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Modular forms and some cases of the
Inverse Galois Problem
David Zywina

Abstract. We prove new cases of the Inverse Galois Problem by considering the residual Galois
representations arising from a fixed newform. Specific choices of weight 3 newforms will show that
there are Galois extensions of Q with Galois group PSL2(Fp) for all primes p and PSL2(Fp3) for all
odd primes p ≡ ±2,±3,±4,±6 (mod 13).

1 Introduction

The Inverse Galois Problem asks whether every finite group is isomorphic to the Galois
group of some extension of Q. There has been much work on using modular forms
to realize explicit simple groups of the form PSL2(F�r) as Galois groups of extensions
of Q (cf. [4–6, 13, 14]). For example, [6, Section 3.2] shows that PSL2(F�2) occurs as a
Galois group of an extension of Q for all primes � in an explicit set of density 1 − 1/210

(and for primes � ≤ 5, 000, 000). Furthermore, it is shown in [6] that PSL2(F�4) occurs
as a Galois group of an extension of Q when � ≡ 2, 3 (mod 5) or � ≡ ±3,±5,±6,±7
(mod 17).

The goal of this paper is to try to realize more groups of the form PSL2(F�r) for
odd r. We will achieve this by working with newforms of odd weight; the papers
mentioned above focus on even weight modular forms (usual weight 2). We will give
background and describe the general situation in Section 1.1. In Sections 1.2 and 1.3, we
will use specific newforms of weight 3 to realize many groups of the form PSL2(F�r)
with r equal to 1 and 3, respectively.

Throughout the paper, we fix an algebraic closureQ ofQ and define the group G ∶=
Gal(Q/Q). For a ring R, we let PSL2(R) and PGL2(R) be the quotients of SL2(R) and
GL2(R), respectively, by its subgroup of scalar matrices (in particular, this notation
may disagree with the R-points of the corresponding group scheme PSL2 or PGL2).

1.1 General results

Fix a newform f (τ) = ∑∞n=1 an qn of weight k > 1 on �1(N) without complex multi-
plication, where the an are complex numbers and q = e2πiτ with τ a variable of the
complex upper half-plane. Let ε∶ (Z/NZ)× → C× be the nebentypus of f.
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Modular forms and some cases of the Inverse Galois Problem 569

Let E be the subfield of C generated by the coefficients an ; it is also generated by
the coefficients ap with primes p ∤ N . The field E is a number field, and all the an are
known to lie in its ring of integers O. The image of ε lies in E×. Let K be the subfield of
E generated by the algebraic integers rp ∶= a2

p/ε(p) for primes p ∤ N ; denote its ring
of integers by R.

Take any nonzero prime ideal Λ of O and denote by � = �(Λ) the rational prime
lying under Λ. Let EΛ and OΛ be the completions of E and O, respectively, at Λ. From
[3], we know that there is a continuous representation

ρΛ ∶G → GL2(OΛ)

such that for each prime p ∤ N�, the representation ρΛ is unramified at p and satisfies

tr(ρΛ(Frobp)) = ap and det(ρΛ(Frobp)) = ε(p)pk−1 .(1.1)

The representation ρΛ is uniquely determined by the conditions (1.1) up to conjuga-
tion by an element of GL2(EΛ). By composing ρΛ with the natural projection arising
from the reduction map OΛ → FΛ ∶= O/Λ, we obtain a representation

ρΛ ∶G → GL2(FΛ).

Composing ρΛ with the natural quotient map GL2(FΛ) → PGL2(FΛ), we obtain a
homomorphism

ρproj
Λ ∶G → PGL2(FΛ).

Define the field Fλ ∶= R/λ, where λ ∶= Λ ∩ R. There are natural injective homomor-
phisms PSL2(Fλ) ↪ PGL2(Fλ) ↪ PGL2(FΛ) and PSL2(FΛ) ↪ PGL2(FΛ) that we
shall view as inclusions.

The main task of this paper is to describe the group ρproj
Λ (G) for all Λ outside of

some explicit set. The following theorem of Ribet gives two possibilities for ρproj
Λ (G)

for all but finitely many Λ.

Theorem 1.1 (Ribet) There is a finite set S of nonzero prime ideals of R such that if Λ
is a nonzero prime ideal of O with λ ∶= R ∩ Λ ∉ S, then the group ρproj

Λ (G) is conjugate
in PGL2(FΛ) to either PSL2(Fλ) or PGL2(Fλ).

Proof As noted in Section 3 of [7], this is an easy consequence of [16]. ∎

We will give a proof of Theorem 1.1 in Section 4 that allows one to compute such
a set S. There are several related results in the literature; for example, Billerey and
Dieulefait [1] give a version of Theorem 1.1 when the nebentypus ε is trivial.

We now explain how to distinguish the two possibilities from Theorem 1.1. Let
L ⊆ C be the extension of K generated by the square roots of the values rp = a2

p/ε(p)
with p ∤ N ; it is a finite extension of K (moreover, it is contained in a finite cyclotomic
extension of E).

Theorem 1.2 Let Λ be a nonzero prime ideal of O such that ρproj
Λ (G) is conjugate to

PSL2(Fλ) or PGL2(Fλ), where λ = Λ ∩ R. After conjugating ρΛ , we may assume that
ρproj

Λ (G) ⊆ PGL2(Fλ). Let � be the rational prime lying under Λ.
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(i) If k is odd, then ρproj
Λ (G) = PSL2(Fλ) if and only if λ splits completely in L.

(ii) If k is even and [Fλ ∶ F�] is even, then ρproj
Λ (G) = PSL2(Fλ) if and only if λ splits

completely in L.
(iii) If k is even, [Fλ ∶ F�] is odd, and � ∤ N, then ρproj

Λ (G) = PGL2(Fλ).

Remark 1.3
(i) From Theorem 1.2, we see that it is more challenging to produce Galois exten-

sions of Q with Galois group PSL2(F�r) with odd r if we focus solely on
newforms with k even. However, it is still possible to obtain such groups in the
excluded case �∣N .

(ii) Parts (ii) and (iii) of Theorem 1.2 are included for completeness (see [4, Propo-
sition 1.5] for an equivalent version in the case k = 2 due to Dieulefait). Surpris-
ingly, there has been very little attention in the literature given to the case where
k is odd (commenting on a preprint of this work, Dieulefait has shared several
explicit examples worked out with Tsaknias and Vila). In Sections 1.2 and 1.3,
we give examples with k = 3 and L = K (so λ splits in L for any λ).

1.2 An example realizing the groups PSL2(F�)

We now give an example that realizes the simple groups PSL2(F�) as Galois groups of
an extension of Q for all primes � ≥ 7. Let f = ∑∞n=1 an qn be a newform of weight 3,
level N = 27, and nebentypus ε(a) = (−3

a ); it is non-CM, i.e., it does not have complex
multiplication. We can choose f so that1

f = q + 3iq2 − 5q4 − 3iq5 + 5q7 − 3iq8 + 9q10 − 15iq11 − 10q13 +⋯;

the other possibility for f is its complex conjugate∑n an qn .
The subfield E of C generated by the coefficients an is Q(i). Take any prime p ≠ 3.

We will see that ap = ε(p)−1ap . Therefore, ap or iap belongs to Z when ε(p) is 1 or
−1, respectively, and hence rp = a2

p/ε(p) is a square in Z. Therefore, L = K = Q.
In Section 6.1, we shall verify that Theorem 1.1 holds with S = {2, 3, 5}. Take any

prime � ≥ 7 and prime Λ ⊆ Z[i] dividing �. Theorem 1.2 with L = K = Q implies that
ρproj

Λ (G) is isomorphic to PSL2(F�). The following theorem is now an immediate
consequence (it is easy to prove directly for the group PSL2(F5) ≅ A5).

Theorem 1.4 For each prime � ≥ 5, there is a Galois extension K/Q such that
Gal(K/Q) is isomorphic to the simple group PSL2(F�). ∎

Remark 1.5
(i) In Section 5.5 of [17], Serre describes the image of ρ(7) and proves that it

gives rise to a PSL2(F7)-extension of Q; however, he does not consider the
image modulo other primes. Note that Serre was actually giving an example

1More explicitly, take f = i
2 gθ0 −

1+i
2 gθ1 +

3
2 gθ2 , where g ∶= q∏n≥1(1 − q3n)2(1 − q9n)2 and θ j ∶=

∑x , y∈Z q3 j(x2+x y+y2) (cf. [17, p. 228]).

https://doi.org/10.4153/S0008439522000534 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000534


Modular forms and some cases of the Inverse Galois Problem 571

of his conjecture, so he started with the PSL2(F7)-extension and then found the
newform f.

(ii) Theorem 1.4 was first proved by the author in [18] by considering the Galois
action on the second �-adic étale cohomology of a specific surface. One can
show that the Galois extensions of [18] could also be constructed by first starting
with an appropriate newform of weight 3 and level 32.

1.3 Another example

We now give an example with K ≠ Q. Additional details will be provided in Section
6.2. Let f = ∑n an qn be a non-CM newform of weight 3, level N = 160, and nebenty-
pus ε(a) = (−5

a ).
Take E, K, L, R, and O as in Section 1.1. We will see in Section 6.2 that E = K(i) and

that K is the unique cubic field in Q(ζ13). We will also observe that L = K.
Take any odd prime � congruent to±2,±3,±4, or±6 modulo 13. Let Λ be any prime

ideal of O dividing �, and set λ = Λ ∩ R. The assumption on � modulo 13 implies that
λ = �R and that Fλ ≅ F�3 . In Section 6.2, we shall compute a set S as in Theorem 1.1
which does not contain λ. Theorem 1.2 with L = K implies that ρproj

Λ (G) is isomorphic
to PSL2(Fλ) ≅ PSL2(F�3). The following is an immediate consequence.

Theorem 1.6 If � is an odd prime congruent to ±2, ±3, ±4, or ±6 modulo 13, then the
simple group PSL2(F�3) occurs as the Galois group of an extension of Q.

2 The fields K and L

Take a newform f with notation and assumptions as in Section 1.1.

2.1 The field K

Let � be the set of automorphisms γ of the field E for which there is a primitive
Dirichlet character χγ that satisfies

γ(ap) = χγ(p)ap(2.1)

for all primes p ∤ N . The set of primes p with ap ≠ 0 has density 1 since f is non-CM,
so the image of χγ lies in E× and the character χγ is uniquely determined from γ.

Define M to be N or 4N if N is odd or even, respectively. The conductor of χγ
divides M (cf. [12, Remark 1.6]). Moreover, there is a quadratic Dirichlet character α
with conductor dividing M and an integer i such that χγ is the primitive character
coming from αε i (cf. [12, Lemma 1.5(i)]).

For each prime p ∤ N , we have ap = ε(p)−1ap (cf. [15, p. 21]), so complex conjuga-
tion induces an automorphism γ of E and χγ is the primitive character coming from
ε−1. In particular, � ≠ 1 if ε is nontrivial.

Remark 2.1 More generally, we could have instead considered an embedding γ∶E →
C and a Dirichlet character χγ such that (2.1) holds for all sufficiently large primes p.
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572 D. Zywina

This gives the same twists, since γ(E) = E and the character χγ is unramified at primes
p ∤ N (cf. [12, Remark 1.3]).

The set � is in fact an abelian subgroup of Aut(E) (cf. [12, Lemma 1.5(ii)]). Denote
by E� the fixed field of E by �.

Lemma 2.2
(i) We have K = E�, and hence Gal(E/K) = �.
(ii) There is a prime p ∤ N such that K = Q(rp).

Proof Take any p ∤ N . For each γ ∈ �, we have

γ(rp) = γ(a2
p)/γ(ε(p)) = χγ(p)2a2

p/γ(ε(p)) = a2
p/ε(p) = rp ,

where we have used that χγ(p)2 = γ(ε(p))/ε(p) (cf. [12, Proof of Lemma 1.5(ii)]).
This shows that rp belong in E� and hence K ⊆ E� since p ∤ N was arbitrary. To
complete the proof of the lemma, it thus suffices to show that E� = Q(rp) for some
prime p ∤ N .

For γ ∈ �, let χ̃γ ∶G → C× be the continuous character such that χ̃γ(Frobp) = χγ(p)
for all p ∤ N . Define the group H = ⋂γ∈� ker χ̃γ ; it is an open normal subgroup of
G with G/H is abelian. Let K be the subfield of Q fixed by H; it is a finite abelian
extension of Q.

Fix a prime � and a prime ideal Λ∣� of O. In the proof of Theorem 3.1 of [16], Ribet
proved that E� = Q(a2

v) for a positive density set of finite place v ∤ N� of K, where
av ∶= tr(ρΛ(Frobv)). There is thus a finite place v ∤ N� ofK of degree 1 such that E� =
Q(a2

v). We have av = ap , where p is the rational prime that v divides, so E� = Q(a2
p).

Since v has degree 1 and K/Q is abelian, the prime p must split completely in K and
hence χγ(p) = 1 for all γ ∈ �; in particular, ε(p) = 1. Therefore, E� = Q(rp). ∎

2.2 The field L

Recall that we defined L to be the extension of K in C obtained by adjoining the
square root of rp = a2

p/ε(p) for all p ∤ N . The following allows one to find a finite
set of generators for the extension L/K and gives a way to check the criterion of
Theorem 1.2.

Lemma 2.3
(i) Choose primes p1 , . . . , pm ∤ N that generate the group (Z/MZ)× and satisfy

rp i ≠ 0 for all 1 ≤ i ≤ m. Then L = K(√rp1 , . . . ,√rpm).
(ii) Take any nonzero prime ideal λ of R that does not divide 2. Let p1 , . . . , pm be

primes as in (i). Then the following are equivalent:
(a) λ splits completely in L.
(b) For all p ∤ N, rp is a square in Kλ .
(c) For all 1 ≤ i ≤ m, rp i is a square in Kλ .
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Proof Take any prime p ∤ N . To prove part (i), it suffices to show that√rp belongs
to the field L′ ∶= K(√rp1 , . . . ,√rpm). This is obvious if rp = 0, so assume that rp ≠ 0.
Since the p i generate (Z/MZ)× by assumption, there are integers e i ≥ 0 such that
p ≡ pe1

1 ⋯pem
m (mod M). Take any γ ∈ �. Using that the conductor of χγ divides M

and (2.1), we have

γ(
ap

∏i ae i
p i

) =
χγ(p)

χγ(∏i pe i
i )
⋅

ap

∏i ae i
p i

=
χγ(p)
χγ(p)

⋅
ap

∏i ae i
p i

=
ap

∏i ae i
p i

.

Since E� = K by Lemma 2.2(i), the value ap/∏i ae i
p i belongs to K; it is nonzero since

rp ≠ 0 and rp i ≠ 0. We have ε(p) = ∏i ε(p i)e i since the conductor of ε divides M.
Therefore,

rp

∏i re i
p i

=
a2

p

∏i(a2
p i )e i

= (
ap

∏i ae i
p i

)
2

∈ (K×)2 .

This shows that√rp is contained in L′ as desired. This proves (i); part (ii) is an easy
consequence of (i). ∎

Remark 2.4 Finding primes p i as in Lemma 2.3(i) is straightforward since rp ≠ 0 for
all p outside a set of density 0 (and the primes representing each class a ∈ (Z/MZ)×
have positive density). Lemma 2.3(ii) gives a straightforward way to check if λ splits
completely in L. Let e i be the λ-adic valuation of rp i , and let π be a uniformizer of Kλ ;
then rp i is a square in Kλ if and only if e is even and the image of rp i /πe i in Fλ is a
square.

3 Proof of Theorem 1.2

We may assume that ρproj
Λ (G) is PSL2(Fλ) or PGL2(Fλ). For any n ≥ 1, the

group GL2(F2n) is generated by SL2(F2n) and its scalar matrices, so PSL2(F2n) =
PGL2(F2n). The theorem is thus trivial when � = 2, so we may assume that � is odd.

Take any α ∈ PGL2(Fλ) ⊆ PGL2(FΛ) and choose any matrix A ∈ GL2(FΛ) whose
image in PGL2(FΛ) is α. The value tr(A)2/det(A) does not depend on the choice of
A and lies in Fλ (since we can choose A in GL2(Fλ)); by abuse of notation, we denote
this common value by tr(α)2/det(α).

Lemma 3.1 Suppose that p ∤ N� is a prime for which rp /≡ 0 (mod λ). Then
ρproj

Λ (Frobp) is contained in PSL2(Fλ) if and only if the image of a2
p/(ε(p)pk−1) =

rp/pk−1 in F×λ is a square.

Proof Define A ∶= ρΛ(Frobp) and α ∶= ρproj
Λ (Frobp); the image of A in PGL2(FΛ)

is α. The value ξp ∶= tr(α)2/det(α) = tr(A)2/det(A) agrees with the image of
a2

p/(ε(p)pk−1) = rp/pk−1 in FΛ . Since rp ∈ R is nonzero modulo λ by assumption,
the value ξp lies in F×λ . Fix a matrix A0 ∈ GL2(Fλ) whose image in PGL2(Fλ) is α;
we have ξp = tr(A0)2/det(A0). Since ξp ≠ 0, we find that ξp and det(A0) lie in the
same coset in F×λ /(F×λ)2.
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The determinant gives rise to a homomorphism d∶PGL2(Fλ) → F×λ /(F×λ)2 whose
kernel is PSL2(Fλ). Define the character

ξ∶G
ρproj

Λ��→ PGL2(Fλ)
d�→ F×λ /(F×λ)2 .

We have ξ(Frobp) = det(A0) ⋅ (F×λ)2 = ξp ⋅ (F×λ)2. So ξ(Frobp) = 1, equivalently
ρproj

Λ (Frobp) ∈ PSL2(Fλ), if and only if ξp ∈ F×λ is a square. ∎

Let M be the integer from Section 2.1.

Lemma 3.2 For each a ∈ (Z/M�Z)×, there is a prime p ≡ a (mod M�) such that
rp /≡ 0 (mod λ).

Proof Set H = ρproj
Λ (G); it is PSL2(Fλ) or PGL2(Fλ) by assumption. Let H′ be the

commutator subgroup of H. We claim that for each coset κ of H′ in H, there exists
an α ∈ κ with tr(α)2/det(α) ≠ 0. If H′ = PSL2(Fλ), then the claim is easy; note that
for any t ∈ Fλ and d ∈ F×λ , there is a matrix in GL2(Fλ) with trace t and determinant
d. When #Fλ ≠ 3, the group PSL2(Fλ) is non-abelian and simple, so H′ = PSL2(Fλ).
When #Fλ = 3 and H = PGL2(Fλ), we have H′ = PSL2(Fλ). It thus suffices to prove
the claim in the case where Fλ = F3 and H = PSL2(F3). In this case, H′ is the unique
subgroup of H of index 3 and the cosets of H/H′ are represented by ( 1 b

0 1 )with b ∈ F3.
The claim is now immediate in this remaining case.

Let χ∶ G↠ (Z/M�Z)× be the cyclotomic character that satisfies χ(Frobp) ≡ p
(mod M�) for all p ∤ M�. The set ρΛ(χ−1(a)) is thus the union of cosets of H′ in H.
By the claim above, there exists an α ∈ ρproj

Λ (χ−1(a))with tr(α)2/det(α) ≠ 0. By the
Chebotarev density theorem, there is a prime p ∤ M� satisfying p ≡ a (mod M�)
and ρproj

Λ (Frobp) = α. The lemma follows since rp/pk−1 modulo λ agrees with
tr(α)2/det(α) ≠ 0. ∎

Case 1: Assume that k is odd or [Fλ ∶ F�] is even.
First, suppose that ρproj

Λ (G) = PSL2(Fλ). By Lemma 3.2, there are primes
p1 , . . . , pm ∤ N� that generate the group (Z/MZ)× and satisfy rp i /≡ 0 (mod λ) for
all 1 ≤ i ≤ m. By Lemma 3.1 and the assumption ρproj

Λ (G) = PSL2(Fλ), the image of
rp i /p i

k−1 inFλ is a nonzero square for all 1 ≤ i ≤ m. For each 1 ≤ i ≤ m, the assumption
that k is odd or [Fλ ∶ F�] is even implies that pk−1

i is a square in Fλ , and hence the
image of rp i in Fλ is a nonzero square. Since λ ∤ 2, we deduce that each rp i is a square
in Kλ . By Lemma 2.3(ii), the prime λ splits completely in L.

Now, suppose that ρproj
Λ (G) = PGL2(Fλ). There exists an element α ∈ PGL2(Fλ) −

PSL2(Fλ) with tr(α)2/det(α) ≠ 0. By the Chebotarev density theorem, there is a
prime p ∤ N� such that ρproj

Λ (Frobp) = α. We have rp ≡ tr(α)2/det(α) /≡ 0 (mod λ).
Since ρproj

Λ (Frobp) ∉ PSL2(Fλ), Lemma 3.1 implies that the image of rp/pk−1 in Fλ is
not a square. Since k is odd or [Fλ ∶ F�] is even, the image of rp in Fλ is not a square.
Therefore, rp is not a square in Kλ . By Lemma 2.3(ii), we deduce that λ does not split
completely in L.

Case 2: Assume that k is even, [Fλ ∶ F�] is odd, and � ∤ N .
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Since � ∤ N , there is an integer a ∈ Z such that a ≡ 1 (mod M) and a is not a square
modulo �. By Lemma 3.2, there is a prime p ≡ a (mod M�) such that rp /≡ 0 (mod λ).

We claim that ap ∈ R and ε(p) = 1. With notation as in Section 2.1, take any γ ∈ �.
Since the conductor of χγ divides M and p ≡ 1 (mod M), we have γ(ap) = χγ(p)ap =
ap . Since γ ∈ � was arbitrary, we have ap ∈ K by Lemma 2.2. Therefore, ap ∈ R since
it is an algebraic integer. We have ε(p) = 1 since p ≡ 1 (mod N).

Since ap ∈ R and rp /≡ 0 (mod λ), the image of a2
p in Fλ is a nonzero square. Since

k is even, pk is a square in Fλ . Since a, and hence p, is not a square modulo � and
[Fλ ∶ F�] is odd, the prime p is not a square in Fλ . So the image of

a2
p/(ε(p)pk−1) = p ⋅ a2

p/pk

in Fλ is not a square. Lemma 3.1 implies that ρproj
Λ (Frobp) ∉ PSL2(Fλ). Therefore,

ρproj
Λ (G) = PGL2(Fλ).

4 An effective version of Theorem 1.1

Take a newform f with notation and assumptions as in Section 1.1. Let λ be a nonzero
prime ideal of R, and let � be the prime lying under λ. Let kλ be the subfield of Fλ
generated by the image of rp modulo λ with primes p ∤ N�. Take any prime ideal Λ
of O that divides λ.

In this section, we describe how to compute an explicit finite set S of prime ideals
of R as in Theorem 1.1. First, some simple definitions:
• Let F be an extension of FΛ of degree gcd(2, �).
• Let e0 = 0 if � ≥ k − 1 and � ∤ N , and e0 = � − 2 otherwise.
• Let e1 = 0 if N is odd, and e1 = 1 otherwise.
• Let e2 = 0 if � ≥ 2k, and e2 = 1 otherwise.
• Define M = 4e1�e2∏p∣N p.
We will prove the following in Section 5.

Theorem 4.1 Suppose that all the following conditions hold:
(a) For every integer 0 ≤ j ≤ e0 and character χ∶ (Z/NZ)× → F×, there is a prime p ∤

N� such that χ(p)p j ∈ F is not a root of the polynomial x2 − apx + ε(p)pk−1 ∈
FΛ[x].

(b) For every nontrivial character χ∶ (Z/MZ)× → {±1}, there is a prime p ∤ N� such
that χ(p) = −1 and rp /≡ 0 (mod λ).

(c) If #kλ ∉ {4, 5}, then at least one of the following holds:
• � > 5k − 4 and � ∤ N,
• � ≡ 0,±1 (mod 5) and #kλ ≠ �,
• � ≡ ±2 (mod 5) and #kλ ≠ �2,
• there is a prime p ∤ N� such that the image of a2

p/(ε(p)pk−1) in Fλ is not equal
to 0, 1, and 4, and is not a root of x2 − 3x + 1.

(d) If #kλ ∉ {3, 5, 7}, then at least one of the following holds:
• � > 4k − 3 and � ∤ N,
• #kλ ≠ �,
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• there is a prime p ∤ N� such that the image of a2
p/(ε(p)pk−1) in Fλ is not equal

to 0, 1, 2, and 4.
(e) If #kλ ∈ {5, 7}, then for every nontrivial character χ∶ (Z/4e1�NZ)× → {±1}, there

is a prime p ∤ N� such that χ(p) = 1 and a2
p/(ε(p)pk−1) ≡ 2 (mod λ).

Then the group ρproj
Λ (G) is conjugate in PGL2(FΛ) to PSL2(kλ) or PGL2(kλ).

Remark 4.2 Note that the above conditions simplify greatly if one also assumes that
� ∤ N and � > 5k − 4.

Although we will not prove it, Theorem 4.1 has been stated so that all the conditions
(a)–(e) hold if and only if ρproj

Λ (G) is conjugate to PSL2(kλ) or PGL2(kλ). In
particular, after considering enough primes p, one will obtain the minimal set S of
Theorem 1.1 (one could use an effective version of Chebotarev density to make this a
legitimate algorithm for computing this minimal set).

Let us now describe how to compute a set of exceptional primes as in Theorem
1.1. Define M = N if N is odd and M = 4N otherwise. Set M′ ∶= 4e1∏p∣N p. We first
choose some primes:
• Let q1 , . . . , qn be primes congruent to 1 modulo N.
• Let p1 , . . . , pm ∤ N be primes with rp i ≠ 0 such that for every nontrivial character

χ∶ (Z/M′Z)× → {±1}, we have χ(p i) = −1 for some 1 ≤ i ≤ m.
• Let p0 ∤ N be a prime such that Q(rp0) = K.
That such primes p1 , . . . , pm exist is clear since the set of primes p with rp ≠ 0 has
density 1. That such a prime q exists follows from Lemma 2.2 (the set of such q actually
has positive density). Define the ring R′ ∶= Z[a2

q/ε(q)]; it is an order in R.
Define S to be the set of nonzero primes λ of R, dividing a rational prime �, that

satisfy one of the following conditions:
• � ≤ 5k − 4 or � ≤ 7,
• �∣N ,
• for all 1 ≤ i ≤ n, we have � = q i or rq i ≡ (1 + qk−1

i )2 (mod λ),
• for some 1 ≤ i ≤ m, we have � = p i or rp i ≡ 0 (mod λ),
• � = q or � divides [R ∶ R′].
Note that the set S is finite (the only part that is not immediate is that rq i − (1 +
qk−1

i )2 ≠ 0; this follows from Deligne’s bound ∣rq i ∣ = ∣aq i ∣ ≤ 2q(k−1)/2
i and k > 1). The

following is our effective version of Theorem 1.1.

Theorem 4.3 Take any nonzero prime ideal λ ∉ S of R, and let Λ be any prime of O
dividing λ. Then the group ρproj

Λ (G) is conjugate in PGL2(FΛ) to either PSL2(Fλ) or
PGL2(Fλ).

Proof Let � be the rational prime lying under λ. We shall verify the conditions of
Theorem 4.1.

We first show that condition (a) of Theorem 4.1 holds. Take any integer 0 ≤ j ≤
e0 and character χ∶ (Z/NZ)× → F× = F×Λ . We have � > 5k − 4 > k − 1 and � ∤ N
since λ ∉ S, so e0 = 0 and hence j = 0. Take any 1 ≤ i ≤ n. Since q i ≡ 1 (mod N)
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and j = 0, we have χ(q i)q j
i = 1 and ε(q i) = 1. Since λ ∉ S, we also have q i ∤ N�

(q i ∤ N is immediate from the congruence imposed on q i ). If χ(q i)q j
i = 1 was a

root of x2 − aq i x + ε(q i)qk−1
i in FΛ[x], then we would have aq i ≡ 1 + qk−1

i (mod Λ);
squaring and using that ε(q i) = 1, we deduce that rq i ≡ (1 + qk−1

i )2 (mod λ). Since
λ ∉ S, we have rq i /≡ (1 + qk−1

i )2 (mod λ) for some 1 ≤ i ≤ n and hence χ(q i)q j
i is not

a root of x2 − aq i x + ε(q i)qk−1
i .

We now show that condition (b) of Theorem 4.1 holds. We have e2 = 0 since λ ∉ S,
and henceM′ =M. Take any nontrivial character χ∶ (Z/MZ)× → {±1}. By our choice
of primes p1 , . . . , pm , we have χ(p i) = −1 for some 1 ≤ i ≤ m. The prime p i does not
divide N� (that p i ≠ � follows since λ ∉ S). Since λ ∉ S, we have rp i /≡ 0 (mod λ).

Since λ ∉ S, the prime � ∤ N is greater that 7, 4k − 3, and 5k − 4. Conditions (c)–(e)
of Theorem 4.1 all hold.

Theorem 4.1 now implies that ρproj
Λ (G) is conjugate in PGL2(FΛ) to either

PSL2(kλ) or PGL2(kλ). It remains to prove that kλ = Fλ . We have q ≠ � since λ ∉ S.
The image of the reduction map R′ → Fλ thus lies in kλ . We have � ∤ [R ∶ R′] since
λ ∉ S, so the map R′ → Fλ is surjective. Therefore, kλ = Fλ . ∎

5 Proof of Theorem 4.1

5.1 Some group theory

Fix a prime � and an integer r ≥ 1. A Borel subgroup of GL2(F�r) is a subgroup
conjugate to the subgroup of upper triangular matrices. A split Cartan subgroup of
GL2(F�r) is a subgroup conjugate to the subgroup of diagonal matrices. A nonsplit
Cartan subgroup of GL2(F�r) is a subgroup that is cyclic of order (�r)2 − 1. Fix a
Cartan subgroup C of GL2(F�r). Let N be the normalizer of C in GL2(F�r). One can
show that [N ∶ C] = 2 and that tr(g) = 0 and g2 is scalar for all g ∈ N − C.

Lemma 5.1 Fix a prime � and an integer r ≥ 1. Let G be a subgroup of GL2(F�r), and
let G be its image in PGL2(F�r). Then at least one of the following holds:
(1) G is contained in a Borel subgroup of GL2(F�r).
(2) G is contained in the normalizer of a Cartan subgroup of GL2(F�r).
(3) G is isomorphic to A4.
(4) G is isomorphic to S4.
(5) G is isomorphic to A5.
(6) G is conjugate to PSL2(F�s) or PGL2(F�s) for some integer s dividing r.

Proof This can be deduced directly from a theorem of Dickson (cf. [10, Satz 8.27]),
which will give the finite subgroups of PSL2(F�) = PGL2(F�). The finite subgroups of
PGL2(F�r) have been worked out in [9]. ∎

Lemma 5.2 Fix a prime � and an integer r ≥ 1. Take a matrix A ∈ GL2(F�r), and let
m be its order in PGL2(F�r).
(i) Suppose that � ∤ m. If m is 1, 2, 3, or 4, then tr(A)2/det(A) is 4, 0, 1, or 2,

respectively. If m = 5, then tr(A)2/det(A) is a root of x2 − 3x + 1.
(ii) If �∣m, then tr(A)2/det(A) = 4.
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Proof The quantity tr(A)2/det(A) does not change if we replace A by a scalar
multiple or by a conjugate in GL2(F�). If � ∤ m, then we may thus assume that
A = ( ζ 0

0 1 ) where ζ ∈ F� has order m. We have tr(A)2/det(A) = ζ + ζ−1 + 2, which is
4, 0, 1, or 2 when m is 1, 2, 3, or 4, respectively. If m = 5, then ζ + ζ−1 + 2 is a root of
x2 − 3x + 1. If �∣m, then after conjugating and scaling, we may assume that A = ( 1 1

0 1 )
and hence tr(A)2/det(A) = 4. ∎

5.2 Image of inertia at �

Fix an inertia subgroup I� of G = Gal(Q/Q) for the prime �; it is uniquely defined up
to conjugacy. The following gives important information concerning the representa-
tion ρΛ ∣I� for large �. Let χ�∶ G↠ F×� be the character such that for each prime p ∤ �,
χ� is unramified at p and χ�(Frobp) ≡ p (mod �).

Lemma 5.3 Fix a prime � ≥ k − 1 for which � ∤ 2N. Let Λ be a prime ideal of O
dividing �, and set λ = Λ ∩ R.
(i) Suppose that r� /≡ 0 (mod λ). After conjugating ρΛ by a matrix in GL2(FΛ), we

have

ρΛ ∣I� = (
χk−1
� ∣I� ∗

0 1) .

In particular, ρproj
Λ (I�) contains a cyclic group of order (� − 1)/ gcd(� − 1, k − 1).

(ii) Suppose that r� ≡ 0 (mod λ). Then ρΛ ∣I� is absolutely irreducible and ρΛ(I�) is
cyclic. Furthermore, the group ρproj

Λ (I�) is cyclic of order (� + 1)/ gcd(� + 1, k − 1).

Proof Parts (i) and (ii) follow from Theorems 2.5 and 2.6, respectively, of [8]; they
are theorems of Deligne and Fontaine, respectively. We have used that r� = a2

�/ε(�) ∈
R is congruent to 0 modulo λ if and only if a� ∈ O is congruent to 0 modulo Λ. ∎

5.3 Borel case

Suppose that ρΛ(G) is a reducible subgroup of GL2(F). There are, thus, characters

ψ1 , ψ2∶ G → F× such that after conjugating the F-representation G
ρΛ�→ GL2(FΛ) ⊆

GL2(F), we have

ρΛ = (
ψ1 ∗
0 ψ2

) .

The characters ψ1 and ψ2 are unramified at each prime p ∤ N� since ρΛ is unramified
at such primes.

Lemma 5.4 For each i ∈ {1, 2}, there is a unique integer 0 ≤ m i < � − 1 such that
ψ i χ−m i

� ∶ G → F× is unramified at all primes p ∤ N. If � ≥ k − 1 and � ∤ N, then m1
or m2 is 0.

Proof The existence and uniqueness of m i is an easy consequence of class field
theory for Q�. A choice of embedding Q ⊆ Q� induces an injective homomorphism
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GQ�
∶= Gal(Q�/Q�) ↪ G. Let Qab

� be the maximal abelian extension of Q� in Q�.
Restricting ψ i to GQ�

, we obtain a representation ψ i ∶ Gab
Q�
∶= Gal(Qab

� /Q�) → F×. By
local class field, the inertia subgroup I of Gab

Q�
is isomorphic to Z×� . Since � does not

divide the cardinality of F×, we find that ψ i ∣I factors through a group isomorphic to
F×� . The character ψ i ∣I must agree with a power of χ�∣I since χ�∶ GQ�

→ F×� satisfies
χ�(I) = F×� and F×� is cyclic.

The second part of the lemma follows immediately from Lemma 5.3. ∎

Take any i ∈ {1, 2}. By Lemma 5.4, there is a unique 0 ≤ m i < � − 1 such that the
character

ψ̃ i ∶= ψ i χ−m i
� ∶ G → F×

is unramified at � and at all primes p ∤ N . There is a character χ i ∶ (Z/N iZ)× → F×

with N i ≥ 1 dividing some power of N and � ∤ N i such that ψ̃ i(Frobp) = χ i(p) for all
p ∤ N�. We may assume that χ i is taken so that N i is minimal.

Lemma 5.5 The integer N i divides N.

Proof We first recall the notion of an Artin conductor. Consider a representation
ρ∶ G → AutF(V), where V is a finite-dimensional F-vector space. Take any
prime p ≠ �. A choice of embedding Q ⊆ Qp induces an injective homomor-
phism Gal(Qp/Qp) ↪ G. Choose any finite Galois extension L/Qp for which
ρ(Gal(Qp/L)) = {I}. For each i ≥ 0, let H i be the ith ramification subgroup of
Gal(L/Qp) with respect to the lower numbering. Define the integer

fp(ρ) = ∑
i≥0
[H0 ∶ H i]−1 ⋅ dimF V/V H i .

The Artin conductor of ρ is the integer N(ρ) ∶= ∏p≠� p f p(ρ).
Using that the character ψ̃ i ∶ G → F× is unramified at �, one can verify that N(ψ̃ i) =

N i . Consider our representation ρΛ ∶ G → GL2(F). For a fixed prime p ≠ �, take L and
H i as above. The semisimplification of ρΛ is V1 ⊕ V2, where Vi is the one-dimensional
representation given by ψ i . We have fp(ψ1) + fp(ψ2) ≤ fp(ρΛ) since dimF V H i ≤
dimF V H i

1 + dimF V H i
2 . By using this for all p ≠ �, we deduce that N(ψ1)N(ψ2) =

N1N2 divides N(ρΛ). The lemma follows since N(ρΛ) divides N (cf. [11, Proposition
0.1]). ∎

Fix an i ∈ {1, 2}; if � ≥ k − 1 and � ∤ N , then we may suppose that m i = 0 by Lemma
5.4. Since the conductor of χ i divides N by Lemma 5.5, assumption (a) implies that
there is a prime p ∤ N� for which χ i(p)pm i ∈ F is not a root of x2 − apx + ε(p)pk−1 ∈
F[x]. However, this is a contradiction since

χ i(p)pm i = ψ̃ i(Frobp)χ�(Frobp)m i = ψ i(Frobp)

is a root of x2 − apx + ε(p)pk−1.
Therefore, the F-representation ρΛ is irreducible. In particular, ρΛ(G) is not

contained in a Borel subgroup of GL2(FΛ).
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5.4 Cartan case

Lemma 5.6 The group ρΛ(G) is not contained in a Cartan subgroup of GL2(FΛ).

Proof Suppose that ρΛ(G) is contained in a Cartan subgroup C of GL2(FΛ). If
� = 2, thenC is reducible as a subgroup of GL2(F) sinceF/FΛ is a quadratic extension.
However, we saw in Section 5.3 that ρΛ(G) ⊆ C is an irreducible subgroup of GL2(F).
Therefore, � is odd. If C is split, then ρΛ(G) is a reducible subgroup of GL2(FΛ). This
was ruled out in Section 5.3, so C must be a nonsplit Cartan subgroup with � odd.

Recall that the representation ρΛ is odd, i.e., if c ∈ G is an element correspond-
ing to complex conjugation under some embedding Q↪ C, then det(ρΛ(c)) = −1.
Therefore, ρΛ(c) has order 2 and determinant −1 ≠ 1 (this last inequality uses that � is
odd). A nonsplit Cartan subgroup C of GL2(FΛ) is cyclic and hence −I is the unique
element of C of order 2. Since det(−I) = 1, we find that ρΛ(c) does not belong to C;
this gives the desired contradiction. ∎

5.5 Normalizer of a Cartan case

Suppose that ρΛ(G) is contained in the normalizer N of a Cartan subgroup C of
GL2(FΛ). The group C has index 2 in N, so we obtain a character

βΛ ∶ G
ρΛ�→ N → N/C ≅ {±1}.

The character βΛ is nontrivial since ρΛ(G) /⊆ C by Lemma 5.6.

Lemma 5.7 The character βΛ is unramified at all primes p ∤ N�. If � ≥ 2k and � ∤ N,
then the character βΛ is also unramified at �.

Proof The character βΛ is unramified at each prime p ∤ N� since ρΛ is unramified
at such primes. Now, suppose that � ≥ 2k and � ∤ N . We have � > 2, so � ∤ ∣N∣ and
hence Lemma 5.3 implies that ρΛ(I�) is cyclic. Moreover, Lemma 5.3 implies that
ρproj

Λ (I�) is cyclic of order d ≥ (� − 1)/(k − 1). Our assumption � ≥ 2k ensures that
d > 2.

Now, take a generator g of ρΛ(I�). Suppose that βΛ is ramified at � and hence g
belongs to N − C. The condition g ∈ N − C implies that g2 is a scalar matrix and hence
ρproj

Λ (I�) is a group of order 1 or 2. This contradicts d > 2, so βΛ is unramified at �. ∎

Let χ be the primitive Dirichlet character that satisfies βΛ(Frobp) = χ(p) for
all primes p ∤ N�. Since βΛ is a quadratic character, Lemma 5.7 implies that the
conductor of χ divides M. The character χ is nontrivial since βΛ is nontrivial.
Assumption (b) implies that there is a prime p ∤ N� satisfying χ(p) = −1 and rp /≡ 0
(mod λ). We thus have g ∈ N − C and tr(g) ≠ 0, where g ∶= ρΛ(Frobp) ∈ N. However,
this contradicts that tr(A) = 0 for all A ∈ N − C.

Therefore, the image of ρΛ does not lie in the normalizer of a Cartan subgroup of
GL2(FΛ).
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5.6 A5 case

Assume that ρproj
Λ (G) is isomorphic to A5 with #kλ ∉ {4, 5}.

The image of rp/pk−1 = a2
p/(ε(p)pk−1) in Fλ is equal to tr(A)2/det(A) with A =

ρΛ(Frobp). Every element of A5 has order 1, 2, 3, or 5, so Lemma 5.2 implies that the
image of rp/pk−1 in Fλ is 0, 1, 4, or is a root of x2 − 3x + 1 for all p ∤ N�. If λ∣5, then
Lemma 5.2 implies that kλ = F5, which is excluded by our assumption on kλ . So λ ∤ 5
and Lemma 5.2 ensures that kλ is the splitting field of x2 − 3x + 1 over F�. So kλ is F�

if � ≡ ±1 (mod 5) and F�2 if � ≡ ±2 (mod 5).
From assumption (c), we find that � > 5k − 4 and � ∤ N . By Lemma 5.3, the

group ρproj
Λ (G) contains an element of order at least (� − 1)/(k − 1) > ((5k − 4) − 1)/

(k − 1) = 5. This is a contradiction since A5 has no elements with order greater than
5.

5.7 A4 and S4 cases

Suppose that ρproj
Λ (G) is isomorphic to A4 or S4 with #kλ ≠ 3.

First suppose that #kλ ∉ {5, 7}. The image of rp/pk−1 = a2
p/(ε(p)pk−1) in Fλ is

equal to tr(A)2/det(A) with A = ρΛ(Frobp). Since every element of S4 has order
at most 4, Lemma 5.2 implies that rp/pk−1 is congruent to 0, 1, 2, or 4 modulo λ for
all primes p ∤ N�. In particular, kλ = F�. By assumption (d), we must have � > 4k − 3
and � ∤ N . By Lemma 5.3, the group ρΛ(G) contains an element of order at least
(� − 1)/(k − 1) > ((4k − 3) − 1)/(k − 1) = 4. This is a contradiction since S4 has no
elements with order greater than 4.

Now, suppose that #kλ ∈ {5, 7}. By assumption (e), with any χ, there is a prime p ∤
N� such that a2

p/(ε(p)pk−1) ≡ 2 (mod λ). The element g ∶= ρproj
Λ (Frobp) has order

1, 2, 3, or 4. By Lemma 5.2, we deduce that g has order 4. Since A4 has no elements
of order 4, we deduce that H ∶= ρproj

Λ (G) is isomorphic to S4. Let H′ be the unique
index 2 subgroup of H; it is isomorphic to A4. Define the character

β∶ G
ρproj

Λ��→ H → H/H′ ≅ {±1}.

The quadratic character β corresponds to a Dirichlet character χ whose conductor
divides 4e�N . By assumption (e), there is a prime p ∤ N� such that χ(p) = 1 and
a2

p/(ε(p)pk−1) ≡ 2 (mod λ). Since β(Frobp) = χ(p) = 1, we have ρproj
Λ (Frobp) ∈ H′.

Since H′ ≅ A4, Lemma 5.2 implies that the image of a2
p/(ε(p)pk−1) in Fλ is 0, 1, or 4.

This contradicts a2
p/(ε(p)pk−1) ≡ 2 (mod λ).

Therefore, the image of ρproj
Λ is not isomorphic to either of the groups A4 or S4.

5.8 End of proof

In Section 5.3, we saw that ρΛ(G) is not contained in a Borel subgroup of GL2(FΛ).
In Section 5.5, we saw that ρΛ(G) is not contained in the normalizer of a Cartan
subgroup of GL2(FΛ).
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In Section 5.6, we showed that if #kλ ∉ {4, 5}, then ρproj
Λ (G) is not isomorphic to

A5. We want to exclude the cases #kλ ∈ {4, 5} since PSL2(F4) and PSL2(F5) are both
isomorphic to A5.

In Section 5.7, we showed that if #kλ ≠ 3, then ρproj
Λ (G) is not isomorphic to A4

and not isomorphic to S4. We want to exclude the case #kλ = 3 since PSL2(F3) and
PGL2(F3) are isomorphic to A4 and S4, respectively.

By Lemma 5.1, the group ρproj
Λ (G) must be conjugate in PGL2(FΛ) to PSL2(F′)

or PGL2(F′), where F′ is a subfield of FΛ . One can then show that F′ is the subfield
of FΛ generated by the set {tr(A)2/det(A) ∶ A ∈ ρΛ(G)}. By the Chebotarev density
theorem, the field F′ is the subfield of FΛ generated by the images of a2

p/(ε(p)pk−1) =
rp/pk−1 with p ∤ N�. Therefore,F′ = kλ and hence ρproj

Λ (G) is conjugate in PGL2(FΛ)
to PSL2(kλ) or PGL2(kλ).

6 Examples

6.1 Example from Section 1.2

Let f be the newform from Section 1.2. We have E = Q(i). We know that � ≠ 1 since
ε is nontrivial. Therefore, � = Gal(Q(i)/Q) and K = E� equals Q. So � is generated
by complex conjugation and we have ap = ε(p)−1ap for p ∤ N . As noted in Section
1.2, this implies that rp is a square in Z for all p ∤ N and hence L equals K = Q. Fix a
prime � = λ and a prime ideal Λ∣� of O = Z[i].

Set q1 = 109 and q2 = 379; they are primes that are congruent to 1 modulo 27. Set
p1 = 5, and we have χ(p1) = −1, where χ is the unique nontrivial character (Z/3Z)× →
{±1}. Set q = 5; the field Q(rq) equals K = Q and hence Z[rq] = Z.

One can verify that a109 = 164, a379 = 704, and a5 = −3i, so r109 = 1642, r379 = 7042,
and r5 = 32. We have r109 − (1 + 1092)2 = −22 × 33 × 7 × 19 × 31 × 317 and r379 − (1 +
3792)2 = −22 × 33 × 2, 647 × 72, 173. So if � ≥ 11, then there is an i ∈ {1, 2} such that
� ≠ q i and rq i /≡ (1 + q2

i )2 (mod �).
Let S be the set from Section 4 with the above choice of q1, q2, p1, and q. We find

that S = {2, 3, 5, 7, 11}. Theorem 4.3 implies that ρproj
Λ (G) is conjugate in PGL2(FΛ)

to PSL2(F�) when � > 11.
Now, take � ∈ {7, 11}. Choose a prime ideal Λ of O dividing �. We have e0 = e1 =

e2 = 0 and M = 3. The subfield k� generated over F� by the images of rp modulo �
with p ∤ N� is of course F� (since the rp are rational integers). We now verify the
conditions of Theorem 4.1.

We first check condition (a). Suppose there is a character χ∶ (Z/27Z)× → F×� such
that χ(q2) is a root of x2 − aq2 x + ε(q2)q2

2 modulo �. Since q2 ≡ 1 (mod 27) and
aq2 = 704, we find that 1 is a root of x2 − aq2 x + q2

2 ∈ F�[x]. Therefore, aq2 ≡ 1 + q2
2

(mod �) and hence r2
q2
= a2

q2
≡ (1 + q2

2)2 (mod �). However, r379 − (1 + 3792)2 /≡ 0
(mod �) from the explicit value of it computed above. So the character χ does not
exist and we have verified condition (a).

We now check condition (b). Let χ∶ (Z/3Z)× → {±1} be the nontrivial character.
We have χ(5) = −1 and r5 = 9 /≡ 0 (mod �). Therefore, condition (b) holds.
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We now check condition (c). If � = 7, we have � ≡ 2 (mod 5) and #k� = � ≠ �2,
so condition (c) holds. Take � = 11. We have a2

5/(ε(5)52) = 9/52 ≡ 3 (mod 11), which
verifies condition (c).

Condition (d) holds since #k� = 5 if � = 7, and � > 4k − 3 = 9 and � ∤ N if � = 11.
Finally, we explain why condition (e) holds when � = 7. Let χ∶ (Z/7 ⋅ 27Z)× →

{±1} be any nontrivial character. A quick computation shows that there is a prime
p ∈ {13, 37, 41} such that χ(p) = 1 and that a2

p/(ε(p)p2) ≡ 2 (mod 7).
Theorem 4.1 implies that ρproj

Λ (G) is conjugate in PGL2(FΛ) to PSL2(F�) or
PGL2(F�). Since L = K, the group ρproj

Λ (G) isomorphic to PSL2(F�) by Theorem
1.2(i).

6.2 Example from §1.3

Let f be a newform as in Section 1.3; we have k = 3 and N = 160. The Magma code
below verifies that f is uniquely determined up to replacing by a quadratic twist and
then a Galois conjugate. So the group ρproj

Λ (G), up to isomorphism, does not depend
on the choice of f.

Eps:=Elements(DirichletGroup(160));
eps:=[c: c in Eps | Order(c) eq 2 and Conductor(c) eq 20][1];
M:=ModularSymbols(eps,3);
F:=NewformDecomposition(NewSubspace(CuspidalSubspace(M)));
assert #F eq 2;
_,chi:=IsTwist(F[1],F[2],5);
assert Order(chi) eq 2;

Define b = ζ 1
13 + ζ5

13 + ζ8
13 + ζ 12

13 , where ζ13 is a primitive 13th root of unity inQ (note
that {1, 5, 8, 12} is the unique index 3 subgroup of F×13). The characteristic polynomial
of b is x3 + x2 − 4x + 1, and hence Q(b) is the unique cubic extension of Q in Q(ζ13).
The code below shows that the coefficient field E is equal to Q(b, i) (it is a degree 6
extension of Q that contains roots of x3 + x2 − 4x + 1 and x2 + 1).

f:=qEigenform(F[1],2001);
a:=[Coefficient(f,n): n in [1..2000]];
E:=AbsoluteField(Parent(a[1]));
Pol<x>:=PolynomialRing(E);
assert Degree(E) eq 6;
assert HasRoot(xˆ3+xˆ2-4*x+1) and HasRoot(xˆ2+1);

Fix notation as in Section 2.1. We have � ≠ 1 since ε is nontrivial. The character χ2
γ

is trivial for γ ∈ � (since χγ is always a quadratic character times some power of ε).
Therefore, � is a 2-group. The field K = E� is thus Q(b), which is the unique cubic
extension of Q in E. Therefore, rp = a2

p/ε(p) lies in K = Q(b) for all p ∤ N .
The code below verifies that r3, r7, and r11 are squares in K that do not lie in Q

(and, in particular, are nonzero). Since 3, 7, and 11 generate the group (Z/40Z)×, we
deduce from Lemma 2.3 that the field L = K({√rp ∶ p ∤ N}) is equal to K.
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_,b:=HasRoot(xˆ3+xˆ2-4*x+1);
K:=sub<E|b>; Q:=Rationals();
r3:=K!(a[3]ˆ2/eps(3)); assert IsSquare(r3) and r3 notin Q;
r7:=K!(a[7]ˆ2/eps(7)); assert IsSquare(r7) and r5 notin Q;
r11:=K!(a[11]ˆ2/eps(11)); assert IsSquare(r11) and r11 notin Q;
r13:=K!(a[13]ˆ2/eps(13));
r17:=K!(a[17]ˆ2/eps(17));

Let NK/Q∶ K → Q be the norm map. The following code verifies that NK/Q(r3) =
26, NK/Q(r7) = 26, NK/Q(r11) = 21254, NK/Q(r13) = 212132, NK/Q(r17) = 21852, and
that

gcd (641 ⋅ NK/Q(r641 − (1 + 6422)2), 1, 061 ⋅ NK/Q(r1061 − (1 + 1, 0612)2)) = 212 .
(6.1)

assert Norm(r3) eq 2ˆ6 and Norm(r7) eq 2ˆ6;
assert Norm(r11) eq 2ˆ12*5ˆ4;
assert Norm(r13) eq 2ˆ12*13ˆ2 and Norm(r17) eq 2ˆ18*5ˆ2;
r641:=K!(a[641]ˆ2/eps(641));
r1061:=K!(a[1061]ˆ2/eps(1061));
n1:=Integers()!Norm(r641-(1+641ˆ2)ˆ2);
n2:=Integers()!Norm(r1061-(1+1061ˆ2)ˆ2);
assert GCD(641*n1,1061*n2) eq 2ˆ12;

Set q1 = 641 and q2 = 1, 061; they are primes congruent to 1 modulo 160. Let λ be
a prime ideal of R dividing a rational prime � > 3. From (6.1), we find that � ≠ q i and
rq i /≡ (1 + q2

i )2 (mod λ) for some i ∈ {1, 2} (otherwise, λ would divide 2).
Set p1 = 3, p2 = 7, and p3 = 11. For each nontrivial quadratic character χ∶ (Z/40Z)×

→ {±1}, we have χ(p i) = −1 for some prime i ∈ {1, 2, 3} (since 3, 7, and 11 generate
the group (Z/40Z)×). From the computed values of NK/Q(rp), we find that rp i /≡ 0
(mod λ) for all i ∈ {1, 2, 3} and all nonzero prime ideals λ ∤ N of R.

Set q = 3. We have noted that rq ∈ K −Q, so K = Q(rq). The index of the order
Z[rq] in R is a power of 2 since NK/Q(q) is a power of 2.

Let S be the set from Section 4 with the above choice of q1, q2, p1, p2, p3, and q.
The above computations show that S consists of the prime ideals λ of R that divide a
prime � ≤ 11.

Now, let � be an odd prime congruent to±2,±3,±4, or±6 modulo 13. Since K is the
unique cubic extension in Q(ζ13), we find that the ideal λ ∶= �R is prime in R and that
Fλ ≅ F�3 . The above computations show that λ ∉ S when � ∉ {3, 7, 11}. Theorem 4.3
implies that if � ∉ {3, 7, 11}, then ρproj

Λ (G) is conjugate in PGL2(FΛ) to PSL2(Fλ) or
PGL2(Fλ), where Λ is a prime ideal of O dividing λ. So if � ∉ {3, 7, 11}, the group
ρproj

Λ (G) isomorphic to PSL2(Fλ) ≅ PSL2(F�3) by Theorem 1.2(i) and the equality
L = K.

Now, take λ = �R with � ∈ {3, 7, 11}; it is a prime ideal. Choose a prime ideal Λ of
O dividing λ. We noted above that Z[r3] is an order in R with index a power of 2;
the same argument shows that this also holds for the order Z[r7]. Therefore, the field
kλ generated over F� by the images of rp modulo λ with p ∤ N� is equal to Fλ . Since
#Fλ = �3, we find that conditions (c)–(e) of Theorem 4.1 hold.
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We now show that condition (a) of Theorem 4.1 holds for our fixed Λ. We have
e0 = 0, so take any character χ∶ (Z/NZ)× → F×Λ . We claim that χ(q i) ∈ FΛ is not a
root of x2 − aq i x + ε(q i)q2

i for some i ∈ {1, 2}. Since q i ≡ 1 (mod N), the claim is
equivalent to showing that aq i /≡ 1 + q2

i (mod Λ) for some i ∈ {1, 2}. So we need to
prove that rq i ≡ (1 + q2

i )2 (mod λ) for some i ∈ {1, 2}; this is clear since otherwise �
divides the quantity (6.1). This completes our verification of condition (a).

We now show that condition (b) of Theorem 4.1 holds. We have rp /≡ 0 (mod λ)
for all primes p ∈ {3, 7, 11, 13, 17}; this is a consequence of NK/Q(rp) /≡ 0 (mod �). We
have M = 120 if � = 3 and M = 40 otherwise. Condition (b) holds since (Z/MZ)× is
generated by the primes p ∈ {3, 7, 11, 13, 17} for which p ∤M�.

Theorem 4.1 implies that ρproj
Λ (G) is conjugate in PGL2(FΛ) to PSL2(Fλ) or

PGL2(Fλ). Since L = K, the group ρproj
Λ (G) is isomorphic to PSL2(Fλ) ≅ PSL2(F�3)

by Theorem 1.2(i).

Acknowledgment Thanks to Ravi Ramakrishna and Luis Dieulefait for their com-
ments and corrections. Thanks also to Henri Darmon for suggesting that there should
be a modular interpretation of the Galois representations in [18]. Computations were
performed with Magma [2].
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