-
ship via K depends on the thermal characteristics of the process. This relationship has
two important thermodynamic limits: isothermal (constant temperature) and isen-
tropic (constant entropy). These limits lead to different values of K , as discussed in
the following.

In an isothermal process, the ideal gas assumption (1.24) combined with constant
temperature yields a simple linear relationship between pressure and density. The
relationship can be expressed in terms of initial values for density and pressure (ρo and
po) as follows:

ρ
ρo

¼ p
po

for gas in an isothermal process: (2.37)

Note that an isothermal process requires either work or external energy transfer to
keep the temperature fixed if there is a volume change. For example, isothermal
compression can be obtained if the process is very slow, so that high heat conduction
to the surroundings ensures a constant internal temperature. Such an isothermal
process requires an increase in fluid entropy.

For an isentropic process, it is important to first define the relationships with respect
to temperature for changes in fluid internal energy eð Þ in terms of the specific heat at
constant volume c8ð Þ and for changes in fluid enthalpy h ¼ eþ p=ρð Þ in terms of the
specific heat at constant pressure cp

� �
:

c8 � ∂e
∂T

����
8¼const:

(2.38a)

cp � ∂h
∂T

����
p¼const:

¼ ∂ eþ p=ρð Þ
∂T

����
p¼const:

(2.38b)

The ratio of these two specific heats γð Þ is defined as follows:

γ � cp
c8

: (2.39)

These relationships can be simplified by defining a “calorically perfect” gas as an ideal
gas for which cp and c8, and thus γ are independent of temperature. The calorically
perfect gas assumption allows a linear relationship between energy and temperature.
For a gas, γ is related to the molecular degrees of freedom and for moderate
temperatures equals 5/3 for a monatomic gas (like helium), and 7/2 for a diatomic
gas (such as oxygen or nitrogen). The latter value γ ¼ 1:4ð Þ is generally also used to
describe the specific heat ratio for air at moderate temperatures.

To see how specific heats impact gas properties due to a temperature change,
consider gas enclosed in a piston chamber, as shown in Figure 2.5. If the piston is
locked in place (constant volume), an addition of heat will cause a gas temperature rise
that is proportional to c8, per (2.38a). If the experiment is instead conducted with a
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free piston (where pressure is constant, so volume expands), an addition of heat causes
a gas temperature rise that is proportional to cp, per (2.38b). If both processes achieve
the same temperature rise, the heat addition required for the free piston is γ times
larger than that for the locked piston. Conversely, if both processes employ the same
amount of heat addition, the temperature rise for the locked piston is γ times larger
than that for the free piston.

If there is no energy transfer nor energy lost due to viscous dissipation, the process is
reversible since the entropy is constant. This is referred to as an isentropic process. For a
calorically perfect gas with isentropic conditions, the specific heat ratio can be used to
relate the changes in pressure, density, and temperature (White, 2016), as follows:

pg
po,g

¼ ρg
ρo,g

 !γ

¼ Tg

To,g

� � γ
γ�1

for gas in an isentropic process: (2.40)

To see the influence of heat transfer on pressure variations for a volume change,
consider piston compression of a gas as shown in Figure 2.6. If the piston is insulated
to ensure no heat transfer, the process is adiabatic. Thus compressing the chamber
will cause an increase in density, temperature, and pressure. If this adiabatic process
also has negligible energy losses due to gas viscosity, it will be an isentropic process
and the pressure will rise with density per (2.40). If, on the other hand, the temperature
is to be held fixed (isothermal), heat must flow outside of the control volume through
the surface, such as by a cooling water jacket. In this case, the gas pressure rises
linearly with density increase per (2.37).

p 

Constant

volume

Constant
pressure

Free piston

Locked piston

Figure 2.5 Pressure dependence on specific volume (inverse of density) for gas in a piston
chamber based on two different heat-addition processes: a constant volume (locked piston)
process and a constant pressure (free piston) process. The free piston requires γ-fold heat
addition to have the same temperature rise as the locked piston.
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One may also compare the pressure–density relationship for a gas compared to that
for a liquid. If one converts (2.37) or (2.40) to the form of (2.36), the isothermal
process for a gas is consistent with K g ¼ 0 and Bg ¼ 0, while the isentropic process
for a gas is consistent with K g ¼ γ and Bg ¼ 0. Thus, the Tait equation can be thought
of as a generalized relationship that can apply to an isothermal gas, an isentropic gas,
or a liquid for different limiting cases. The difference in the pressure–density relation-
ship for an isentropic gas and for a liquid is qualitatively shown by the log–log plot
of Figure 2.7. This shows that liquid densities are much higher than gas densities, but
the log–log slope is also much higher (K l ¼ 7:15 for water versus for K g ¼ 1:4 air),
since liquids are far less compressible.

Another important state relationship is between energy and velocity. For a calori-
cally perfect gas, (2.38a) provides a linear relationship between temperature and fluid
energy (e ¼ c8T) such that the total energy of (2.23) can be expressed as follows:

etot ¼ c8Tþ 1
2
u2 for a calorically perfect gas: (2.41)

For a system with no heat transfer nor mechanical work applied to the fluid, the
total energy (LHS) will be constant. In this case, the RHS is also constant so an
increase in gas velocity will result in a decrease in temperature. These offsetting
changes represent an increase in the mean motion of the molecules (related to velocity)

p

Isothermal
compression 

Water-cooled
(const. T)

Insulated

Adiabatic
compression

Figure 2.6 Pressure–density relationship for gas in a piston chamber for two compression
processes with the same volume (density change) but different heat transfer conditions:
adiabatic (no heat transfer through surface) and isothermal (no change in temperature).
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at the expense of the random molecular motion (related to temperature). If the flow is
also isentropic (frictionless), then this temperature decrease will be associated with
pressure and density decreases based on (2.40).

2.2.2 Speed of Sound and Mach Number

The preceding relationships can also be used to define the acoustic speed of a fluid (a),
also known as the speed of sound. This is the speed of pressure waves caused by a
small isentropic density disturbance in an otherwise still fluid. As such, it can be
expressed as follows:

a2 � ∂p
∂ρ

����
const:entropy

¼ K
pþ Bpoð Þ

ρ
: (2.42)

The RHS of (2.42) is obtained by assuming a calorically perfect fluidwhose specific heats
are constant. For a liquid, the speed of sound alð Þ is therefore given by the following:

al ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K l pþ Bl poð Þ=ρl

p
: (2.43)

For a gas in an isentropic process, the combination of (2.40) and (2.42) yields Bg ¼ 0
and K g ¼ γ so that the speed of sound is simply

ag ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γR gTg

q
: (2.44)

The speed of sound for example fluids at NTP are given in Table A.1. The large B and
K values for a liquid yield a high sound speed, such as 1,482m/s for water. In
comparison, the speed of sound for a gas is much lower, such as 343m/s for air.
The sound waves move in all directions at a speed relative to the local fluid velocity.

To determine the relative significance of acoustics and convection, the Mach
number is defined as the ratio of flow velocity magnitude to the speed of sound:

M � convection speed
acoustic speed

� u
a
: (2.45)

log(p)

log(  )

Gas 
Liquid 

Kl

Figure 2.7 Pressure–density relationship for a liquid and an isentropic perfect gas (no work
applied nor heat added).
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Since acoustic waves move at a speed relative to the flow convection, the Mach
number gives rise to four different regimes as shown in Figure 2.8 and as listed in the
following:

� M ! 0, incompressible flow, so waves travel at the same speed in all directions
� M < 1, subsonic flow, so waves travel faster in the downstream direction
� M 	 1, transonic flow, so waves only travel in the downstream direction
� M > 1, supersonic flow, so waves travel only downstream in a Mach cone

As an analogy, consider a bridge over a river from which someone drops pebbles
and looks at the waves relative to the bridge. If the river is moving very slowly,
the waves travel in all directions. However, a faster river limits the upstream
wave propagation speed seen from the bridge. In fact, no waves will travel upstream
if the current if the river current is fast enough. The subsonic case can also be
considered via acoustics, where the change in propagation speed gives rise to the
Doppler effect for the sound of a train passing by a stationary listener. The sound
frequency is higher as the train approaches, but then will be lower after it passes and
is moving away.

To quantify how density varies with the Mach number, one may consider the one-
dimensional versions of the momentum and energy PDEs (2.13 and 2.26) along a
variable-area stream tube for isentropic flow. Based on (2.40) and (2.41), the pressure,
density, and temperature all rise as the velocity slows down and these properties reach
their maximum values when the flow stagnates. These values are referred to as the
stagnation temperature, density, and pressure (Tstag, ρstag, and pstag). The stagnation
values may be combined with the Mach number definition to relate the more general
values for a moving flow (Liepmann and Roshko, 1957) as follows:

disturbance 

Figure 2.8 Acoustic waves as the Mach number changes from incompressible flow (M ! 0),
subsonic flow (M < 1), sonic flow (M ¼ 1), and supersonic flow (M > 1).
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Tg

Tstag,g
¼ ρg

ρstag,g

 !γ�1

¼ pg
pstag,g

 !γ�1
γ

¼ 1þ γ� 1
2

M2

� ��1

if isentropic: (2.46)

This relationship can also be used to determine when it is reasonable to assume the
density is approximately constant with respect to velocity changes. For example, an
isentropic acceleration from stagnation conditions to M ¼ 0:2 yields a density reduc-
tion of 2% for γ ¼ 1:4. As such, flows with M < 0:2 are widely considered to be
incompressible. Note that M < 0:2 corresponds to flow speeds less than 68m/s in air
and less than 296m/s in water. As such, many gas flows and the vast majority of liquid
flows can be considered incompressible.

2.3 Incompressible Flow Characteristics

As discussed in §2.2, M ! 0 corresponds to incompressible flow, indicating changes
in the flow velocity will not affect the fluid density along its path. If all other
mechanisms that can cause changes in density (including combustion, heat transfer,
and mechanical compression) are also negligible, then the density for a fluid element
stays constant along its path, as follows:

Dρf
Dt

¼ 0 for incompressible flow: (2.47)

However, constant density along a fluid path does not mean density is constant
everywhere since a flow may be “stratified” with different densities. For example,
atmospheric flows are generally stratified since higher altitudes tend to correspond to
lower densities. Similarly, ocean flows can be stratified whereby regions of increased
salt concentration are denser than those with less salinity. If stratification can also be
neglected, the fluid density can be considered constant and uniform throughout, as
follows:

ρf ¼ const: uniform density flow: (2.48)

Such uniform density conditions significantly simplify flow analysis. In the following,
we will consider three field characteristics for a constant density flow: stream function,
vorticity, and velocity potential.

2.3.1 Stream Function

Flow streamlines about a body are an intuitive means of understanding a flow field. In
two-dimensional flows, these streamlines can be quantified through the stream func-
tion ψð Þ for incompressible flow. For such a flow, the velocity field has zero diver-
gence (per 2.8), which be expressed in Cartesian or spherical coordinates (per 1.10a or
1.11a), as follows:
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r � u ¼ ∂ux
∂x

þ ∂uy
∂y

þ ∂uz
∂z

¼ 0: (2.49a)

r � u ¼ 1
r2

∂ r2urð Þ
∂r

þ 1
r sin θ

∂ uθ sin θð Þ
∂θ

þ ∂ uϕ
� �
∂ϕ

	 

¼ 0: (2.49b)

If the flow is further limited to be two-dimensional in Cartesian coordinates (uz ¼ 0
and no gradient in the z-direction) or axisymmetric in spherical coordinates (uϕ ¼ 0
and no gradients in the ϕ-direction), the respective stream functions can be defined
such that they satisfy the incompressibility condition:

∂ψ
∂y

� ux and
∂ψ
∂x

� �uy for x, yð Þ Cartesian flow: (2.50a)

∂ψ
∂r

� �r sin θ uθ and
∂ψ
∂θ

� r2 sin θ ur for r, θð Þ spherical flow: (2.50b)

In particular, one may show that the stream function automatically satisfies incom-
pressibility by substituting (2.50a) or (2.50b) into (2.49a) or (2.49b).

Once obtained, the stream function field can help describe the local flow character-
istics. For example, lines of constant ψ help describe the instantaneous flow direction
since these “streamlines” are everywhere parallel to the velocity. Furthermore, for
steady flow, the volumetric flow between a pair of streamlines becomes constant. This
means that the product of the velocity and the cross-sectional area is also constant, so a
reduction in the gap between two streamlines indicates a local increase in velocity.
Therefore, the flow streamlines give an indication of the velocity direction as well as
the changes in velocity magnitude.

2.3.2 Vorticity and Irrotational Flow

While the stream function characterizes the direction of a fluid element relative to a fixed
coordinate system, vorticity characterizes the rotationality of a fluid element about itself.
In particular, vorticity ωð Þ is defined as the curl of the velocity field. In the following, we
consider Cartesian and cylindrical forms of the vorticity. The vorticity vector for a
Cartesian coordinate system and the associated vorticity magnitude are given as follows:

ω � r
 u ¼ ∂uz
∂y

� ∂uy
∂z

� �
ix þ ∂ux

∂z
� ∂uz

∂x

� �
iy þ ∂uy

∂x
� ∂ux

∂y

� �
iz: (2.51a)

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
x þ ω2

y þ ω2
z

q
(2.51b)

The Cartesian vorticity components in (2.51b) are the three terms in parentheses in
(2.51a), and the magnitude of the vorticity is a scalar field that shows the degree of
rotationality throughout the flow.

The vorticity for a cylindrical coordinate system with the axial symmetry (uz ¼ 0
and no changes along the z-axis) is given as follows:
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ω � r
 u ¼ 1
r

∂ ruθð Þ
∂r

� ∂ur
∂θ

� �
iz for axial cylindrical symmetry: (2.52)

In this simplified flow, ωz is the only vorticity component. A flow with finite
(nonzero) vorticity for any of its components is considered a rotational flow.

Based on the two preceding forms in Cartesian and cylindrical coordinates, one
may define two fundamental flows of uniform vorticity: the linear shear and the rigid
vortex flows, which have only one velocity component. The linear shear flow has
parallel streamlines (in one direction), but the velocity magnitude changes linearly in a
direction normal to these streamlines. For example, Figure 2.9a shows a flow in the x-
direction, where the speed uxð Þ varies linearly with y. In this case, ω ¼ ωziz, and the
vorticity magnitude describes the flow shear:

ωshear ¼ ωz ¼ ∂ux
∂y

����
���� ¼ const: linear shear flow: (2.53)

Such a shearflowcanoccurwhen afluidmoves along awallwhere itmust come to rest at the
wall due to the no-slip condition (e.g., Figure 2.3) or when two fluids move in parallel but at
different velocities (e.g., where a high-speed jet enters into a lower-speed surroundingflow).

The rigid vortex flow has cylindrical streamlines with a tangential velocity uθð Þ that
increases linearly with radius rð Þ, as shown in Figure 2.9b. In this case, the vorticity is
given by the following:

ωvortex ¼ 2uθ
r

����
���� ¼ const: rigid vortex flow: (2.54)

This result shows that vorticity is equal to twice the fluid angular velocity. This is
called a rigid vortex flow since it acts as if it is in solid body rotation (where viscosity
is effectively infinite).

y

ux

�shear=const.

r

u�

�invisid vortex=0

r

u�

�rigid vortex=const.

(a) (b) (c)

Figure 2.9 Schematic of simple flows, with dashed lines indicating streamlines and arrows
indicating local velocity vectors for (a) linear shear flow, (b) rigid vortex, and (c) inviscid
vortex. The flows include a marker ( ) that only rotates along a fluid path when there is
vorticity, and thus does not rotate for the inviscid vortex.
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In contrast to the flows of (2.53) and (2.54), a flow with no vorticity is termed
irrotational. An example of an irrotational cylindrical flow is the inviscid vortex given
by the following:

uθ ¼ const:
r

inviscid vortex flow ω ¼ 0ð Þ: (2.55)

As shown in Figure 2.9c, the flow streamlines still circulate about the origin, but a
fluid element in this flow does not rotate about itself (as shown by the marker in the
figure). Therefore, this flow is irrotational.

In reality, most flows will have some portions that are rotational and other portions that
are irrotational. For example, a circular vortex caused by a drain in a sink (or in the eye of a
hurricane) will generally have a rotational inner core that follows (2.54) beyond which the
vorticity will weaken and can eventually transition to an inviscid outer region that follows
(2.55). Similarly, the two-dimensional flow over a wall can have a nearly linear shear near
thewall per (2.53), but far from thewall theflow streamlinesmay be approximately dictated
by irrotationalflow. For example, theflow in Figure 2.10a shows a viscous rotational region
of thickness δ beyond which y > δð Þ the flow is approximately irrotational.

For a two-dimensional flow in the x-y plane, where ωz is the only vorticity compon-
ent, one may take the spatial derivatives of (2.50a) and substitute them into (2.51a). The
result is a Poisson equation for the stream function and the vorticity given as follows:

r2ψ ¼ �ωz: (2.56)

This result shows that the stream function can be used to determine the vorticity field
(or vice versa) for a two-dimensional flow. However, a flow that is irrotational
throughout allows additional characterization, as discussed in the following section.

2.3.3 Velocity Potential and Superposition

A flow that is irrotational ω ¼ 0ð Þ gives rise to another flow field variable: the velocity
potential, Φ: This field arises for zero vorticity since it corresponds to r
 u ¼ 0 (per

(a) (b) 

u

y

uwall = 0

u

y

uwall  0

Figure 2.10 Simple velocity fields for flow past a stationary wall showing (a) no-slip
conditions where viscosity effects cause the velocity to be zero at the wall (u ¼ 0 at y ¼ 0)
resulting in a boundary layer thickness (δ); and (b) slip conditions where viscosity effects are
ignored so that only the normal component of velocity is zero at the wall.
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2.51), and since r
 rqð Þ ¼ 0 for any scalar field q, the velocity potential can be set
as q, as follows:

rΦ � u: (2.57)

A flow for which Φ can be defined in this way is called a potential flow. While this
requires the flow to be irrotational, it does not require the flow to be incompressible.
However, if incompressibility is additionally assumed, this combination yields the
following:

r � u ¼ 0

r
 u ¼ ω ¼ 0
for irrotational incompressible flow

If one combines (2.57) and (2.58a), it can be shown that the velocity potential
satisfies a Laplacian PDE, and if one combines (2.56) and (2.58b) it can be similarly
shown that the two-dimensional stream function also satisfies a Laplacian PDE:

r2ψ ¼ 0

r2Φ ¼ 0
for irrotational incompressible flow

A key advantage of the Laplacian forms of (2.59) is that linear superposition can be
used for stream functions and for velocity potentials. For example, the combination of
three stream functions results in a new stream function that also satisfied (2.59):

r2 ψ1 þ ψ2 þ ψ3ð Þ ¼ r2ψ1 þr2ψ2 þr2ψ3 ¼ 0 ¼ r2ψ: (2.60)

A similar expression can be given for the combination of the velocity potentials and of
the associated velocities. As a result, the combined stream function, velocity potential,
and velocity field are the linear sums of the individual fields, as follows:

ψ ¼ ψ1 þ ψ2 þ ψ3

Φ ¼ Φ1 þ Φ2 þ Φ3

u ¼ u1 þ u2 þ u3

superposition of irrotational incompressible flows:

This superposition principle allows one to create a wide range of flow fields by
combining fields of simple flows.

2.3.4 No-Slip versus Slip Boundary Conditions

As mentioned previously, flows often have rotational (viscous) and irrotational
(inviscid) regions. For a stationary wall, viscosity results in a no-slip boundary
condition, so the fluid velocity at the wall will be zero (per 1.13), which causes a
velocity shear as shown in Figure 2.10a. However, inviscid flow allows a slip
boundary condition on the surface so only the normal component will be zero (the
tangential component is free), as shown in Figure 2.10b. These two boundary condi-
tions can be expressed as follows:

(2.59a)

(2.59b)

(2.61a)

(2.61b)

(2.61c)

(2.58a)

(2.58b)
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u ¼ 0 no-slip condition on a stationary wall: (2.62a)

u � n ¼ 0 slip condition on a stationary wall: (2.62b)

Often, onemay employ the slip boundary condition and the irrotational PDEs to help describe
the flow far from the wall, whereas the no-slip boundary condition and the irrotational PDEs
are needed to describe the flow near the wall and to describe the wall shear stress. These two
limits of inviscid flow and viscous flow are considered in the next two sections.

2.4 Inviscid Incompressible Flow and Froude Number

2.4.1 Inviscid Irrotational Bernoulli Equations

If one can neglect the viscous effects, then the flow may be assumed to be irrotational.
If one further assumes incompressible flow, then the conditions of (2.58) are satisfied.
As shown in the following, the result allows us to directly relate pressure and velocity
fields through the fluid momentum equation. To show this, the incompressible
momentum transport of (2.21) for no viscosity can be expressed as follows:

∂u
∂t

þ u � rð Þu ¼ � 1
ρf
rpþ g for incompressible inviscid flow: (2.63)

One may use the vector dot product identity to rewrite the second term of this LHS as
follows:

u � rð Þu ¼ 1
2
r u � uð Þ � u
 r
 uð Þ ¼ 1

2
ru2 � u
 ω: (2.64)

For zero vorticity, the second term on this RHS is zero and the remaining term can be
substituted into (2.63). If the flow is also steady, (2.63) can be rearranged to express the
pressure gradient as the sum of a dynamic component and a gravitational component:

rp ¼ �1=2ρfru2 þ ρfg ¼ rpð Þdyn þ rpð Þgrav if also steady: (2.65)

The first term on this RHS is the fluid dynamic pressure gradient (due to changes in
velocity), and the second term is the gravitational pressure gradient (due to body
forces). If gravity acts downward (in the negative y-direction), this second term can be
expressed as follows:

rpð Þgrav � ρfg ¼ �ρfgiy: (2.66)

This term is sometimes called the hydrostatic effect because it determines the pressure
increase with depth in still water.

Integration of (2.65) using the RHS of (2.66) can therefore be used to yield the
“total” pressure field as follows:

ptot � pþ 1=2ρfu
2 þ ρfgy ¼ const: steady incompressible inviscid flow: (2.67)
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This is the irrotational Bernoulli equation and shows that the total pressure is constant
throughout an incompressible irrotational steady flow field (not just along a stream-
line). This result also allows us to obtain the local flow pressure pð Þ given the local
flow speed uð Þ and height yð Þ.

For a fixed height, the stagnation pressure is the pressure recovered if the flow is
brought to rest, and the corresponding pressure rise for this process is the dynamic
pressure pdyn

� �
, as follows:

pstag � pþ 1=2ρfu
2 ¼ const:

pdyn � 1=2ρfu
2 for constant depth

This relationship shows that the maximum pressure occurs when the flow comes to
rest, while the minimum pressure occurs where the local flow speed is highest (note
that pstag ¼ ptot at y ¼ 0). A similar qualitative relationship between static and stagna-
tion pressures was found for compressible flow as noted by (2.46).

2.4.2 Froude Number

The result of (2.67) can be simplified if the hydrostatic effects are negligible. To
determinewhen this assumption is reasonable, onemay compare effects of hydrodynamics
to hydrostatics (on the RHS of 2.67) using a dimensionless parameter called the Froude
number. To obtain this parameter, we identify the characteristic length in the gravitational
direction as Dy and the characteristic speed as uD, such as the body height and freestream
velocity as shown in Figure 2.11a. We then assume that all other characteristic lengths

(a)

(b)

uD

D

uD

Dy

D

Figure 2.11 Example of characteristic flow scales for velocity and length, for (a) an external
uniform flow over a body, which has a length D and a height Dy; and (b) an internal pipe flow
that has a mean flow velocity based on uD and pipe diameter D.

(2.68a)

(2.68b)
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and velocities in the domain are proportional to the characteristic length scale and velocity
scale. These two values are then used to normalize the length and velocities in (2.65),
while the pressure is normalized with twice the dynamic pressure (2.68b):

u∗ ¼ u=uD: (2.69a)

r∗ ¼ Dyr: (2.69b)

p∗ ¼ p= ρfu
2
D

� �
: (2.69c)

Applying these nondimensional values to the steady-state version of (2.63) yields the
following:

r∗p∗ ¼ �1=2r∗ u∗ð Þ2 � iy=FrD: (2.70)

The first term on the RHS represents the hydrodynamic effects, while second term
represents the hydrostatic effects and is proportional to the inverse of the domain
Froude number FrDð Þ, which is given as follows:

FrD � u2D
gDy

: (2.71)

Thus, the Froude number represents the ratio of the convective effects (hydrodynam-
ics) to the gravitational effects (hydrostatics).

The Froude number can be used to assess various flow limits. For FrD ! 0, the
velocity effects are negligible so that hydrostatics determine the pressure gradient. For
FrD ! ∞, the effect of hydrostatics is negligible so that the hydrodynamics determine
the pressure gradient. Gas flows tend to have a combination of high velocities and
smaller scales such that FrD > 100, so hydrostatic effects can be neglected. For liquid
flows, the velocities are often smaller, so both effects can be important. For example, a
submarine moving at 4m/s with a body depth of 10m yields FrD ¼ 0:25, such that the
hydrostatics will be roughly four times stronger than hydrodynamics. As another
example, a fish at moving at 2m/s with a body height of 10 cm has FrD ¼ 4, so
hydrodynamic effects will instead be roughly four times stronger.

2.5 Viscous Incompressible Flow and Reynolds Number

In this section, we retain our assumption of incompressible flow but reintroduce the
effects of rotationality and viscosity in the momentum equation. The relative importance
of these viscous effects is then quantified by the nondimensional Reynolds number.

2.5.1 Viscous Incompressible Flow Equations

For incompressible flow with constant viscosity, the continuity and momentum
equations are respectively given by the Navier–Stokes equations of (2.8) and (2.21)
and are restated as follows:
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r � u ¼ 0: (2.72a)

ρf
∂u
∂t

þ ρf u � rð Þu ¼ ρfg�rpþ μfr2u: (2.72b)

This is a closed set of PDEs since it contains two variables (u and p) and two
equations. The equations can be expressed in Cartesian tensor form (with a repeated
index indicating summation), as follows:

∂ui
∂Xi

¼ 0 for i ¼ 1, 2, and 3: (2.73a)

∂ui
∂t

þ uj
∂ui
∂Xj

¼ gi �
1
ρf

∂p
∂Xi

þ μf
ρf

∂
∂Xj

∂ui
∂Xj

� �
for j ¼ 1, 2, and 3: (2.73b)

The last term on the RHS of (2.73b) suggests the definition of kinematic viscosity:

nf � μf=ρf : (2.74)

The kinematic viscosity is effectively the momentum diffusivity per unit mass (instead
of per unit volume as in μf ) and has metric units of m2=s:

For spherical coordinates with azimuthal symmetry (2.18d), the incompressible
continuity equation, the momentum equations of (2.72) and the spherical Laplacian
operator can be written as follows:

1
r2

∂ r2urð Þ
∂r

þ 1
r sin θ

∂ uθ sin θð Þ
∂θ

¼ 0: (2.75a)

∂ur
∂t

þ ur
∂ur
∂r

þ uθ
r

∂ur
∂θ

� u2θ
r
¼ gr �

1
ρf

∂p
∂r

þ nf r2ur � 2ur
r2

� 2
r2

∂ uθ sin θð Þ
sin θ ∂θ

	 

:

(2.75b)

∂uθ
∂t

þ ur
∂uθ
∂r

þ uθ
r

∂uθ
∂θ

þ uruθ
r

¼ gθ �
1
ρf r

∂p
∂θ

þ nf r2uθ þ 2
r2

∂ur
∂θ

� uθ
r2 sin2θ

	 

:

(2.75c)

r2q ¼ 1
r2

∂
∂r

r2
∂q
∂r

� �
þ 1
r2 sin θ

∂
∂θ

sin θ
∂q
∂θ

� �
: (2.75d)

In the momentum equations of (2.75b) and (2.75c), the viscous terms are associated
with the square brackets and kinematic viscosity.

2.5.2 Reynolds Number

To identify flow regimes with respect to the influence of viscosity, it is useful to
simplify the conditions by neglecting gravitational effects (consistent with FrD ! ∞)
and assuming steady flow. In this limit, the Cartesian momentum equation (2.73b) in
vector and tensor form is as follows
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ρf u � rð Þu ¼ �rpþ μfr2u: (2.76a)

uj
∂ui
∂Xj

¼ � 1
ρf

∂p
∂Xi

þ nf
∂
∂Xj

∂ui
∂Xj

� �
for j ¼ 1, 2, and 3: (2.76b)

The steady-flow assumption is reasonable if the boundary conditions and flow geom-
etry are fixed in time (with no external forcing) and if the effects of viscosity are
significant enough to prevent the flow from becoming unstable (as will be discussed
later). The resulting PDE of (2.76) includes a convection term (LHS) as well as
pressure and viscous terms (RHS). For most flows about a surface, pressure is critical
to the surface stresses, regardless of whether the flow is viscous or inviscid. However,
the convection and viscous terms are not always as critical. To characterize their
relative influence, the momentum PDE can be made nondimensional but done such
that pressure terms are always retained.

To make the PDE of (2.76) dimensionless, three characteristic scales are needed.
For the first two, we employ a characteristic length scale Dð Þ and a characteristic flow
velocity uDð Þ, as shown in Figure 2.11. As an external flow example, D can be based
on body length and uD on the freestream velocity far upstream of the body. As an
internal flow example, D can be based on a pipe diameter and uD on the area-averaged
flow speed through its cross section. The flow density ρfð Þ is used as the third scaling
variable (as in 2.69c) in order to normalize pressure. The resulting dimensionless
variables then become

u∗ ¼ u=uD: (2.77a)

x∗ ¼ x=D: (2.77b)

p∗ ¼ p= ρfu
2
D

� �
: (2.77c)

Applying these dimensionless variables to (2.76a) yields the following:

rp∗ ¼ � u∗ � rð Þu∗ þ 1
ReD

r2u∗: (2.78)

The resulting momentum equation includes the domain Reynolds number ReDð Þ
defined qualitatively and quantitatively as follows:

ReD � convection effects on pressure
viscous effects on pressure

� ρfDuD
μf

: (2.79)

The quantitative definition of ReD results from making the PDE dimensionless, while
the qualitative definition stems from comparing the two terms on the RHS (the first is
the convection term, and the second is the viscous term) of (2.78). The nondimen-
sional PDE has two important consequences: similarity and characterization.

In terms of similarity, the solution to this dimensionless PDE will be the same for
all flows of a given ReD and domain shape. This flow similitude is often useful when
conducting experiments. For example, the nondimensional velocity field obtained for
a small model in a wind tunnel will be the same as that for a large model in flight so
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long as the ReD and the geometry of the domain (boundaries and body) are the same.
As such, the ratio of convection to viscous effects will only be a function of ReD
regardless of any changes in D, uD, ρ or μ.

In terms of characterization, the PDE also shows that ReD represents the relative
importance of convection and viscous terms, which leads to various Reynolds number
regimes, as discussed in the next section.

2.6 Reynolds Number Regimes

To characterize Reynolds number regimes, it is helpful to first define laminar flow as
dynamically stable viscous flow. As such, a laminar flow has enough viscosity to
prevent an unsteady perturbation from causing flow instabilities, so a flow will return
to a steady state after it is perturbed. Therefore, laminar flows can only remain
unsteady if they are continually driven by unsteady forces. For example, laminar
blood flow is only unsteady due to the pulsatile nature of the heart. Since laminar flow
is often steady, (2.78) is appropriate. The steady linear shear flow of Figure 2.10a is an
example of a laminar flow (which is so named since these flows often have streamlines
stacked in layers, i.e., in lamina).

In general, laminar flow is ensured when the viscous effects (relative to the
convection effects) are large enough, which occurs when the Reynolds number is
small enough ReD « 1ð Þ. In particular, we define a critical Reynolds number ReD,critð Þ
as the maximum value for laminar flow with a given domain geometry, so the flow
will be laminar if ReD < ReD,crit. In the following, we consider several Reynolds
number regimes: ReD ! 0, ReD « 1, ReD 	 1, and 1 « ReD < ReD,crit (all of which
are laminar) as well as ReD > ReD,crit (which includes transition to turbulence). For
the laminar conditions discussed, we will assume there is no unsteady forcing nor
effects of initial conditions, so the flow will be steady and (2.76) and (2.78) are
generally applicable.

2.6.1 Laminar Flow Regimes

The limit of ReD ! 0 is called creeping flow, and such a flow is always laminar. If we
apply this limit to the steady dimensionless momentum equation (2.78), the convec-
tion terms will be negligible compared to the viscous terms. Retaining the pressure
term (since it is important for all Reynolds numbers), the resulting dimensional
momentum PDE (assuming there is no unsteady forcing) becomes

rp ¼ μfr2u for ReD ! 0 and steady flow: (2.80)

This result indicates that pressure stresses balance the shear stresses at every point in
the flow. And because this PDE is linear, it is theoretically tractable for a variety of
simple geometries and conditions.
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The next regime of ReD«1 occurs when the convection term in (2.78) has a finite
but weak effect on the overall flow. In this case, the nonlinear convective term (LHS)
can be linearized using the freestream velocity u∞ð Þ to obtain the following:

ρf u∞ � rð Þu ¼ �rpþ μfr2u for ReD « 1 and steady flow: (2.81)

This laminar flow regime is called linearized flow due to the convection term linear-
ization. It has also been called Oseen flow, since this linearization was proposed by
Oseen (1910) for the theory of flow over surfaces. Since (2.81) is a linear PDE,
analytical solutions are available for simple geometries (e.g., parallel flow and small
shape changes), and the results are often reasonable for ReD < 0:1. However,
obtaining these solutions is often more complicated than for (2.80) due to the added
convection term.

For the intermediate condition of ReD 	 1, both the convective and viscous effects
may have a strong influence on the pressure gradient. As such, convection cannot be
generally neglected nor linearized, and instead must be retained in the steady momen-
tum equation, as in (2.76), as follows:

ρf u � rð Þu ¼ �rpþ μfr2u for ReD 	 1 and steady flow: (2.82)

Some simple geometry cases still allow a theoretical flow solution for this laminar
flow regime. In particular, a flow that is unidirectional with velocity gradients only
normal to the flow will cause the LHS convection term to be zero, so the solution
simply balances pressure stress and viscous stresses. For example, parallel flow
between two plates (one fixed and one moving with the flow direction) gives rise to
a linear shear flow, as in Figure 2.9a and the vorticity of (2.53). Other examples are the
Poiseuille solutions for parallel flow in a circular pipe or between two plates (White,
2016). However, flows that change direction within the domain will cause the LHS
convection term to be significant, which makes the PDE nonlinear and generally
renders it analytically intractable unless the convection effects are weak.

If one considers the limit of ReD » 1, the convection effects may be much stronger
than the viscous effects. If one further considers conditions where the flow is stable
ReD < ReD,critð Þ and is not subjected to unsteady forcing, the flow remains laminar
and we retain the same PDE as (2.82):

ρf u � rð Þu ¼ �rpþ μfr2u for 1 « ReD < ReD,crit and steady flow: (2.83)

For laminar flow at very high Reynolds numbers, one is tempted to assume that
viscous effects are generally weak since they appear to be negligible when applying
ReD ! ∞ for (2.78). However, viscous effects will be generally important for ReD»1
whenever there is a high shear region (e.g., due to the no-slip condition on a stationary
surface). In fact, viscous effects will be strong for unidirectional flows with velocity
gradients only normal to the flow (e.g., Poiseuille pipe flow) since the convection
term will again be zero. Even when the flow is not unidirectional, viscous effects
can still be important for ReD » 1 but are constrained to small regions where velocity
shear is high but then can be negligible everywhere else.
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In particular, viscous effects will be significant very near any solid surfaces due to
the no-slip condition, but an inviscid assumption may be reasonable for the rest of the
flow. For example, the flow shown in Figure 2.12a has a velocity-gradient region (of
height of δ) where viscous effects are important and determine the wall shear stress.
This region is known as the boundary layer (Prandtl, 1904) and δ is the boundary-
layer thickness. Above the boundary layer, the flow may be considered uniform and
inviscid, as shown in Figure 2.12b. As may be expected, δ=D is small for a high ReD
(the thin boundary-layer assumption) but can vary greatly in size. For example, δ can
be a kilometer for an atmospheric boundary layer or a few millimeters for the flow
over a bird’s wing.

As previously noted, a flow with ReD»1 with changes in flow direction can often be
divided into small viscous regions and large inviscid regions. For flows over a body, the
“inner region” is defined as near the surface with significant viscous effects, while the
“outer region” is defined as an inviscid field away from the surface. The outer region can
be described with the irrotational PDEs of §2.5. Employing the thin boundary-layer
approximation δ«Dð Þ, the inner region flow satisfies the two additional assumptions:

� The streamwise gradients are weak relative to the wall-normal gradients.
� The wall-normal velocities are small compared to the streamwise velocities.

Applying the preceding assumptions to the two-dimensional flow of Figure 2.12a,
the steady x- and y-momentum equations are simplified (by neglecting small-order
terms) as follows:

(a) 

(b) 

Inviscid region

Boundary-layer region x

y

Viscous attached

boundary-layer region

Inviscid

region Separated

region

Figure 2.12 Flows with at ReD » 1: (a) zoom-in of slowly growing boundary layer of local
thickness δ along a flat plate of length D with uniform velocity above the plate; and (b) the
boundary layer along an object of length D, where the flow separates of the aft surface (creating
recirculating flow) whereby the viscous region is no longer thin and attached.
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ρfux
∂ux
∂x

þ ρfuy
∂ux
∂y

¼ � ∂p
∂x

þ μf
∂2ux
∂y2

qp
∂y

¼ 0

for a thin laminar boundary layer

The first equation (2.84a) is the x-momentum whereby streamwise convection
(LHS terms) is balanced with the streamwise pressure gradient and the tangential
shear stress (RHS terms). The second equation (2.84b) is the y-momentum whereby
the convection and stress terms are small compared to those in the first equation, so the
wall-normal gradient is zero, yielding a constant pressure across the boundary layer
thickness. Therefore, the inviscid pressure distribution just above the boundary layer
is the same as the pressure distribution on the wall.

For the simplified case of a smooth flat plate in the x-direction with no streamwise
pressure gradient, the theoretical velocity profile is given by the Blasius solution
(White, 2016). This profile is a function of the wall-normal distance yð Þ, the
boundary-layer thickness (δ, defined as the height where the velocity is 99% of the
freestream value), and the Reynolds number based on downstream distance Rexð Þ.
The Blasius theoretical profile can be modeled as follows:

u=u∞ � tanh 1:65 y=δþ y=δð Þ3
h i

δ � 5:29Re�1=2
x

� �
x

Rex � ρfu∞x=μf

for laminar flow e:g:, Rex < 106
� �

This result shows that the velocity profile varies smoothly within the boundary layer
and that the thickness increases with x1=2.

For the more general case of a streamwise pressure gradient and/or wall
curvature, the boundary layer may separate, as shown in part of Figure 2.12b. In
this case, the thin boundary-layer approximation used in (2.84) is no longer
applicable. Furthermore, such separated regions at high Reynolds numbers
will generally become unsteady due to instabilities, leading to transitional or
turbulent flow, as discussed in the following subsection (which will require a different
PDE).

2.6.2 Transitional and Turbulent Flow Regimes

Flow fields are more likely to be inherently unstable as ReD increases since the relative
effect of viscous damping is reduced. This is particularly true if the flow is separated,
which can occur at the rear section of a smooth body as shown in Figure 2.12b. This
separation is more distinct at a sharp corner, as shown in Figure 2.13a. The boundary
layer is attached upstream of the corner, but the flow separates just after the corner.
This shear layer caused by this flow separation becomes unstable, yielding growing
eddy structures (as discussed in §2.7). As such, this portion of the flow is no longer

(2.85a)

(2.85b)

(2.85c)

(2.84a)

(2.84b)
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laminar and instead includes a “transitional” region where the instabilities are growing
though are primarily two-dimensional, followed by a “turbulent” region where the
structures are three-dimensional and complex with a wide range of wavelengths.

If one considers the same corner geometry but with much higher Reynolds
numbers, the transition to turbulence occurs for the portion upstream of the corner,
as shown in Figure 2.13b. For a given geometry, the minimum Reynolds number for
the transition to turbulence is designated as ReD,turb. Comparing the boundary layers
upstream of the corner as shown in Figures 2.13a and 2.13b, it can be seen that the
turbulent one is thicker, which is due to the high degree of momentum mixing. This
mixing makes a turbulent boundary layer fuller and more resistant to flow separation.
This is evident in Figure 2.13b, where the boundary layer remains attached after the
corner (whereas the laminar boundary layer of Figure 2.13a becomes separated).

Since transitional flows ReD,crit < ReD < ReD,turbð Þ and turbulent flows
ReD > ReD,turbð Þ are unstable, they are both governed by the three-dimensional
unsteady Navier–Stokes equations:

ρf
∂u
∂t

þ ρf u � rð Þu ¼ �rpþ μfr2u transitional or turbulent flow: (2.86)

These are the most difficult flow equations to solve (requiring computers) since they
describe a complex flow field that is three-dimensional, unsteady, highly nonlinear,
with a wide range of length and time scales, However, these equations are needed
once the flow is turbulent or transitional.

The Reynolds number range for which transition occurs will vary with domain
geometry. Generally, free boundaries, curvature, and corners tend to lower the critical

(a)

(b)

Figure 2.13 Boundary layers visualized with white dye at a high Reynolds number over a convex
surface (Head, 1982): (a) laminar flow upstream that separates at the corner leading to an
unsteady transition to turbulence; and (b) a turbulent flow upstream of the corner, which remains
turbulent but attached after the turn.

70 Single-Phase Flow Equations and Regimes

https://doi.org/10.1017/9781139028806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781139028806.003


Reynolds number for transition. In particular, the most unstable flows are those away
from walls, such as separation regions, free-shear layers, wakes, and jets. For example,
a planar shear layer can transition based on Reδ,crit � 100, where δ is the shear-layer
thickness. A circular jet (with curvature) can have even greater sensitivity with
ReD,crit � 50, where D is the jet diameter. In contrast, flow in a pipe is stabilized by
the presence of the walls. For example, a smooth circular pipe has ReD,crit � 2, 300:
However, a pipe with a square cross section (whose corners promote instability) yields
ReD,crit � 1, 000, and a curved pipe will also reduce ReD,crit. An attached boundary
layer along a flat plate (with a stabilizing surface and no curvature nor corners) can be
stable up to Reδ,crit � 3, 500, which corresponds to ReD,crit � 500, 000, where D is the
plate length). Roughening the surface for flow in a pipe flow or on a wall will also make
the flow less stable (introducing small corner and curvature flow around the roughness
elements), reducing ReD,crit. Therefore, flow geometry and Reynolds number both play
key roles in the transition to turbulence.

2.6.3 Laminar vs. Transitional vs. Turbulent Flow

The various flow regimes and momentum PDEs discussed in the preceding section are
summarized in Table 2.1. To see the differences between the flow regimes ranging
from creeping flow all the way to turbulent flow, it is helpful to visualize the
competing effects of diffusion to convection and the role of instability
and unsteadiness.

To understand these effects, Osborne Reynolds in 1883 examined water flow in
transparent pipes at various speeds and diameters by releasing a dye in the center of
the pipe to visualize the onset of any flow instabilities. In these celebrated experi-
ments, Reynolds found that a certain combination of diameter and flow speed yielded
transition and turbulence (consistent with the Reynolds number criteria discussed

Table 2.1 Reynolds number flow regimes and incompressible momentum equations in tensor notation
(summation with j ¼ 1,2,3).

Re Regime Momentum PDE

ReD!0 Creeping flow ∂p
∂Xi

¼ μf
∂
∂Xj

∂ui
∂Xj

ReD « 1 Linearized flow ρfuj∞
∂ui
∂Xj

¼ � ∂p
∂Xi

þ μf
∂
∂Xj

∂ui
∂Xj

ReD ~ 1 Nonlinear flow ρfuj
∂ui
∂Xj

¼ � ∂p
∂Xi

þ μf
∂
∂Xj

∂ui
∂Xj

ReD » 1, steady Laminar boundary layer ρfux
∂ux
∂x

þ ρfuy
∂ux
∂y

¼ � ∂p
∂x

þ μf
∂2ux
∂y2

ReD,crit < ReD < ReD,turb Transitional flow ρf
∂ui
∂t

þ ρfuj
∂ui
∂Xj

¼ � ∂p
∂Xi

þ μf
∂
∂Xj

∂ui
∂Xj

ReD > ReD,turb Turbulent flow ρf
∂ui
∂t

þ ρfuj
∂ui
∂Xj

¼ � ∂p
∂Xi

þ μf
∂
∂Xj

∂ui
∂Xj
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previously). For a smooth circular pipe, the experiment of Reynolds and others are
consistent with ReD,crit � 2, 300 and ReD,turb � 4, 000.

The dye experiment by Reynolds visualized the transition from laminar to turbulent
flow. However, it cannot be used to readily investigate ReD ¼ ρfUDD=μfð Þ effects
within the laminar flow regime since the viscous diffusion rate will scale with μf=ρf
while the dye diffusion rate will scale with ΘM , and these two diffusivities are quite
different for a liquid. In particular, the ratio of these two diffusivities is the Schmidt
number Sc ¼ μf=ρfΘMð Þ and is of the order 103 for liquids. However, gases have a
Schmidt number of order unity, so their momentum and mass diffusion rates are about
the same. Therefore, visualizing the competing effects of convection to mass diffusion
for a gas species will also approximately illustrate the competing effects of convection
to viscous diffusion (which scale with ReD). Based on this, we can construct a
hypothetical experiment to investigate the ReD regimes by considering the release
of a tracer gas in a transparent pipe with an air flow and imagining that we can “see”
the species concentration of the tracer gas within this airflow.

Using this approach, Figure 2.14 illustrates the flow conditions ranging from
creeping flow to turbulent flow. For the creeping flow ReD « 1ð Þ of Figure 2.14a,
molecular diffusion (and thus viscous effects) dominate convection, so the tracer
diffuses nearly radially outward from the point of injection. For ReD 	 1 of
Figure 2.10b, downstream convection and upstream diffusion are of the same order

D

1<<ReD<ReD,crit

D

ReD,crit<ReD<ReD,turb

D

ReD>ReD,turb

ReD<<1(a) (b)

(c) (d)

(e)

D D

ReD~1

Figure 2.14 Illustration of the diffusion and convection of a fluid tracer species injected in a
pipe center (at the black dot) for a left-to-right flow with (a) creeping flow, (b) flow with
significant diffusion and convection, (c) high Reynolds number laminar flow, (d) transitional
flow, and (e) turbulent flow.
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(e.g., the balance indicated by 2.34a), so it much easier for the tracer to spread
downstream. For the steady high Reynolds number laminar flow
1 « ReD < ReD,critð Þ of Figure 2.14c, convection will dominate diffusion, so the
tracer moves primarily in the flow direction with only weak transverse diffusion.
This is akin to a thin boundary layer where momentum diffusion is confined to a thin
streamwise region.

If the Reynolds number is increased further such that ReD > ReD,crit and the flow
goes unstable as in Figure 2.14d, the flow is subjected to unsteady flow structures that
serve to increase local mixing with lateral deviations (normal to the mean flow
direction). At yet higher Reynolds numbers where the flow is turbulent
ReD > ReD,turbð Þ as in Figure 2.14e, the flow contains complicated unsteady three-
dimensional structures that substantially increase lateral mixing. This increased
mixing causes the lateral distribution of the species to spread faster for turbulence
than for laminar flow.

Since the turbulent regime leads to high mixing of momentum, this causes the
profiles of the time-averaged velocity in the pipe to be much fuller than the velocity
profile for laminar flow, as shown qualitatively by the profile insets in Figure 2.15.
This is due to high-speed fluid in the pipe center region being moved toward the walls
while low-speed fluid near the walls is transported toward the pipe center. Since the
wall shear stress is proportional to the velocity gradient at the wall (recall 2.20), the
fuller velocity profile for turbulent flow yields a larger average fluid shear stress on the

0.001

0.01

0.1

1

10

10 100 1,000

cfr

ReD

Laminar

Turbulent

104 105 106

Transition

Figure 2.15 Fluid skin friction coefficient for a smooth fully developed pipe flow as a function
of the pipe’s Reynolds number for laminar flow (ReD < ReD,crit), transitional flow (ReD,crit <
ReD < ReD,turb), and turbulent flow (ReD > ReD,turb). The insets qualitatively indicate the
shape of the time-averaged velocity profiles for laminar and mean turbulent flow.
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wall compared to that for laminar flow. These changes can be quantified using the
fluid friction coefficient Cfrð Þ defined as the ratio of the time-averaged wall shear stress to
the mean dynamic pressure, which can be related to the axial pressure gradient:

Cfr � Kwall
1
2 ρfu

2
D

¼ ∂p
∂x

D

2ρfu
2
D

� �
: (2.87)

The LHS dimensionless parameter is also called the Fanning friction factor (and is
one-fourth of the Darcy friction factor, which uses a different normalization).

Based on this definition, the friction coefficient for a circular straight pipe is plotted
in Figure 2.15 for laminar, transitional, and turbulent flow. Laminar flow allows a
theoretical Poiseuille flow solution (White, 2016), but a turbulent regime has no
theoretical solution, so one must rely on empirical models based on experimental
results, such as the Blasius empirical fit (White, 2016). These laminar and turbulent
fluid friction values are both a function of the pipe Reynolds number:

Cfr ¼ 16Re�1
D for laminar pipe flow: (2.88a)

Cfr � 0:08Re�1=4
D for turbulent pipe flow: (2.88b)

As shown in Figure 2.15, turbulence causes an increase in the skin friction coefficient,
consistent with its fuller velocity profile. In between, there is a broad range of
transition paths from laminar to turbulent flow. This is due to the high sensitivity of
instability growth rate to small deviations in flow spatial or temporal uniformity. For
example, slight changes in the entrance to the pipe or surface finish can cause
significant changes in ReD,crit and ReD,turb. Consequently, Cfr in the transitional
regime is difficult to quantify, other than being bounded by the laminar and turbulent
limits (2.88a and 2.88b).

For flat plates, the boundary layers have much fuller profiles when they are
turbulent instead of laminar (like that for a pipe), as shown in Figure 2.16. The
turbulent profile is “fuller” since most of the velocity distribution is close to the

Figure 2.16 Velocity profiles for (a) laminar and (b) turbulent boundary layers of the same
thickness, where the profile of the turbulent time-averaged velocity is much fuller near the wall,
resulting in higher wall shear stress compared to that of the laminar boundary layer.
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freestream velocity. This fuller profile creates a higher-velocity gradient at the wall,
thereby increasing fluid skin friction. For an airfoil, this leads to increased drag, which
is generally detrimental to aerodynamic performance. However, the fuller velocity
profile also increases the boundary layer’s resilience to flow separation. In particular,
turbulent boundary layers are more likely to stay attached on a convex surface
compared to laminar boundary layers (Figure 2.13). For an airfoil, resilience to flow
separation is generally favorable. As such, turbulence can lead to both positive and
negative flow performance characteristics.

2.7 Flow Instability Mechanisms

The root cause for a flow to transform from laminar to transitional to turbulent
conditions is flow instability. In particular, a flow can be considered unstable, stable,
or neutrally stable. A flow is said to be unstable if an initial small perturbation grows
larger over time as it convects. On the contrary, a flow is stable if the perturbations
(with no further forcing) decays in amplitude over time. Energy dissipation by viscous
stresses can cause such a decay. A neutrally stable flow will result in perturbations that
neither grow nor decay.

In general, flow instabilities are related to the flow geometry and Reynolds number
as well as the boundary conditions and any imposed forces. For example, flat plate
boundary layers at high Reynolds numbers are subject to Tollmien–Schlichting
instabilities stemming from streamwise disturbances that grow as they move down-
stream. These same types of instabilities can be found in pipe flow (Lessen et al.,
1968) and other wall-bounded flows. Such wall-bounded instabilities require consid-
eration of viscous effects and can be complex to analyze. However, two of the most
common instabilities, Rayleigh–Taylor and Kelvin–Helmholtz, are inviscid and more
readily analyzable. Their physics and frequencies are discussed in the following
subsection.

2.7.1 Inviscid Flow Instabilities

One may investigate Rayleigh–Taylor and Kelvin–Helmholtz instabilities by con-
sidering two parallel-flowing incompressible immiscible inviscid fluids that have
different densities and velocities, as shown in Figure 2.17. Since they are immiscible,
the interface allows a density discontinuity where Fluid 1 (Figure 2.17a) has density ρ1
and Fluid 2 (Figure 2.17b) has a density ρ2. Since they are inviscid, the interface
allows a velocity discontinuity where Fluid 1 has a velocity field u1 while Fluid 2 has
a velocity field u2. The initial velocities for each fluid field are set as constants
u1,o, u2,oð Þ with a flat interface at yI ¼ 0:

u1 ¼ u1,o with ρ1 for y > 0

u2 ¼ u2,o with ρ2 for y < 0
at t ¼ 0

(2.89a)

(2.89b)
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Since both fluids are incompressible and inviscid, their unsteady flow fields are
each irrotational and so satisfy a Laplacian PDE for their velocity potentials (2.59b) as
follows:

r2Φ1 ¼ 0 for flow in Stream 1: (2.90a)

r2Φ2 ¼ 0 for flow in Stream 2: (2.90b)

Notably, this irrotationality does not apply to the interface since it contains a discon-
tinuous velocity difference, which is an infinitely thin vorticity layer. As such, the
interface is hypothetical since viscosity would cause lead to a smoothly varying
velocity change in a shear layer of finite thickness. Similarly, mass diffusivity would
cause a smoothly varying density change.

Once the discontinuous interface is perturbed, it may become unstable depending
on gravity and/or hydrodynamic effects. The perturbed interface (with height of yI)
can be modeled as a traveling sinusoidal wave that extends infinitely in the x-direction
with perturbations in the y-direction (Figure 2.17b). This sine wave can be described
in terms of an initial amplitude (yI,o, which is a constant) as well as a wavelength lð Þ
and a frequency fð Þ as follows:

yI ¼ yI,oe
i x=l �tfð Þ: (2.91)

The wave thus moves in the x-direction at a speed of f l .
Since the interface joins the two fluids with no thickness, the velocities normal to

the interface must be same on both sides (the tangential velocities can have a
difference). If the curvatures are weak, the normal velocities can be approximated as

(a)

(b)

Perturbed interface

Fluid 2 (r2, u2)

Fluid 2 (r2, u2,o)

Fluid 1 (r1, u1)

Fluid 1 (r1, u1,o)

yI

g = -giy

l

Unperturbed interface

Figure 2.17 An irrotational incompressible flow with an interface that allows a velocity difference
and/or a density difference: (a) initial conditions (no perturbations) with two fluids moving
horizontally and with gravity vector as vertical; and (b) a later time with a perturbed interface
(yI) that has a wavelength (l) that impacts streamlines in the above fluid.
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the vertical velocities such that u1y ¼ u2y at the interface. This boundary condition can
be expressed in terms of the velocity potentials (using 2.57) as follows:

∂Φ1

∂y
¼ ∂Φ2

∂y
a y ¼ yI: (2.92)

If we neglect surface tension between the fluids, the pressure on either side of the
interface will be equal. Based on this assumption, the pressure gradient in the unsteady
Bernoulli equation (2.63) can be neglected at the interface, providing a second
boundary condition:

ρ1
∂Φ1

∂t
þ u1

∂Φ1

∂x
þ yIg

� �
¼ ρ2

∂Φ2

∂t
þ u2

∂Φ2

∂x
þ yIg

� �
at y ¼ yI: (2.93)

Note that the gravity force acts downward, so g ¼ �giy, where g is a positive scalar.
Far from the interface, the interface perturbations will have no effect, so

u1 ¼ u1,o for y ! ∞: (2.94a)

u2 ¼ u2,o for y ! �∞: (2.94b)

This provides the final flow boundary condition.
Since the flow is irrotational and incompressible, the linear superposition principle

of (2.61b) can used to decompose the unsteady potential field as a sum of the initial
unperturbed flow field (2.89 and Figure 2.17a) and the unsteady perturbations that
travel with a wavelength and frequency (Figure 2.17b). Applying the boundary
conditions of (2.92)–(2.94) for a given wavelength yields an ODE for the interface
position (yI) as a function of time and space (Drazin and Reid, 1981). Assuming weak
perturbations, the two eigenvalues of the ODE are frequencies that can be expressed in
terms of the fluid densities, far-field velocities, and the wavelength, as follows:

f ¼
ρ1u1,o þ ρ2u2,oð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ρ1ρ2 u1,o � u2,oð Þ2 � ρ1 þ ρ2ð Þ ρ1 � ρ2ð Þgl

q
l ρ1 þ ρ2ð Þ : (2.95)

The interface perturbation will grow in time if this frequency has an imaginary
component, that is, if the term within the square root is negative. This instability
criterion is next considered for two special limiting conditions: (a) a density difference
with initially uniform velocity; and (b) a velocity difference with initially
uniform density.

The case of a density difference with no initial velocity u1,o ¼ u2,o ¼ 0ð Þ is a
stratified flow for which (2.95) can be used to define the Rayleigh–Taylor instability
frequency as follows:

f ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ρ1 � ρ2ð Þg
l ρ1 þ ρ2ð Þ

s
for Rayleigh�Taylor instability: (2.96)

If the above fluid is lighter than the below fluid ρ1 < ρ2ð Þ, the term in the square root
is positive, so the flow is theoretically stable to perturbations for incompressible and
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inviscid conditions. In particular, a perturbation to the interface will stably oscillate
without growth (though any viscous damping would cause these oscillations to decay
in amplitude). However, if the above fluid is denser than the below fluid ρ1 > ρ2ð Þ, the
flow is dynamically unstable, so any perturbations in the interface will grow exponen-
tially with time. This is called the Rayleigh–Taylor instability. An example of this is
shown in Figure 2.18, where a lighter fluid is placed below a heavier fluid. The
smallest wavelengths grow quickest since these have the highest frequencies, per
(2.96). However, larger and larger wavelengths occur over time, which cause the
interface to become more convoluted, complicated, and distributed over a larger
vertical extent. This generally leads to transition into turbulent flow if viscosity effects
are small. And since this instability is due to the gravitational acceleration acting
normal to the interface, a Rayleigh–Taylor instability can also grow whenever there is
a fluid acceleration in the direction of the lighter fluid.

In the other limit of uniform density ρ1 ¼ ρ2ð Þ with a velocity difference, a
perturbation can lead to a Kelvin–Helmholtz instability. For the conditions shown in
Figure 2.17a, the result of (2.95) for uniform density yields the following:

f ¼ u1,o þ u2,o
2l

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� u1,o � u2,oð Þ2

q
2l

for Kelvin�Helmholtz instability: (2.97)

The first term on the RHS is the real part of the frequency and indicates that
the convective speed of this perturbation (f l ) is equal to the average speeds of
the two fluids, so uI ¼ ½ u1,o þ u2,oð Þ The second term on the RHS is the imaginary
part that of the frequency and indicates that any velocity difference across the
shear layer (regardless of how small or which fluid is moving faster) will create
instability.

While the Rayleigh–Taylor instability (heavy over a light fluid) is intuitive, the
Kelvin–Helmholtz instability is more complex. To understand how this instability

Figure 2.18 A heavier fluid over a lighter fluid that is perturbed and results in an evolving
Rayleigh–Taylor instability (three different instances in times are shown), leading to larger and
more complicated interface instabilities and flow structures at later times (Springel and
Dullemond, 2011).
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mechanism arises, we consider the local pressure relative to the initial pressure poð Þ in
a reference frame moving with the interface speed uIð Þ. As shown in Fig. 2.19a for this
reference frame, the high-speed fluid moves to the right and the low-speed fluid moves
to the left. Since the flow is irrotational, the stagnation pressure within a given fluid
is approximately constant (2.68a). As such, the local static pressure will be higher
when the velocity is low (p > po when u < uo) and lower when the velocity is high
(p < po when u > uo). Next we consider how the velocity varies due to the perturb-
ation valleys and hills shown in Figure 2.19a. Since the flow is incompressible and
since the high-speed flow is moving faster than the interface perturbation, continuity

(a)    

 
 
 
 
 
 
 
 
 
 
 
(b)    
 
 
 
 
 
 
 
 
 

 
 
(c)    
 
 
 
 
 
 
 
 
 

 

Fluid 1 moving at u1–uI  

op p  
op p  

yI 

Eddy 

Braid 

Low-speed flow 

High-speed flow 

Crest 

Valley 

Low-speed flow 

High-speed flow 

op p  

op p  

Fluid 2 moving at u2–uI  

Figure 2.19 Kelvin–Helmholtz instability for two flows moving past each other with different
speeds (and potentially different densities) separated by an inviscid interface: (a) a reference
frame moving at speed of the sinusoidal interface (dashed line) creating variations in the high-
speed fluid streamlines and the pressure field; (b) the local pressure decrease at a crest pulls it
even farther upward while the local velocity increase pulls it faster to the right (and the opposite
occurs for fluid in the valleys); and (c) a schematic of the eddy-and-braid flow after the amplified
instabilities yield interacting vortex structures.

792.7 Flow Instability Mechanisms

https://doi.org/10.1017/9781139028806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781139028806.003


(as discussed in §2.4) will cause Fluid 1 to decelerate in the valleys and accelerate at
the crests. As such, the static pressure of the high-speed fluid will tend to be higher
in the valleys and lower in the crests. If we consider the pressure field of Fluid 2,
we find the opposite effect. Thus, the combination is a pressure difference in the
direction of the surface perturbations. With no counteracting surface tension forces,
this will cause the perturbations to grow. As such, this inviscid flow is always
unstable. As a result, the Kelvin–Helmholtz instability is the most common instability
mode in unbounded flows with velocity gradients (jets, wakes, free-shear flows).

Once the instabilities became large, the interface will no longer be represented by a
simple sinusoidal perturbation. Instead, two-dimensional vortices will form whereby
the fluid at the crest is moving faster on average and therefore pushes to the right and
up, while the fluid in the valleys gets pushed to the left and downward (as in
Figure 2.19b). As a result, the crest fluid eventually overtakes the valley fluid and
the roll-up vortices lead to the “eddy-and-braid” features of Figure 2.19c.

(a)

(b)

Figure 2.20 Images for parallel streams with different velocities where the shear-layer creates
eddy-and-braid structures: (a) transitional conditions with moderate Reynolds numbers yielding
two-dimensional flow (Thorpe, 1971); and (b) fully turbulent conditions at high Reynolds
numbers yielding three-dimensional flow with a large range of length scales (Brown and
Roshko, 1974).
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Note that the Kelvin–Helmholtz instability can be eliminated if there are competing
forces that stabilize the interface or that dampen the perturbation energy. In particular,
a stably stratified flow (lighter fluids moving above heavier fluids) can ensure the
square root of (2.95) is positive for large enough wavelengths. Surface tension can add
another stabilizing force that tends to be strongest at smaller wavelengths (higher
curvatures). The addition of viscosity can diffuse the velocity gradients and dampen
their energy, thereby reducing the growth rate of these instabilities. Therefore, the
Kelvin–Helmholtz instability is more pronounced at higher Reynolds numbers (where
viscous effects tend to be weaker), where it is more likely to induce turbulent flow.

For example, experimental results for parallel streams with velocity differences are
shown in Figure 2.20, where the eddy-and-braid dynamics of Figure 2.19c can be
observed. At the moderate Reynolds number for Figure 2.20a, the roll-up vortices are
nearly two-dimensional, indicating transitional flow. For the higher Reynolds number
of Figure 2.20b, the flow is fully turbulent, with a wide range of three-dimensional,
unsteady, and effectively stochastic structures (as will be discussed in Chapter 6)
superposed over the large-scale eddy-and-braid structures.

2.8 Chapter 2 Problems

As you work through the following problems, show all steps and list any
needed assumptions.

(P2.1) A pond with a volume of 940 m3 has an average fish birth rate of 2,500 per
year and an average death rate of 3,800 per year. For two months a year, the
pond is fed by a creek, which enters the pond with an average flow speed of
0.17m/s, a cross-sectional area of 0:15 m2 and a fish concentration of
0:02 fish=m3. The pond has a spillover outlet to keep its volume constant,
but a screen ensures no fish exit the pond. Starting from (2.1), apply the
Reynolds transport theorem by drawing a control volume for the pond,
define q and evaluate all terms to find the annual rate of change of the fish
population for the pond.

(P2.2) Starting from the integral form of the Reynolds transport theorem (2.1),
derive the Eulerian transport equation (2.3).

(P2.3) Consider a wind tunnel test with a 10 cm
 10 cm square cross section that is
1m long, with steady air flow of 25m/s. Upstream of the test section, there is
a spray nozzle that injects droplets at the same speed as the air flow with an
average drop diameter of 50 μm and a total mass flow rate of 10 grams per
second. Within the test section, evaporation and wall impacts continuously
remove 10% of the drop mass from the airstream. Apply the Reynolds
transport theorem by drawing a control volume for the test section, defining
an appropriate q variable for the transport of water drop mass in the test
section, and quantitively evaluating all four terms (two are volume integrals
and two are area integrals) in (2.1) based on this q.
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(P2.4) Starting with (2.3), (a) obtain the Eulerian x-momentum transport equation
in component form (with ux, uy, uz, Kxx, etc.) by setting the transport
quantity q ¼ ρux, and by considering all the forces that act in the x-direction
using a control volume diagram for pressure stresses and another for viscous
stresses; and (b) then derive the PDE for Dux=Dt assuming
incompressible flow.

(P2.5) Consider a wind tunnel with incompressible inviscid steady flow moving in
the positive x-direction (left to right) through a contraction with an air speed
variation for x > 0 given as uo 1þ x=Lð Þ1=2, where uo ¼ 0:25 m=s and
L ¼ 0:4 m. To analyze this flow, first decompose (2.21) into x- and y-
momentum equations, where y is in the vertical direction. Then obtain
the pressure gradients for air at normal density in the x- and y-directions at
x ¼ 1 m:

(P2.6) (a) Starting from the control volume form of (2.1), derive the Eulerian
species transport PDE using Fick’s law for the diffusive flux, assuming
constant molecular diffusivity. Then identify the physical interpretation of
each term in the resulting transport equation. (b) Using the results from (a),
and assuming incompressible flow, obtain the Lagrangian time derivative for
the species mass fraction DM=Dtð Þ.

(P2.7) Consider steady quasi-one-dimensional air flow moving at 100 m/s and at
NTP in a duct (Station 1) that then expands to twice the cross-sectional area
at a downstream location (Station 2) with no change in altitude nor entropy.
Employing (2.1) and (2.46), write two equations for M1/M2 and T1/T2 and
use these together to solve for M2, and then for pressure change p2-p1ð Þ. (b)
For an incompressible inviscid process for the same area change, find the
resulting pressure change p2-p1ð Þ. (c) Quantify and discuss the differences
between the incompressible and isentropic pressure changes as related to the
average flow Mach number. (d) For an isothermal process with the same
velocity changes as in (a), is energy added to or extracted from the flow?

(P2.8) Consider a lake exposed to still dry air where the water vapor mass fraction
in the air is 3% just above the water surface but reduces to 0% far away.
At a height of 10 cm above the water surface, the vapor mass fraction
gradient is 0.1%/cm and the diffusivity of the water vapor in air is
0:26 cm2=s. Based on Fick’s law, determine the mass flux per unit area of
water vapor. Use this result to determine how much the lake level would
change in one month.

(P2.9) Make a rough approximation of a horizontal slice of a hurricane as a solid
body vortex for the interior (2.54 for r < r1) and as an inviscid vortex for the
exterior (2.55 for r < r1), and assume both regions are incompressible with
negligible radial and vertical velocities. At the interface r1 ¼ 100 mð Þ, these
two regions have the same pressure and tangential velocity u1 ¼ 40 m=sð Þ
and the far-field r ! ∞ð Þ conditions are based on standard conditions for an
altitude of 2,000m (pressure of 79.5 kPa and a density of 1:01 kg=m3). (a)
Determine the radial distribution of the tangential velocity for both the
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exterior and interior regions. (b) Use these velocity distributions to
determine the pressure at the interface p1ð Þ and at the vortex center p0ð Þ.

(P2.10) Starting from (2.7b) and (2.13a), derive the mass and momentum PDEs of
(2.72) in Cartesian coordinates, assuming a constant viscosity.

(P2.11) To define a nondimensional pressure, one may normalize by viscosity,
p∗ ¼ pD= μfuDð Þ, instead of by density. (a) Starting from the PDE of (2.76b)
and normalizing pressure by viscosity, derive a steady dimensionless form of
the PDE in terms of Reynolds number. (b) Use this result to obtain the
creeping-flow dimensional PDE for ReD ! 0.

(P2.12) Consider a thin, two-dimensional, attached, laminar boundary layer along a
wall in the x-direction with ReD » 1: Starting from (2.83), obtain the
relationships of (2.84).

(P2.13) Consider NTP flow of water in a pipe with an inner diameter of 4 cm.
Determine the flow rate ranges (in liters per minute) corresponding to
laminar, transitional, and turbulent flow regimes, then compute the axial
pressure gradient at the start and at the end of the transitional flow range.

(P2.14) Consider a 5m/s wind over initially stagnant water (e.g., a pond) at NTP.
Determine which wavelength(s) can cause a small perturbation to grow into
waves, assuming inviscid flow without surface tension. Discuss how surface
tension and viscosity would affect these waves.
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