Proceedings of the Edinburgh Mathematical Society (1994) 37, 355-358 (C)

LINEAR METRIC SPACES AND ANALYTIC SETS

by ROBERT KAUFMAN*

(Received 19th January 1993)

A problem in descriptive set theory, in which the objects of interest are compact convex sets in linear metric spaces, primarily those having extreme points.

1991 Mathematics subject classification: 54H05, 28A05.

Introduction

Let E be a linear metric space with norm ||x|| and distance d(x, y) = ||x-y||, and suppose that E is separable and complete. The space c(E) of all non-void compact subsets of E is then a Polish space in the Hausdorff metric, and its topology depends only on that of E. The space $\mathscr{K}(E)$ of all compact, convex (non-void) subsets of E is closed in c(E); we are interested primarily in the subset $\mathscr{EK}(E) \subseteq \mathscr{K}(E)$, consisting of those sets in $\mathscr{K}(E)$ having at least one extreme point. A remarkable example by Roberts [4, 5, 9] shows that $\mathscr{EK}(E) \neq \mathscr{K}(E)$ when $E = L^{1/2}(0, 1)$ for example.

We push this a step further:

Theorem. $\mathscr{EK}(E)$ is always an analytic subset of $\mathscr{K}(E)$, and is a complete analytic subset when $E = l^2 \oplus L^{1/2}$.

The second part of the theorem means this: for each analytic set A in a compact metric space M, there is a continuous mapping ϕ of M into $\mathscr{K}(E)$, such that $A = \phi^{-1}(\mathscr{E}\mathscr{K}(E))$. Previous work on extreme boundaries of convex sets in Banach spaces, and on the class of (non-compact) convex sets admitting extreme points, is presented in [2, 3, 6, 7]; applications of Roberts' technique appear in [1, 10].

The basic construction

Let K_0 be a compact, convex set in $L^{1/2}$ containing 0 but no extreme point, and K_1 a compact, convex set in a Banach space, say l^2 . (In the space $l^2 \oplus L^{1/2}$, the subspace $l^2 \oplus (0)$ is identified with l^2 , and likewise for $(0) \oplus L^{1/2}$). We define a sort of extension of K_1 by K_0 , parametrized by a function $f \ge 0$ in $C(K_1)$. Let L(f) be the compact subset of $K_1 + K_0$ containing all (x, y) such that

*Research supported in part by the National Science Foundation.

R. KAUFMAN

 $x \in K_1, y \in f(x) \cdot K_0$

and

$$K(f) = \overline{co}(L(f)) \subseteq K_1 + ||f||_{\infty} \cdot K_0$$

Lemma 1. K(f) has an extreme point if and only if f has a zero in $e \times K_1$.

This depends on an elementary result, whose proof is omitted.

Lemma 0. Let C be a compact convex set in E, F a closed subset of C, and z and extreme point of $\overline{co}(F)$. Then there is an element w of F, such that $z \in \overline{co}(F \cap V)$ for every neighbourhood V of w.

We apply this with $C = K_1 + ||f||_{\infty} \cdot K_0$, and F = L(f). Let z = (x, y) be an extreme point of K(f). The element w of L(f) must have the same first co-ordinate as z (since l^2 is locally convex), so we write $w = (x, y_1), y_1 \in f(x) \cdot K_0$. To see that $y \in f(x) \cdot K_0$, let $\delta > 0$ and let V be a neighbourhood of (x, y_1) such that $f(\xi) < f(x) + \delta$ whenever $(\xi, \eta) \in V$. Then $\overline{co}(V \cap L(f)) \subseteq K_1 + (f(x) + \delta) \cdot K_0$; since K_0 is compact, and $\delta > 0$ was arbitrary, we conclude that $y \in f(x) \cdot K_0$.

Continuing with the consideration of $z \in ex K(f)$, we see that it is necessary that f(x)=0, whence y=0. But then it is necessary as well as that $x \in ex K_1$, i.e. $f^{-1}(0)$ meet $ex K_1$.

Conversely, suppose that $x \in ex K_1$ and f(x) = 0, and $2(x, 0) = (x_1, y_1) + (x_2, y_2)$, with $(x_i, y_i) \in K(f)$. Clearly $x_1 = x_2 = x$, and we proceed to prove that $y_1 = y_2 = 0$. There is a formula $(x, y_1) = \lim \int (x, y) d\mu_n(x, y)$, where each μ_n is an atomic probability measure in L(f), with finite support. Writing $c_n = \int f(x) d\mu_n$, and $c = \liminf c_n$, we see that $y_1 \in c \cdot K_0$. Let μ be any w*-limit of the sequence (μ_n) , so that $x = \int x d\mu(x, y)$ —since l^2 is a Banach space. This is possible only if μ is concentrated on $(x) \oplus L^{1/2}$, and thus $\lim c_n = 0$. We have proved that $y_1 = 0$, i.e. (x, 0) is an extreme point, thereby proving Lemma 1.

A small observation is necessary: K(f) depends continuously on the parameter $f \in C^+(K_1)$. Indeed, when $||f-g||_{\infty} < \delta$, then $f \leq g+\delta$, so $K(f) \subseteq K(g+\delta) \subseteq K(g) + \delta \cdot K_0$. This implies continuous dependence of K(f) on f.

An elementary step

Let F_m be the subset of $E \times \mathscr{K}(E)$ defined as follows:

$$(x, K) \in F_m$$
 if $x + y, x - y \in K$

for some y, such that $||y|| \ge m^{-1}$. (Here m = 1, 2, 3, ...). To see that F_m is closed in $E \times \mathscr{K}(E)$, suppose $(x_n, K_n) \in F_m$, and $\lim x_n = x$, $\lim K_n = K$. Then $x_n \pm y_n \in K_n$, for some y_n with $||y_n|| \ge m^{-1}$. Now $\bigcup_{i=1}^{\infty} K_n$ has compact closure in E, whence $(x_n + y_n)$ has a

356

limit-point, and so (y_n) has a limit-point y. Thus $||y|| \ge m^{-1}$ and x+y, x-y belong to $K:(x, K) \in F_m$.

The union $\bigcup_{1}^{\infty} F_m \equiv F$ is exactly the set of pairs (x, K) such that $x \in K \setminus ex K$. Projecting the G_{δ} -set $E \times \mathscr{K}(E) \setminus F$ on the second factor $\mathscr{K}(E)$, we obtain an analytic set, namely $\mathscr{E}(E)$.

A special set in l^2 [8]

Let C and C_0 be the subsets of l^2 containing sequences $(a_k)_1^\infty$ such that $\sum ka_k^2 \leq 1$ (respectively, $\sum ka_k^2 = 1$). Then C is compact and convex, and $C_0 = ex C$. The remaining part of the proof is based on the next observation (zero-set representation):

(ZSR). Let A be an analytic set in a compact metric space M. There is a continuous function $f(t,x) \ge 0$ on $M \times C$ such that $t \in A \Leftrightarrow f(t,x) = 0$ for some $x \in C_0$.

The conclusion of the main argument is presented next, and then finally the proof of ZSR. We use C in place of K_1 . The partial function $x \mapsto f(t, x)$ is denoted f_t , and then M is mapped into $\mathscr{K}(l^2 \oplus L^{1/2})$ by the formula $K[t] = K(f_t)$. Then K[t] has an extreme point $\Leftrightarrow f_t$ has a zero in $C_0 \Leftrightarrow t \in A$. We have seen that $K(f_t)$ depends continuously on f_t , i.e. K[t] varies continuously with t. This proves the main result.

Proof of ZSR. A certain detail makes this appear complicated. The mapping of a function $g \in C([0, 1])$ to its zero set $g^{-1}(0)$ is merely upper semicontinuous; but this can be detoured by enlarging the domain [0, 1]. The set A is the image $\psi(N)$ of the set J of irrationals in I = [0, 1] by a continuous function ψ defined over J. Let Γ be the graph of ψ —thus $\Gamma \subseteq J \times A$ —and let d be a metric for $I \times M$, $0 \leq d \leq 1$. Then each t in M is mapped to a closed set F(t) in $I \times M \times I$: the set of all 3-tuples $(s, t, d((s, t), \Gamma))$. This is continuous and $t \in A \Leftrightarrow F(t)$ meets $J \times M \times (0)$, a G_{δ} -set in $I \times M \times I$. (The device just introduced is the detour mentioned above.)

Next we define a map h from the cube $Q = [0, 1]^N$ to C such that $h^{-1}(C_0) = (0, 1]^N$. The triangular function $\delta(u) = \max(1 - |u|, 0)$; for each $\lambda \ge 1$ there is a scalar $c(\lambda) > 0$ such that $c(\lambda)\delta(n-\lambda)$ belongs to C_0 (as a function of n), and we call this $g(\lambda)$, defining $g(+\infty) = 0$. Finally $h(s_1, s_2, s_3, ...) = \sum_{1}^{\infty} 2^{-k/2} g(s_1^{-1} \cdots s_k^{-1} + 3k)$. It is a simple matter to adapt this to an arbitrary metric space Q and any G_{δ} subset V, in particular $Q = I \times M \times I$ and $V = J \times M \times (0)$. Hence $H(t) \equiv h(F(t))$ is a closed subset of C, $t \in A \Leftrightarrow H(t)$ meets C_0 ; now we conclude by defining f(t, x) = d(x, H(t)).

REFERENCES

1. J. BOURGAIN and H. P. ROSENTHAL, Martingales valued in subspaces of L^1 , Israel J. Math. 37 (1980), 54-75.

2. R. HAYDON, A new proof that every Polish space is the extreme boundary of a simplex, Bull. London Math. Soc. 7 (1975), 97-100.

3. J. E. JAYNE and C. A. ROGERS, The extremal structure of convex sets, J. Funct. Anal. 26 (1977), 251-288.

R. KAUFMAN

4. N. J. KALTON and N. T. PECK, A re-examination of the Roberts example of a compact convex set without extreme points, *Math. Ann.* 253 (1980), 89-101.

5. N. J. KALTON, N. T. PECK and J. W. ROBERTS, An F-space Sampler (London Math. Soc., Lecture Notes 89, 1984).

6. R. KAUFMAN, Co-analytic sets and extreme points, Bull. London Math. Soc. 19 (1987), 72-74.

7. R. KAUFMAN, Extreme points and descriptive sets (manuscript).

8. E. T. POULSEN, A simplex with dense extreme points, Ann. Inst. Fourier (Grenoble) 11 (1961), 83-87.

9. J. W. ROBERTS, A compact convex set with no extreme points, Studia Math. 60 (1971), 255-266.

10. M. TALAGRAND, Un espace de Banach réticulé qui a presque la proprieté de Radon-Nikodým, Studia Math. 76 (1983), 255-266.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN 1409 WEST GREEN STREET URBANA ILLINOIS 61801 USA

358