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Eigenvalues of the Fractional p-Laplacian

4.1 Fundamentals

Throughout we suppose that � is a bounded open subset of Rn, let p ∈ (1,∞)

and assume that s ∈ (0, 1); the spaces involved are assumed to be real. Consider
the problem of minimising the fractional Rayleigh quotient

R(f , p, s,�) :=
∫

Rn

∫

Rn
|f (x)−f (y)|p
|x−y|n+sp dx dy

∫

Rn |f (x)|p dx
=
[

f
]p

s,p,Rn

‖f ‖p
p,Rn

(4.1.1)

among all f ∈ C∞
0 (�)\{0}. We write

λ1 = λ1 (p, s,�) = inf
{

R(f , p, s,�) : f ∈ C∞
0 (�)\{0}} .

Since � supports the (s, p)-Friedrichs inequality (see Proposition 3.17), it is
clear that λ1 > 0; we refer to λ1 as the first eigenvalue of the fractional p-
Laplacian (−�)s

p. The attainment of the infimum is discussed in the next the-
orem, which reinforces the treatment of Section 3.4. We recall that the space

X : = 0
Ds

p(�) that appears there and below is the completion of C∞
0 (�) with re-

spect to the norm [·]s,p,Rn : see Proposition 3.7 for information about this space.
In particular, note that X and X∗ are uniformly convex and that X coincides with
0
Xs

p(�) since � is bounded.

Theorem 4.1 The infimum of R is attained at a non-negative function f ∈
X\{0}, with f = 0 in Rn\�. This minimising function f satisfies the Euler–
Lagrange equation
∫

Rn

∫

Rn

|f (x)−f (y)|p−2 (f (x)−f (y)) (φ(x)−φ(y))
|x − y|n+sp dx dy = λ1

∫

Rn
|f |p−2 fφ dx

(4.1.2)
for all φ ∈ C∞

0 (�).
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64 Eigenvalues of the Fractional p-Laplacian

Proof When minimising the Rayleigh quotient it is enough to consider non-
negative functions since for every u ∈ Lp(�),

||u(x)| − |u(y)||p ≤ |u(x)− u(y)|p and ‖|u|‖p = ‖u‖p .

Let
{

fj
}

j∈N be a minimising sequence, with fj ∈ C∞
0 (�) and

∥
∥fj
∥
∥

p = 1 for all j.
By Proposition 3.8 there exists C > 0 such that for all j ∈ N,

∫

Rn

∣
∣fj(x + h)− f (x)

∣
∣
p dx ≤ C |h|sp → 0 as |h| → 0.

Hence by the Riesz–Fréchet–Kolmogorov theorem, there is a subsequence of
{

fj
}

j∈N that converges in Lp(�), to f , say; plainly ‖f ‖p,� = 1. Since X is
reflexive, there is a further subsequence

{

gj
}

j∈N that converges weakly in X, to
g, say; as this subsequence also converges weakly in Lp(�) we see that g = f .
As

‖f |X‖ ≤ lim inf
j→∞

∥
∥gj|X

∥
∥ ,

it follows that ‖f |X‖ = λ1, showing that the infimum is attained.
It remains to deal with the Euler–Lagrange equation. Let u be a minimising

function and consider the competing functions

vt(x) := u(x)+ tφ(x), φ ∈ C∞
0 (�), t ∈ R.

Because we have a minimum we must have

d
dt

⎧

⎨

⎩

∫

Rn

∫

Rn
|vt(y)−vt(x)|p

|y−x|n+sp dx dy
∫

Rn |vt(x)|p dx

⎫

⎬

⎭
= 0 at t = 0.

This immediately gives the Euler–Lagrange equation.

Remark 4.2

Note that since the inequality

||u(x)| − |u(y)|| ≤ |u(x)− u(y)|
is strict at almost all points x, y such that u(x)u(y) < 0, no minimiser can
change sign. It should also be observed that λ1(p, s,�) is the reciprocal of the
best constant in the (s, p)-Friedrichs inequality; in fact,

λ1 (p, s,�) ≥ 1/C (n, s, p,�) ,

where C (n, s, p,�) is given in Proposition 3.2.5.
As in Section 3.4, given λ ∈ R we say that u ∈ X\{0} is a weak solution of

the eigenvalue problem

(−�)s
p u = λ |u|p−2 u in �, u = 0 in Rn\�, (4.1.3)
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4.1 Fundamentals 65

if

∫

Rn

∫

Rn

|u(x)−u(y)|p−2 (u(x)−u(y)) (φ(x)−φ(y))
|x − y|n+sp dx dy = λ

∫

Rn
|u|p−2 uφ dx

(4.1.4)
for all φ ∈ X; if such a function u exists, the corresponding λ is an eigenvalue
and u is a λ-eigenfunction.

Every solution of the Euler–Lagrange equation is bounded. When sp > n
the Euler–Lagrange equation is not needed: in fact since, by Proposition 3.8, X
is embedded in Cα (Rn), where α = s − n/p, the boundedness is clear. Much
more effort is needed when sp ≤ n.

Theorem 4.3 Suppose that sp ≤ n and let u be a minimiser of the Rayleigh
quotient. Then u ∈ L∞ (Rn) ; and if sp < n,

‖u‖∞ ≤ C(n, p, s)λ
n/
(

sp2
)

1 ‖u‖p .

For a proof of this result we refer to [28], Theorem 3.3 and [84], Theorem
3.2.

Corollary 4.4 Let s ∈ (0, 1), p ∈ (1,∞). Then every (s, p)-eigenfunction is
continuous.

Proof If sp > n there is nothing to prove because of Proposition 3.8. If sp ≤
n, we know from Theorem 4.3 that eigenfunctions are bounded. The continuity
then follows from Theorem 1.5 of [111] (see Corollary 3.14 of [29]).

We now turn to further basic properties of eigenfunctions. The next theorem
was established in [27] when � is connected, the general case being proved
in [29]. A crucial step in the argument is the following logarithmic estimate,

given in [50]. It concerns functions u ∈ X = 0
Xs

p(�) that are supersolutions (of
the problem (−�)s u = 0 in �, u = 0 in Rn\�) in the sense that

∫

Rn

∫

Rn

|u(x)− u(y)|p−2 (u(x)− u(y))
|x − y|n+sp (φ(x)− φ(y)) dx dy ≥ 0

for all φ ∈ C∞
0 (�), φ ≥ 0.

Lemma 4.5 Let s ∈ (0, 1), p ∈ (1,∞), and let u ∈ X = 0
Xs

p(�) be a
supersolution such that u ≥ 0 in B (x0, 2r) for some r > 0 and x0 ∈ � with
B (x0, 2r) ⊂ �. Then there is a constant C = C(n, p, s) such that for all δ > 0,
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66 Eigenvalues of the Fractional p-Laplacian
∫

B(x0,r)

∫

B(x0,r)

∣
∣
∣
∣
log
(

u(x)+ δ

u(y)+ δ

)∣
∣
∣
∣

p 1
|x − y|n+sp dx dy

≤ Crn−sp
{

δ1−prsp
∫

Rn\B(x0,2r)

u−(y)p−1

|y − x0|n−sp dy + 1
}

,

where u− = max {−u, 0}.

Theorem 4.6 Let u ∈ X = 0
Xs

p(�) be a non-negative (s, p)-eigenvector with
corresponding eigenvalue λ. Then u > 0 a.e. in �.

Proof First assume that � is connected and let K be a compact connected
subset of �, so that K ⊂ {x ∈ � : dist (x, ∂�) > 2r} for some r > 0. Then K
can be covered by balls B (xi, r/2) (i = 1, ..., k) with each xi ∈ K and

|B (xi, r/2) ∩ B (xi+1, r/2)| > 0 (i = 1, ..., k − 1). (4.1.5)

Suppose that u = 0 on a subset of K with positive measure. Then there exists
i ∈ {1, ..., k − 1} such that

Z := {x ∈ B (xi, r/2) : u(x) = 0}
has positive measure. For each δ > 0 set

Fδ(x) = log
(

1 + u(x)
δ

)

, x ∈ B(xi, r/2).

Then Fδ(x) = 0 for all x ∈ Z, and so for all x ∈ B (xi, r/2) and y ∈ Z\{x},

|Fδ(x)|p = |Fδ(x)− Fδ(y)|p
|x − y|n+sp |x − y|n+sp ,

from which we have, on integrating with respect to y ∈ Z and x ∈ B (xi, r/2),
∫

B(xi,r/2)
|Fδ(x)|p dx ≤ rn+sp

|Z|
∫

B(xi,r/2)

∫

B(xi,r/2)

|Fδ(x)− Fδ(y)|p
|x − y|n+sp dx dy. (4.1.6)

Together with Lemma 4.5, noting that u− = 0, this shows that
∫

B(xi,r/2)

∣
∣
∣
∣
log
(

1 + u(x)
δ

)∣
∣
∣
∣

p

dx ≤ Cr2n/ |Z| ,

where C is independent of δ. As this holds for arbitrarily small δ > 0, it follows
that u = 0 a.e. in B (xi, r/2). In view of (4.1.5) this argument can be repeated
for B (xi±1, r/2), from which we see that u = 0 a.e. in K. This contradicts our
original assumption and we conclude that u > 0 a.e. on K.

Now recall that u is an eigenvector and so is not identically zero in �. Since
� is connected, there is a sequence {Km} of connected compact subsets of �
such that for each m, |�\Km| < 1/m and u is not identically zero in Km. By
what we have proved, u > 0 a.e. on each Km. It follows that u > 0 a.e. on �.
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4.2 The Spectrum 67

To complete the proof it remains to deal with the case in which � is not
connected. We know that u > 0 a.e. on each connected component of � on
which it is not identically zero. Put �1 = {x ∈ � : u(x) > 0} and suppose there
is a connected component �2 of � on which u is identically zero. Let φ ∈
C∞

0 (�2) be a non-negative test function that is not identically zero. Then

0 = λ

∫

�

up−1φ dx =
∫

Rn

∫

Rn

|u(x)− u(y)|p−2 (u(x)− u(y))
|x − y|n+sp (φ(x)− φ(y)) dx dy

= −2
∫

�1

∫

�2

u(x)p−1

|x − y|n+spφ(y) dx dy.

Thus u is identically zero in �1 and we have a contradiction that establishes the
theorem.

All eigenfunctions except those corresponding to λ1 change sign. Formally,

Theorem 4.7 Let v ∈ X = 0
Xs

p(�) be a solution of (4.1.4), with corresponding
eigenvalue λ, such that v > 0 in �. Then λ = λ1 (p, s,�).

The ingenious proof is given in [84], Theorem 4.1. Theorem 4.2 of the same
paper shows that λ1 is simple:

Theorem 4.8 Let s ∈ (0, 1) and p ∈ (1,∞). All positive eigenfunctions cor-
responding to λ1 (p, s,�) are proportional.

For later convenience we now summarise these properties of the first eigen-
value.

Theorem 4.9 Let s ∈ (0, 1) and p ∈ (1,∞); suppose that � is bounded.
Then

(i) any first (s, p)-eigenfunction must be strictly positive (or strictly negative);
(ii) λ1 (p, s,�) is simple;

(iii) any eigenfunction corresponding to an eigenvector λ > λ1 (p, s,�) must
change sign.

4.2 The Spectrum

In contrast to the standard terminology used for linear operators, the set of all
eigenvalues of the eigenvalue problem (4.1.3) is called the spectrum of (4.1.3)
and is denoted by σ(s, p); given λ ∈ σ (s, p), the set of all λ-eigenfunctions is
the λ-eigenspace.

Proposition 4.10 The spectrum σ (s, p) is closed.
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68 Eigenvalues of the Fractional p-Laplacian

Proof Let λ ∈ σ (s, p); then there is a sequence {λk} of eigenvalues such

that λk → λ. Put X = 0
Xs

p(�) and define A : X → X∗ as in 3.4, so that for all
u, v ∈ X,

〈Au, v〉 =
∫

Rn

∫

Rn

|u(x)− u(y)|p−2 (u(x)− u(y)) (v(x)− v(y))
|x − y|n+sp dx dy,

and

λk = [uk]p
s,p,Rn = ‖uk|X‖p for some uk ∈ X with ‖uk‖p = 1 (k ∈ N).

Since {uk} is bounded in the reflexive space X, there is a subsequence, still
denoted by uk for convenience, and an element u of X, such that uk ⇀ u in X;
as X is compactly embedded in Lp(�), we may and shall suppose that uk → u
in Lp(�). Moreover,

|〈Auk, uk − u〉| = λk

∣
∣
∣
∣

∫

Rn
|uk|p−2 uk (uk − u) dx

∣
∣
∣
∣

≤ λk ‖uk − u‖p ‖uk‖p/p′
p → 0

as k → ∞. Thus
lim

k→∞
|〈Auk − Au, uk − u〉| = 0,

and as by Lemma 3.31 the map A is of type (S)+, it follows that uk → u in X.
By Proposition 1.1.26 of [61], applied to the duality map A and the uniformly
smooth space X∗, we see that Auk → Au in X∗. Let J : Lp(�) → Lp′(�) be the
duality map with gauge function t �−→ tp−1, so that Jf = |f |p−2 f (f ∈ Lp(�)).
Then for all v ∈ X,

〈Au, v〉 = lim
k→∞

〈Auk, v〉 = lim
k→∞ λk

∫

Rn
|uk|p−2 ukv dx = lim

k→∞ λk 〈Juk, v〉

= λ 〈Ju, v〉 = λ

∫

Rn
|u|p−2 uv dx,

and ‖u‖p,� = 1, so that λ ∈ σ(s, p).

Theorem 4.11 If {�j} is a non-decreasing sequence of domains such that
� = ∪∞

j=1�j, then λ1
(

p, s,�j
) ↓ λ1(p, s,�).

Proof Evidently λ1
(

p, s,�j
)

decreases as j increases; hence the limit exists.
Given ε > 0, there is a function φ ∈ C∞

0 (�) such that

[φ]p
s,p,Rn / ‖φ‖p

p,Rn < λ1 (p, s,�) + ε, (4.2.1)

since λ1 (p, s,�) is the infimum. However, as supp φ ⊂ �j for large enough j,
the function φ can be used as a test function in the Rayleigh quotient for �j,
and so
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4.2 The Spectrum 69

λ1
(

p, s,�j
)

< λ1 (p, s,�) + ε

for all large enough j. The result follows.

Let Sp(�) = {

u ∈ X : ‖u‖p = 1
}

and define

λ2(s, p,�) = inf
f∈C1(�)

max
u∈im(f )

‖u‖p
0
Xs

p(�)

,

where

C1(�) = {

f : S1 → Sp(�) : f odd and continuous
}

.

Theorem 4.12 Let s ∈ (0, 1) and p ∈ (1,∞); suppose that � is bounded.
Then λ2(s, p,�) is an (s, p)-eigenvalue, λ2(s, p,�) > λ1(s, p,�), and for ev-
ery (s, p)-eigenvalue λ > λ1 (p, s,�) we have λ ≥ λ2(s, p,�).

This is given in detail in [29], Theorem 4.1 and Proposition 4.2. Here we
simply sketch some of the main ideas used to establish the result.

To prove that λ2(s, p,�) is an (s, p)-eigenvalue amounts to showing that it is
a critical point of the functional

s,p(u) :=
∫

Rn

∫

Rn

|u(x)− u(y)|p
|x − y|n+sp dx dy

defined on the manifold

Sp(�) := {

u ∈ X(�) : ‖u‖p,� = 1
}

.

The strategy is to show that s,p satisfies the Palais–Smale condition: once this
is done, the result will follow from Theorem 1.4.1. To do this, let {uk}k∈N be a
sequence in Sp(�) such that there exists C > 0 with

s,p(uk) ≤ C (k ∈ N) and lim
k→∞

∥
∥′

s,p(uk)|Tuk Sp(�)
∥
∥ = 0. (4.2.2)

In this context the tangent space to Sp(�) at uk is given by

Tuk Sp(�) =
{

φ ∈ X :
∫

�

|uk|p−2 ukφ dx = 0
}

.

By the second part of (4.2.2), there exists {εk}k∈N, εk > 0, εk → 0 such that for
all k ∈ N,

∣
∣′

s,p(uk)(φ)
∣
∣ ≤ εk ‖φ‖X for all σ ∈ Tuk Sp(�).

By the first part of (4.2.2), there is a subsequence of {uk}k∈N, still denoted by
{uk}k∈N for convenience, and a function u ∈ X such that uk → u in Lp(�) and
uk ⇀ u in X. Clearly u ∈ Sp(�). It remains to prove that a further subsequence
of {uk}k∈N converges to u in X: details of the technical argument needed to
establish this are given in [29].
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70 Eigenvalues of the Fractional p-Laplacian

To prove that λ2(s, p,�) > λ1(s, p,�), suppose that this is false, so that

λ2(s, p,�) = inf
f∈C1(�)

max
u∈im(f )

‖u‖X = λ1(s, p,�).

Hence given any k ∈ N, there is an odd continuous map fk : S1 → Sp(�) such
that

max
u∈fk(S1)

‖u‖X ≤ λ1 (s, p,�) + k−1.

Let u1 ∈ Sp (�) be the unique (modulo the choice of sign) global minimiser,
and for small enough positive ε consider the disjoint neighbourhoods

U+ := {

u ∈ Sp (�) : ‖u − u1‖p < ε,
}

,

U− := {

u ∈ Sp (�) : ‖u − (−u1)‖p < ε,
} ;

note that U+∪ U− is symmetric and disconnected. For every k ∈ N, the image
fk
(

S
1
)

of S1 under the odd continuous map fk is symmetric and connected: it
follows that there exists vk ∈ fk

(

S
1
) \ (U+ ∪ U−). The sequence {vk}k∈N is con-

tained in Sp (�) and is bounded in X: by passage to a subsequence if necessary
we see that there exists v ∈ Sp (�) such that vk ⇀ v in X and vk → v in Lp(�).
Hence

‖v‖X ≤ lim inf
k→∞

‖vk‖X = λ1(s, p,�).

Thus v ∈ Sp (�) is a global minimiser, so that either v = u1 or v = −u1.
But v ∈ Sp (�) \ (U+ ∪ U−) and we have a contradiction. Hence λ2 (s, p,�) >
λ1 (s, p,�).

For the ingenious and technical proof of the last part of the theorem we refer
to Proposition 4.2 of [29].

This result shows that λ2(s, p,�) may properly be called the second (s, p)-
eigenvalue. It also shows that λ1(s, p,�) is isolated.

4.3 Inequalities of Faber–Krahn Type

In this section we deal with a fractional version of the celebrated Faber–Krahn
inequality concerning the first eigenvalue λ1 (p,�) of the Dirichlet p-Lap-
lacian. This asserts that balls minimise the first eigenvalue among open sets
with given volume; more precisely,

λ1 (p,B) ≤ λ1 (p,�) ,

where

λ1 (p,�) = min
{∫

�

|∇u|p dx : u ∈ 0
W1

p (�) , ‖u‖p = 1
}
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4.3 Inequalities of Faber–Krahn Type 71

and B is a ball with the same measure as �. A crucial component of the
proof is the Pólya–Szegö inequality, which involves the notion of the symmet-
ric rearrangement of a function and which we now explain. Given u : Rn →
R

+ ∪ {∞}, its symmetric rearrangement is defined to be the unique function
u� : Rn → R

+ ∪ {∞} such that for all λ ≥ 0, there exists R ≥ 0 with

BR = {

x ∈ Rn : u�(x) > λ
}

and |BR| = |{x ∈ Rn : u(x) > λ}| .
The function u� is radial and radially decreasing. It is easy to see that if u
belongs to Lp (R

n) then so does u�, which has the same Lp norm. The famous
Pólya–Szegö inequality asserts that if u ∈ W1

p (R
n) is non-negative, then u� ∈

W1
p (R

n) and
∫

Rn

∣
∣∇u�

∣
∣
p

dx ≤
∫

Rn
|∇u|p dx.

This was extended to fractional Sobolev spaces in [9], Theorem 9.2 (see also
[70], Theorem A1); more precisely,

Theorem 4.13 Let s ∈ (0, 1) and p ∈ (1,∞). Then for all u ∈ Ws
p (R

n),

[u]s,p,Rn ≥ [

u�
]

s,p,Rn .

Armed with this inequality, Brasco, Lindgren and Parini [28] established the
following version of the Faber–Krahn inequality.

Theorem 4.14 Let s ∈ (0, 1) and p ∈ (1,∞); suppose that � is bounded.
Then for every open ball B ⊂ R

n,

|�|sp/n λ1(s, p,�) ≥ |B|sp/n λ1(s, p,B). (4.3.1)

If equality holds, then � is a ball.

Proof Note that λ1(s, p, t�) = t−spλ1(s, p,�). Without loss of generality we
may suppose that |�| = |B|. Then (4.3.1) follows immediately from Theorem
4.3.1. As for equality, if |�| = |B| and λ1(s, p,�) = λ1(s, p,B), then by The-
orem A.1 of [82], (4.3.1) holds with equality. However, again by Theorem A1
of [82], any first eigenfunction with respect to � must coincide with a trans-
late of a radially symmetric decreasing function, which means that � must be
a ball.

A lower bound for the second eigenvalue was obtained in [29]; their proof
relies on the following lemma.

Lemma 4.15 Let s ∈ (0, 1) and p ∈ (1,∞); suppose that � is bounded and
let λ be an eigenvalue with corresponding eigenvector u ∈ Sp(�) and with
λ > λ1(s, p,�). Put
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72 Eigenvalues of the Fractional p-Laplacian

�+ = {x ∈ � : u(x) > 0} ,�− = {x ∈ � : u(x) < 0} .
Then

λ > max {λ1(s, p,�+), λ1(s, p,�−)} .
Proof By Corollary 4.4, u is continuous in �; hence �± are open and
λ1(s, p,�±) are well defined. Write u = u+ − u−, where u+ and u− are the
positive and negative parts of u; recall that u is sign-changing. Use u+ as the
test function in the equation satisfied again by u: this gives

λ

∫

�

|u+|p dx =
∫

Rn

∫

Rn

|u(x)− u(y)|p−2 (u(x)− u(y))
|x − y|n+sp (u+(x)− u+(y)) dx dy.

Application of Lemma 1.9 with a = u+(x) − u+(y) and b = u−(x) − u−(y)
gives

λ

∫

�

|u+|p dx >
∫

Rn

∫

Rn

|u(x)− u(y)|p
|x − y|n+sp dx dy.

As u+ is admissible for the variational problem defining λ1(s, p,�+), it follows
that λ > λ1(s, p,�+). In the same way, using Lemma 1.5.1 again, this time with
a = u−(x)− u−(y) and b = u+(x)− u+(y), we find that λ > λ1(s, p,�−), and
the proof is complete.

For the classical Laplacian on � it is a familiar fact that the restriction of
a higher eigenfunction (with corresponding eigenvalue λ) to one of its nodal
domains, �1 say, is a first eigenfunction on �1, with corresponding eigenvalue
λ. The inequality of the last lemma illustrates the sharp contrast between the
classical result and that of the fractional, nonlocal situation considered here.
The following theorem is given in [29].

Theorem 4.16 Let s ∈ (0, 1) and p ∈ (1,∞); suppose that � is bounded.
Then for every ball B ⊂ R

n with |B| = |�| /2,
λ2(s, p,�) > λ1(s, p,B). (4.3.2)

Equality is never attained, but the estimate is sharp in the sense that given
any sequences {xk} , {yk} in R

n with limk→∞ |xk − yk| = ∞, and with �k :=
B (xk,R) ∪ B (yk,R) , where R > 0, then

lim
k→∞ λ2(s, p,�k) = λ1(s, p,BR).

Proof Let u ∈ Sp(�) be an eigenfunction with corresponding eigenvalue
λ2(s, p,�); define

�+ = {x ∈ � : u(x) > 0} ,�− = {x ∈ � : u(x) < 0}
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(recall that u is sign-changing). By Lemma 4.15 and Theorem 4.14,

λ2(s, p,�) > λ1(s, p,�+) > λ1(s, p,BR1), λ2(s, p,�) > λ1(s, p,�−)
> λ1(s, p,BR2),

where
∣
∣BR1

∣
∣ = |�+| and

∣
∣BR2

∣
∣ = |�−|. Hence

λ2(s, p,�) > max
{

λ1(s, p,BR1), λ1(s, p,BR2)
}

. (4.3.3)

The scaling properties of λ1 imply that

λ1(s, p,BR) = R−s/pλ1(s, p,B1);
also,

∣
∣BR1

∣
∣+ ∣

∣BR2

∣
∣ ≤ |�|. As the right-hand side of (4.3.3) is minimised when

∣
∣BR1

∣
∣ = ∣

∣BR2

∣
∣ = |�| /2, (4.3.2) follows.

To complete the proof, define �k as in the statement of the Theorem; we may
suppose that B (xk,R) and B (yk,R) are disjoint for all large enough k. Let u, v
be the positive normalised first eigenvalues on B (xk,R), B (yk,R) respectively:
their form does not depend on the centre of the ball. Put

a(x, y) = u(x)− u(y), b(x, y) = v(x)− v(y).

By Lemma 1.10,

λ2(s, p,�k) ≤ max
|w1|p+|w2|p=1

∫

Rn

∫

Rn

|w1a − w2b|p
|x − y|n+sp dx dy

≤ max
|w1|p+|w2|p=1

⎧

⎨

⎩

∫

Rn

∫

Rn
|w1|p|a|p
|x−y|n+sp dx dy + ∫

Rn

∫

Rn
|w2|p|b|p
|x−y|n+sp dx dy

+cp
∫

Rn

∫

Rn

(

|w1a|2+|w2a|2
)(p−2)/2|w1w2ab|

|x−y|n+sp dx dy

⎫

⎬

⎭

= λ1(s, p,BR)+ cp

∫

Rn

∫

Rn

(|w1a|2+ |w2a|2)(p−2)/2|w1w2ab|
|x − y|n+sp dx dy.

Since ab = −u(x)v(y) − u(y)v(x), the numerator in the last integral is nonzero
only if (x, y) ∈ B (xk,R)× B (yk,R) or (x, y) ∈ B (yk,R)× B (xk,R). With

C := 2 max
|w1|p+|w1|p=1

∫

B(xk,R)

∫

B(yk,R)

(|w1a|2 + |w2a|2)(p−2)/2 |w1w2ab| dx dy,

we thus have

lim
k→∞ λ2(s, p,�k) ≤ λ1(s, p,BR)+ lim

k→∞
cpC

(|xk − yk| − 2C)n+sp = λ1(s, p,BR),

which completes the proof.

Remark 4.17 This is the nonlocal version of the Hong–Krahn–Szegö inequal-
ity (see [26], Theorem 3.2) which claims that, among sets of prescribed mea-
sure, the second eigenvalue of the Dirichlet Laplacian is minimised when the
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underlying set is the disjoint union of two equal balls. Note that Theorem 4.16
implies that (in scalar invariant form) for any ball B ⊂ R

n,

λ2(s, p,�) > (2 |B| / |�|)sp/n λ1(s, p,B).

A survey of eigenvalue bounds for fractional Laplacians and fractional
Schrödinger operators is given in [79]. See also [103] and [137].
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