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ON UNIFORM SEMIGROUP-VALUED ADDITIVE 
SET FUNCTIONS 

BY 

G E O F F R E Y F O X A N D P E D R O M O R A L E S * 

ABSTRACT. The main results of this paper are the following: 
(1) An extension theorem for a uniform semigroup-valued meas­

ure on a ring to the generated o--ring. This result unifies the classieal 
Hahn-Carathéodory theorem, the extension theorem of Sion and a 
more recent result of Weber. 

(2) A theorem stating that every monocompact additive uniform 
semigroup-valued set function on a semiring is <x -additive. This 
result generalizes several earlier theorems of Alexandroflf, 
Dinculeanu-Kluvanek, Glicksberg, Huneycutt, Mallory, 
Marczewski, Millington and Tops^e. 

1. Introduction. This paper is organized into three sections: Section 2 
establishes an extension theorem for a uniform semigroup-valued measure on a 
ring, the domain of the extension being the generated cr-ring. This unifies the 
classical Carathéodory theorem, the extension theorem of Sion and a more 
recent result of Weber (whose methods we use, in simplified form). Section 3 
concerns the cr-additivity of an additive monocompact set function on a 
pre-ring. The theorem of this section unifies several earlier results. Section 4 
applies the extension theorem of Section 2 to an additive monocompact set 
function on a pre-ring. In this section we establish a paving for the extension in 
terms of the paving of the original set function. For details on uniform 
semigroups we refer to [6] and to [16]. 

2. Extension theorems. We denote by X, i , S a fixed non-empty set, a ring 
of subsets of X, a complete Hausdorff uniform commutative semigroup with 
neutral element 0. If si is a subset of 2X (set of all subsets of X), 0t(si), ô(si), 
cr(si) will denote the ring, ô-ring, cr-ring, respectively, generated by si, and si^ 
will denote the set of a most countable unions of sets belonging to si. With 
respect to the binary operations A and Pi, 2X is a Boolean ring and ^ is a 
subring. The minimum cr-ideal containing 01 is 3(01) = {I e 2X : J ç A for some 
Ae0l(T}. The following key result is due essentially to Weber [20] (see also 
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[6]): The uniformity of S is generated by a family P of semi-invariant uniformly 
continuous [0, l]-valued pseudo-metrics on S. (A pseudo-metric p on S 
is semi-invariant if p(x + x\ y + y')<p(x, y) + p(x\ y').) Write |JC|P = 
p(x, 0) (peP, xeS); then |0|p =0 , p(x + y, y)<|x |p and |x + y|p <|x|p + |y|p. 
Since S is Hausdorff, p(x, y) = 0 for all p eP implies x = y. Let A : ^ ^ S b e a 
set function vanishing at c/>. For each peP define Ap on 2x :Ap(F) = 
sup{|A(A)|p:F^ A e£%}. Thus Ap is increasing, vanishing at $ and such that 
AP(A)>|A(A)|P if A e0l. If A :0l-> S is o--additive and vanishes at </>, we will 
say that A is a measure. In this case, direct computations shows that Ap | 01^ is 
or-subadditive. 

Let p, : 0t -» S be a measure. For each p G F, ûp\0la. extends to (JL * : $(0l) -» 
[0,1] defined by the formula /x*(JQ = inf{ûp(A): J ç A e ^ U . Then JLL* is in­
creasing and a-subadditive. Vanishing at c/>, p,p is also subadditive, and so 
defines the pseudo-metric dp(F, F) - p,*(FAF) (F, Fe$(0l)). Henceforth we 
consider .#(<%) to be a uniform space, with uniformity generated by the 
dp, peP. It is well-known that the Boolean operations U, Pi, — and A are 
uniformly continuous maps of $(0l)x$(0l) into $(0l) and the closure 01 of 0t is 
a ring. The inequality p(p,(F), p,(F)) < 2 fIp(F A F), (F, Fe0t, peP) implies that 
p, is uniformly continuous, and therefore it extends by continuity to a set 
function jl :0t —> S, which is obviously additive. Finally, the inequality |p,p(F) — 
JLL*(F)|< fxp(FAF) (F, FeJ>(0l)) implies that p,* is also uniformly continuous. 

Let A \0t^> S be such that K(4>) = 0. We say that A is locally s-bounded if, 
for every Ee0t and every disjoint sequence (En) in 0t such that En ç F, (A(Fn)) 
converges to 0. It is clear that A is locally s-bounded if and only if, for all peP, 
Ap | 01 is locally s-bounded. 

2.1 THEOREM. A locally s-bounded measure pu.0t-^S extends uniquely to a 
locally s-bounded measure p, on 8(01). Further, the extension satisfies the 
inequality p,p | 8(01) < pu * | 60%) /or a/1 peP. 

Proof. As for uniqueness, a trivial modification of the argument of [3, 
Proposition 6, p. 24] suffices. By [20, (4.4), (3.3)] there is a measure p, : 8(01) —> 
S extending p, with £, | S(«)<JLL* | S(&) for all p e P . By [20, (4.4), (2.1)] 
jut* | 8(01) is locally s-bounded, so also (L. 

2.2 REMARK. Theorem 2.1 is a slight improvement of [20, (4.4) (b), (c)]: The 
uniqueness of p, does not depend on an imposed topology and p, is locally 
s-bounded. 

We say that a set function A : 0t —» S is monotonely convergent if, for every 
disjoint sequence (Fn) of 0t, the series £n=i A(Fn) converges. If A is additive, 
then A is monotonely convergent if and only if F n î , Ene0l implies that (A(Fn)) 
converges. 
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2.3 LEMMA. Let fx :9t-^> S be a locally s-bounded measure. If JLL is monotonely 
convergent, so is (L. 

Proof. Let EJ, En G 8(91). Let p e P and e > 0. Since 8(91) c & [20, (4.4) (c)], 
there is a sequence (An) in 9t such that ju,*(An AE n )<2 _ n e . Then Bn = 
Ur=i A (n = 1, 2 , . . . ) is an increasing sequence in 9t such that JLI*(Bn AEn) < e. 
By Theorem 2.1, p(/x(En), ^ ( B J ) = p(fî(En), f î(Bn))<2£p(En AB n )< 
2jLtp(£n AB n )<2e. This holds for all n = 1, 2 , . . . Since e and p are arbitrary 
and (|UL(Bn)) is Cauchy, so is ((L(En)). 

For a non-empty set I, ^(1) denotes the set of all finite subsets of J. Let 
M ={1,2, 3 , . . . } . 

The usual summability définition for a family of elements of a HausdorfT 
commutative topological group [2, p. 60] can be extended to S as follows: A 
family (xt)i&1 of elements of S is summable to s G S, in symbols £ i G l

 xi = s, if for 
all p G P and all 6 > 0, there exists Je e 3?(I) such that p(XjeJ *n s)<e whenever 
Je 9(1) a n d / ^ / e . 

The following lemma is a generalization of [2, Proposition 9, p. 69]. Since 
the proof does not carry over, we use an argument of [8] with appropriate 
modification: 

2.4 LEMMA. For a sequence (Xj)f=1 in S the following statements are 
equivalent: 

(a) For every permutation a of N, the series YA = I x<rd) converges. 
(b) The family (xt)i(=N is summable. 

If either condition is satisfied, then £iGN xt
 = IT=i xt-

Proof. (a)O(b). Let S=YA = IXI- Assume that the family (Xj)iGN is not sum­
mable to s. There exist e 0 > 0 and ÇGP such that, for every Je3F(N), one 
can find Ke8F(N) with K^J and pÇZi^Kxh s) — €o- Also there is a positive 
integer N such that n >N implies p(Xr=i xh s)<^e0. Now let Jx = {1, 2 , . . . , N} 
and let KXG9(N) be such that K1^J1 and p(Z i e K l *n s) —eo- Let J2 = 
{ 1 , 2 , . . . , maxiGKi i} and let K2 G 2F(N) be such that K2 2 / 2

 a n d p(LeK2
 xh s) ^ 

e0. Construct in the same way I3, K3, J4, K4,. . . and define a permutation <x of 
f̂ l enumerating the elements of the union 

Since 

P(Li&Kn
 xi, L e j n Xi)>p(I»eKn *i, s)-p(YjiGjn Xi, S)>è€() 

and I i e K n xf =Lk=i *<r(o> L e j n xt = 2>=1 X<KO (where fcn, jn denote the number of 
elements of Kn, Jn, respectively), the sequence (Xt

n=i xff(i))^=1 is not Cauchy, 
contrary to (a). 

(b)=>(a). Same argument as in [8, p. 960]. 
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The following associativity lemma generalizes equation (2) of [2, Théorème 
2, pp. 63-64]: 

2.5 LEMMA. Let (*ij)(u)eixj be a family of elements of S. If Saj)eixj *a — s and, 
for every iel, Syej^i/ = s» then the family (st)iGl is summable to s. 

Proof. Let peP, e > 0 . There exists K0G^(IXJ) such that p'Œaj)eK*iy> s )< 
Je whenever Ke^(IxJ) and K^K0. Let H0 = {iel: Kt=({i}xJ)nK0*<l>}. 
Then H0e9(I). Let He 9(1) be such that H^H0 and let n be the number of 
elements of H. Then, for each i e H, there exists Lt e 9(J) such that {i} xLt^Ki 
and pdye^Xy, Si)<e/2n. Let £ > L L H { * } x £ r Then Ke^(IxJ) and K^K0. 
Since I ( u ) eK^y = L H ( I / 6 L , 4 we have 

P ( L É H ^ , S) < p (LeH Si, L e H E/eL, **/)) + PŒ(i,j)6K *ij, «) 

^ L e H Pis* IjeL, *y) + * / 2 < n. e/2n + e/2 = e. 

The following lemma is crucial to the proof of the main result of this section: 

2.6 LEMMA. A monotonely convergent measure JLL : 8(01) —» S extends uniquely 
to a measure JLL' on cr(9t). 

Proof. The uniqueness being trivial, we prove the existence of jit'. Set 
M/(Un = i An) = £n=i fi(An) for an arbitrary disjoint sequence (An) in 8(91). To 
see that |x' is well-defined, suppose also that Un=i An

 = Um=i Bm where the 
Bm G ô(3fc) are disjoint. We order the double sequence (|UL(An nBm))~> n = 1 into a 
sequence (Xi)°°=1. Because JUL is monotonely convergent, for any permutation a 
of N, the series YT=i *<r(o converges. So, by Lemma 2.4, the family (jn(Ann 
£m))(n,m)eNxM is summable. Also, for every meN, the family (fx(An HBm))n e N 

is summable to p,(Bm), so, by Lemmas 2.5 and 2.4, Zm=iP'(^m)=: 

I(n,m)eNxN^(AnnBm). In same way it is established that ST=i^(A„) = 
S(n,m)ê x ĵ iLt(AnnBm). So Yl=i M-(Bm) = I]n=i /"-(A*). It remains to show that 
/x' is cr-additive. Let E = U„=1En, where the Eneor(9t) are disjoint for 
n = 1, 2, 3 , . . . Write £ n = (Jm=i Anm, where (Anm)~ = 1 is a disjoint sequence in 
60%). Using the definition of /UL' and Lemma 2.4 we see that 
l(n,m)eNxN^(Anm) = ii'(E). Also, by the definition, YZ=i v(Anm) = ii'(En) for 
all n = 1, 2, 3 , . . . So, by lemmas 2.5 and 2.4, £n=i ju/(En) = ii'(E). 

2.7 THEOREM. A locally s-bounded monotonely convergent measure /ut : ̂  —> S 
extends uniquely to a measure JUL' : cr(£%) —» S swch that JLL'| S(Sfc) is locally 
s-bounded. 

Proof. Apply successively Theorem 2.1, Lemma 2.3 and Lemma 2.6. 

2.8 REMARK. It is easy to see that Theorem 2.7 contains the following 
unrelated results: The classical Carathéodory theorem, the extension theorem 
of Sion [15] (see also [5]) and the recent extension theorem of Weber [20, Satz 
(4.4) (b) and (d)]. 

https://doi.org/10.4153/CMB-1983-005-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1983-005-4


30 GEOFFREY FOX AND PEDRO MORALES [March 

3. Monocompact additive set function. A paving is a class % of subsets of X 
such that (J)ef. Following Marczewski [12], a paving 3C is called compact if, 
for every countable subpaving 3£0 of % with empty intersection, there exists a 
finite subpaving 3if00 of 3if0 with empty intersection. Following Mallory [11] (see 
also [19]) a paving 3fC is called monocompact if every decreasing sequence of 
$f-sets, with empty intersection, contains the empty set. If % is compact, so are 
3ifs (set of all finite unions of 3if-sets) and Xs (set of all countable intersections 
of 3if-sets). However, if J{ is monocompact, neither Xs nor 3C8 need be 
monocompact [11, Example 1.3]. 

To the notation we add the symbol %€ denoting a pre-ring of subsets of X, 
i.e. a system such that the difference and intersection of two sets of Sf is a finite 
disjoint union of sets of df£. It can be verified that the ring 01{W) generated by 
W consists of finite disjoint unions of sets of $?. 

Let fx : $t —> S be a set function vanishing at </>. A paving % is an approximat­
ing paving for (JL if, for every H e 9if and every neighbourhood V of 0 in S, 
there exists KeX and H'eW such that H'^KçzH and lï^iiiH^eV 
whenever the Ht are disjoint sets in 3€ with (Jr=i f t ^H — H'. We note that if 
3if is an approximating paving for JUL, then for H effl,peP and e > 0, there exist 
KeX,H'eW such that H ' ç K ç H a n d £ p ( H - H ' ) < e , where ÇL :<&{W)-> S is 
the additive extension of fx. We say that JU, is compact (monocompact) if it has a 
compact (monocompact) approximating paving. 

A Souslin scheme on X is a mapping I : |Jk = i ^ k -^ 2X. To prove the main 
result of this section, we need the following lemma, stated without proof by 
Tops0e [18]: 

3.1 LEMMA. Let I be a Souslin scheme such that 
(i) For each k=2,3,... and each (nl,n2,...,nk-l)eNk~~l, 

I(nu n2, • • . , Tik-i, rik) — <f> eventually (in nk), and I(fti) = 8 eventually 
in n t . 

(ii) For every (nL, n2, n3,. . . ) G ^ , I(nx, n2, • . . , nk) = <t> eventually {in k). 
(iii) I(nl, n2, . . . , nk) = </> implies I(nu n2j. . . , nk, rck+1) = </> 

Then there exists a positive integer k such that 

U I(nun2,. . . , n k ) = 4>. 
( n 1 , n 2 , - . . , n k ) e ( \ J k 

Proof. Supposing the contrary, for k = 1, 2 , . . . , there exists 
(nl5 n2,. . . , fik)Gf\Jk such that I(M15 n2 , . . . , nk)¥^ 4>- We will verify for Z, the 
set of all such finite sequences, the conditions 1°, 2° and 3° of [12, Lemma 1 
(iii), p. 115]: The condition 1° is satisfied because of (i) and 2° is satisfied by the 
definition of Z. Finally, 3° is satisfied because of (iii). By the lemma referred to, 
there exists an infinite sequence (n1? n2, n3 , . . .) such that I(n l9 n2,. . . , nk)¥=<f) 
for all k = 1, 2 , . . . But this contradicts (ii). 
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3.2 LEMMA. Let [k'.'St —> iP be an additive set function with monocompact 
approximating class 3T. Then, for every peP, the set function {Lp \ 0l(ffl) is 
continuous at <f>. 

Proof. Let An [ $, An e Cfrffl). Let peP, e > 0. There is a disjoint sequence 

(H'CniWn^i i n % s u c n t h a t A\ = Um H'(ni) and H V i ) = <\> eventually. Choose 
sets HinJeW, KinjeW such that H W ç K W g H ' K ) and 
^ p (H ' (n 1 ) -H(n 1 ) )<e/2 n ' + 1 . Then i5p(A1- |Jn1H(n1))<€/2. To each n, there 
corresponds a disjoint sequence (H'(n1? rc2))~2=1 in ^ such that A2nH(rc1)= : 

U ^ H ' ^ ! , ^ ) and H'(nl9 n2) = </> eventually in n2. Choose sets H(nl9n2)e3€9 

K(nl9 n2) e 3T such that H(nu n2) £ K(n1? n2) £ H'(ni, n2) £ A2 n H(wi) and 
£ n i i^P(^2 H H(MX) - Un2 H(n l 5 n2)) < e/22. Continuing, we construct Souslin 
schemes H, K of sets in $f, $f, respectively, with the properties: 
(1) H(nun2, nk)^K(nu n2,. . . , n k ) c Ak nH(n 1 ? n2 , . . . , nk-i) 
(2) for fixed (nl5 n2 , . . . , nk__1)el\lk"1 the sets K(n l5 rc2, . . . , nk_1? nk) are dis­

joint and eventually empty. 
(3) I(Ml,n2,...,nk_I)Ép(Ak n H ( n b n 2 , . . . , nk_j) 

~Unk H(n l 5 rc2,. . . , rifc-a, n k ) )<€/2 \ 
(If fc = l, put H(n1? n 2 , . . . , nk_!) = X.) We verify for K the conditions 

of Lemma 3.1: (i) follows from (2); since K(nu n2 , . . . , nk) 3 
K(n1? n2 , . . . , nk, nk+1), (hi) follows. Given (nl5 n2, n3 , . . .)ef\T, we have 
K(nu n2,..., nk) 1 and flk^i ^(^i> ^ • • • ? nk) — ^k=i Ak = </>. Since 3if is 
monocompact, K(n1? n 2 , . . . , nk) = <£ eventually, thus (ii) is satisfied. So, by the 
lemma, U(n1,n2,...,nk)eNkK(nu n 2 , . . . ,nk) = cf) for some IceN, then also 
U(n1,n2,...,nk)eM

k H(nl9 n 2 , . . . , nk) - 4>. It will be shown that Ak ç 
U ^ i U(n1,n2,...,ni_1)eN

i-» [Af nH(n 1 ? rc2,..., ^ - i ) - Un, H(n3, n 2 , . . . , n ^ , nt)]. Let 
x e A k . Denote by Tt the ith term of the union on the right. Since 

U(n1,n2,...,nk_1)eNk-1 Unk H(nu tt2, . . . , nk-Î9 Hk) = <£, T k = U(n1,n2,...,nk_1)eNk-1 [ A c H 

H(nu n2,. . . , nk_!)]. If, for some (n1? n2 , . . . , nk_1)GNk_1, x e H ( n b n2 , . . . , 
nk_i), then x belongs to the right member of the asserted inclusion. In the 
contrary case. 

x£ U H(nl9 n2 , . . . , nk_x). 
(n1,n2,...,nk_.1)ef^lk""1 

Then, since 

T k - i = U [ A ^ O H ^ , ^ , . . . , n k _ 2 ) - U H(n1? n2 , . . . , nk_0] 
(n1,n2,.-.,nk_2)Gl\lk 2 nk . t 

we have x G Tk_r or 

x^ U H(n l 9 n 2 , . . . , nk_2). 
(n1,n2,...,nk_2)eNk"2 

Passing to Tk_2 and so on we conclude finally that x belongs to the right 
member or x£[Jn Hirix). But T1 = A1nX—\JniH(n1) so, in the second 
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case, XG TV The inclusion established, we have 

k r 
i = l (n 1 ,n 2 , . . . ,n i . .^eN 1 "' L 

- U H(n1,n2^ • . ,n i_1, Wj) 
M; J 

i = l Z 

Thus limn jûLp(An)<€ with e > 0 arbitrary, so jtZp(An) 1 0. 

3.3 THEOREM. 1/ JUL :9t(%£) —» S is additive and fx \ %£ is monocompact, then /UL 

is a measure. 

Proof. By Lemma 3.2, JUL is continuous at 4>. Thus, being additive, JUL is also 
cr-additive. 

3.4 REMARK. Theorem 3.3 contains a result of Huneycutt [9, Theorem 2.1, 
p. 506], a result of Dinculeanu-Kluvanek [4, Theorem 3, p. 510] and a result 
of Millington [13, Lemma 4.1, p. 20] (which, in turn, generalizes a classical 
result of Marczewski [12, 4(i), p. 118] and this latter generalizes the Alexan-
droff theorem [1, Theorem 5, p. 590]) 

3.5 REMARK. Let X be a pseudo-compact topological space and let !£ be the 
lattice of zero-sets of X If $&(5£) is the algebra generated by 5£, a bounded set 
function JUL : M{5£) -> R is called ^-regular if JUL(A) = sup{fx(L) : L 6 if, L^A} 
for all Aes£(J£). Using the characterizations of pseudo-compactness [17, 
Theorem 2.3, p. 438], it is easily seen that the above mentioned lemma of 
Millington contains the following result of Glicksberg [7, pp. 256-258]: / / 
ix :s£(£B)—>R is additive, bounded and S£-regular, then (JL is a measure. 

3.6 REMARK. In the theorems enumerated in Remarks 3.4 and 3.5, the set 
function is always compact. If JLL is supposed to be compact in Theorem 3.3, 
then the proof is trivial (see proof of [12, 4(i), p. 118]). However, our Theorem 
3.3 implies that the monocompact set function (not necessarily compact) 
appearing in [11, Theorem 1.2, p. 548] is a measure. 

4. Extensions of an additive monocompact set function. The following lemma 
is proved in a straightforward manner: 

4.1 LEMMA. If p.-.'K —> S is additive with monocompact approximating paving 
3C, then 3£s is an approximating paving for fl. 

4.2 LEMMA. Let JLL : 8(01) —> S be a locally s-bounded measure. If /x | 0t has JC 
as approximating paving, then JLL has 3%8 as approximating paving. 

Proof. Let 2 be the set of E e ô(£%) such that, for every closed neighbourhood 
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V of 0 in S, there exist Ke%8, E'e8(0l) such that E ' ç K ç E and 
li((E-E')nF)e V for all F e 8(01). We must show that ^ ç 2 and that 2 is 
monotone with respect to 8(01). Let Ee0t. Let V be a closed neighbourhood of 
0 in S. There exist Ke%,E'e0l such that F ç K ç E a n d (x((E-E')nF)eV 
for all Fe0t. Then Xo = {Fe8(0l): IJL((E - E') H F) e V} contains 01. Using the 
local s-boundedness of (JL, it may be verified that 2 0 is monotone with respect 
to Ô(M), so 2 0 = S(3fc), proving that E G 2 . 

Let En [ E, En G 2. Then Ee8(0l). Using the same argument as Lipecki in 
his proof of [10, Lemma 4, p. 109], we conclude that Ee 2. Finally, let 
E n | E , Ene% where E n ^ A for some A e 8(01). Then Eeô(&) . Using 
Corollary 2.3 of [14, p. 318] and applying again the argument of Lipecki, we 
conclude easily that Eel,. 

4.3 THEOREM. Let \L\M->SP be an additive set function with monocompact 

approximating paving %. If jl : 01(36) —>• S is locally s-bounded, then JLL extends 

uniquely to a locally s-bounded measure (1 on 8(36) with approximating paving 

^so-

Proof. By Theorem 3.3 and Lemma 4.1, fl is a measure with 3CS as 
approximating paving. By Theorem 2.1 we extend ÇL uniquely to a locally 
s-bounded measure fl on 8(01(36)) = 8(36). By Lemma 4.2, (L has 3ifsô as 
approximating paving. 

4.4 REMARK. Under the hypothesis of Theorem 4.3, with the additional 
hypothesis that jl be monotonely convergent, we obtain, by Theorem 2.7, a 
unique extension to a measure JLL' on a(3t) such that JLL' | 8(36) is locally 
s-bounded. This result is an improvement of Theorem 1.2 of Mallory [11], 
which, in turn, contains the first statement of Tops0e following his Lemma 1 
[19]; this latter contains earlier results of Alexandroff [1] and of Marczewski 
[12]. 

ACKNOWLEDGEMENT. The authors express their thanks to the referee for corrections to the text 
and for improvements to the original version of this paper. 

REFERENCES 

1. A. D. Alexandroff, Additive set functions in abstract spaces II, Mat. Sb. 9 (51) (1941), 
563-628. 

2. N. Bourbaki, Topologie générale, 3rd. éd., Actualités Sci. Ind. No. 1143, Chap. 3 and 4, 
Hermann, Paris (I960). 

3. N. Dinculeanu, Vector Measures, Pergamon Press, New York (1967). 
4. N. Dinculeanu and I. Kluvanek, On vector measures, Proc. London Math. Soc. 17 (1967), 

505-512. 
5. L. Drewnowski, Topological ring of sets, continuous set functions, integration III, Bull. Acad. 

Polon. Sci., Ser. Sci. Math., Astr., Phys. 20 (1972), 439-445. 
6. G. Fox and P. Morales, Uniform semigroup-valued measures I, Rapport de recherche N. 

80-17, Université de Montréal (Septembre 1980), 20 pages. 

https://doi.org/10.4153/CMB-1983-005-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1983-005-4


34 GEOFFREY FOX AND PEDRO MORALES [March 

7. I. Glicksberg, Representation of functional by integrals, Duke Math. J. 19 (1952), 253-261. 
8. T. H. Hildebrandt, On unconditional convergence in normed vector spaces, Bull. Amer. Math. 

Soc. 46 (1940), 959-962. 
9. J. E. Huneycutt Jr., Extensions of abstract valued set functions, Trans. Amer. Math. Soc. 141 

(1969), 505-513. 
10. Z. Lipecki, Extensions of tight set functions with values in a topological group, Bull. Acad. 

Polon. Sci., Ser. Sci. Math., Astr., Phys. 22 (1974), 105-113. 
11. D. Mallory, Extension of set functions to measures and applications to inverse limit measures, 

Canad. Math. Bull. 18 (1975), 547-553. 
12. E. Marczewski, On compact measures, Fund. Math. 40 (1953), 113-124. 
13. H. Millington, Products of group-valued measures, Studia Math. 54 (1975), 7-27. 
14. P. Morales, Regularity and extension of semigroup valued Baire measures, Proc. Conf. 

Measure Theory Oberwolfach 1979, Lect. Notes Math. 794, Springer-Verlag, New York (1980), 
317-323. 

15. M. Sion, Outer measures with values in a topological group, Proc. London Math. Soc. 19 
(1969), 89-106. 

16. M. Sion, A theory of semigroup value measures, Lect. Notes Math. 355, Springer-Verlag, 
New York (1973). 

17. R. M. Stephenson, Pseudo-compact spaces, Trans. Amer. Math. Soc. 134 (1968), 437-448. 
18. F. Tops^e, On construction of measures, Copenhagen University Preprint Series No. 27 

(1974). 
19. F. Tops^e, Approximating pavings and construction of measures, Coll. Math. 42 (1979), 

377-385. 
20. H. Weber, Fortsetzung von Massen mit Werten in uniformen Halbgruppen, Arch. Math. 27 

(1976), 412-423. 

DÉPARTEMENT DE MATHÉMATIQUES 

ET DE STATISTIQUES 

UNIVERSITÉ DE MONTRÉAL 

MONTRÉAL, QUÉBEC H3C 3J7 

DÉPARTEMENT DE MATHÉMATIQUES 

ET D1 INFORMATIQUE 

UNIVERSITÉ DE SHERBROOKE 

SHERBROOKE, QUÉBEC J1K 2R1 

https://doi.org/10.4153/CMB-1983-005-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1983-005-4

