ON UNIFORM SEMIGROUP-VALUED ADDITIVE SET FUNCTIONS

ΒY

GEOFFREY FOX AND PEDRO MORALES*

ABSTRACT. The main results of this paper are the following:

- (1) An extension theorem for a uniform semigroup-valued measure on a ring to the generated σ -ring. This result unifies the classical Hahn–Carathéodory theorem, the extension theorem of Sion and a more recent result of Weber.
- (2) A theorem stating that every monocompact additive uniform semigroup-valued set function on a semiring is σ -additive. This result generalizes several earlier theorems of Alexandroff, Dinculeanu–Kluvanek, Glicksberg, Huneycutt, Mallory, Marczewski, Millington and Topsøe.
- 1. **Introduction.** This paper is organized into three sections: Section 2 establishes an extension theorem for a uniform semigroup-valued measure on a ring, the domain of the extension being the generated σ -ring. This unifies the classical Carathéodory theorem, the extension theorem of Sion and a more recent result of Weber (whose methods we use, in simplified form). Section 3 concerns the σ -additivity of an additive monocompact set function on a pre-ring. The theorem of this section unifies several earlier results. Section 4 applies the extension theorem of Section 2 to an additive monocompact set function on a pre-ring. In this section we establish a paving for the extension in terms of the paving of the original set function. For details on uniform semigroups we refer to [6] and to [16].
- 2. **Extension theorems.** We denote by X, \mathcal{R} , S a fixed non-empty set, a ring of subsets of X, a complete Hausdorff uniform commutative semigroup with neutral element 0. If \mathcal{A} is a subset of 2^X (set of all subsets of X), $\mathcal{R}(\mathcal{A})$, $\delta(\mathcal{A})$, $\sigma(\mathcal{A})$ will denote the ring, δ -ring, σ -ring, respectively, generated by \mathcal{A} , and \mathcal{A}_{σ} will denote the set of a most countable unions of sets belonging to \mathcal{A} . With respect to the binary operations Δ and Ω , Ω is a Boolean ring and Ω is a subring. The minimum σ -ideal containing Ω is $\mathcal{I}(\Omega) = \{I \in \mathcal{I}^X : I \subseteq A \text{ for some } A \in \mathcal{R}_{\sigma}\}$. The following key result is due essentially to Weber [20] (see also

Received by the editors April 7, 1981 and in revised form December 8, 1981 and March 19, 1982.

^{*} This research was partially supported by grants from the Natural Sciences and Engineering Council of Canada.

AMS 1980 Subject classification numbers: 28B10; 04A15.

[©] Canadian Mathematical Society, 1983.

[6]): The uniformity of S is generated by a family P of semi-invariant uniformly continuous [0,1]-valued pseudo-metrics on S. (A pseudo-metric p on S is semi-invariant if $p(x+x',y+y') \leq p(x,y) + p(x',y')$.) Write $|x|_p = p(x,0)$ $(p \in P, x \in S)$; then $|0|_p = 0$, $p(x+y,y) \leq |x|_p$ and $|x+y|_p \leq |x|_p + |y|_p$. Since S is Hausdorff, p(x,y) = 0 for all $p \in P$ implies x = y. Let $\lambda : \mathcal{R} \to S$ be a set function vanishing at ϕ . For each $p \in P$ define $\tilde{\lambda}_p$ on $2^X : \tilde{\lambda}_p(E) = \sup\{|\lambda(A)|_p : E \supseteq A \in \mathcal{R}\}$. Thus $\tilde{\lambda}_p$ is increasing, vanishing at ϕ and such that $\tilde{\lambda}_p(A) \geq |\lambda(A)|_p$ if $A \in \mathcal{R}$. If $\lambda : \mathcal{R} \to S$ is σ -additive and vanishes at ϕ , we will say that λ is a measure. In this case, direct computations shows that $\tilde{\lambda}_p \mid \mathcal{R}_\sigma$ is σ -subadditive.

Let $\mu: \mathcal{R} \to S$ be a measure. For each $p \in P$, $\tilde{u}_p \mid \mathcal{R}_\sigma$ extends to $\mu_p^*: \mathcal{I}(\mathcal{R}) \to [0,1]$ defined by the formula $\mu_p^*(I) = \inf\{\tilde{u}_p(A): I \subseteq A \in \mathcal{R}_\sigma\}$. Then μ_p^* is increasing and σ -subadditive. Vanishing at ϕ , μ_p^* is also subadditive, and so defines the pseudo-metric $d_p(E,F) = \mu_p^*(E\Delta F) (E,F\in\mathcal{I}(\mathcal{R}))$. Henceforth we consider $\mathcal{I}(\mathcal{R})$ to be a uniform space, with uniformity generated by the $d_p, p \in P$. It is well-known that the Boolean operations \cup , \cap , - and Δ are uniformly continuous maps of $\mathcal{I}(\mathcal{R}) \times \mathcal{I}(\mathcal{R})$ into $\mathcal{I}(\mathcal{R})$ and the closure $\bar{\mathcal{R}}$ of \mathcal{R} is a ring. The inequality $p(\mu(E), \mu(F)) \leq 2\tilde{\mu}_p(E\Delta F)$, $(E, F \in \mathcal{R}, p \in P)$ implies that μ is uniformly continuous, and therefore it extends by continuity to a set function $\bar{\mu}: \bar{\mathcal{R}} \to S$, which is obviously additive. Finally, the inequality $|\mu_p^*(E) - \mu_p^*(E\Delta F)| (E, F \in \mathcal{I}(\mathcal{R}))$ implies that μ_p^* is also uniformly continuous.

Let $\lambda: \mathcal{R} \to S$ be such that $\lambda(\phi) = 0$. We say that λ is *locally s-bounded* if, for every $E \in \mathcal{R}$ and every disjoint sequence (E_n) in \mathcal{R} such that $E_n \subseteq E$, $(\lambda(E_n))$ converges to 0. It is clear that λ is locally s-bounded if and only if, for all $p \in P$, $\tilde{\lambda}_p \mid \mathcal{R}$ is locally s-bounded.

- 2.1 THEOREM. A locally s-bounded measure $\mu: \Re \to S$ extends uniquely to a locally s-bounded measure $\hat{\mu}$ on $\delta(\Re)$. Further, the extension satisfies the inequality $\tilde{\hat{\mu}}_p \mid \delta(\Re) \leq \mu_p^* \mid \delta(\Re)$ for all $p \in P$.
- **Proof.** As for uniqueness, a trivial modification of the argument of [3, Proposition 6, p. 24] suffices. By [20, (4.4), (3.3)] there is a measure $\hat{\mu}: \delta(\mathcal{R}) \to S$ extending μ with $\tilde{\tilde{\mu}}_p \mid \delta(\mathcal{R}) \leq \mu_p^* \mid \delta(\mathcal{R})$ for all $p \in P$. By [20, (4.4), (2.1)] $\mu_p^* \mid \delta(\mathcal{R})$ is locally s-bounded, so also $\hat{\mu}$.
- 2.2 Remark. Theorem 2.1 is a slight improvement of [20, (4.4) (b), (c)]: The uniqueness of $\hat{\mu}$ does not depend on an imposed topology and $\hat{\mu}$ is locally s-bounded.

We say that a set function $\lambda: \mathcal{R} \to S$ is monotonely convergent if, for every disjoint sequence (E_n) of \mathcal{R} , the series $\sum_{n=1}^{\infty} \lambda(E_n)$ converges. If λ is additive, then λ is monotonely convergent if and only if $E_n \uparrow$, $E_n \in \mathcal{R}$ implies that $(\lambda(E_n))$ converges.

2.3 Lemma. Let $\mu : \Re \to S$ be a locally s-bounded measure. If μ is monotonely convergent, so is $\hat{\mu}$.

Proof. Let $E_n \uparrow$, $E_n \in \delta(\mathcal{R})$. Let $p \in P$ and $\epsilon > 0$. Since $\delta(\mathcal{R}) \subseteq \overline{\mathcal{R}} [20, (4.4) (c)]$, there is a sequence (A_n) in \mathcal{R} such that $\mu_p^*(A_n \Delta E_n) < 2^{-n} \epsilon$. Then $B_n = \bigcup_{i=1}^n A_i \ (n=1,2,\ldots)$ is an increasing sequence in \mathcal{R} such that $\mu_p^*(B_n \Delta E_n) < \epsilon$. By Theorem 2.1, $p(\hat{\mu}(E_n), \mu(B_n)) = p(\hat{\mu}(E_n), \hat{\mu}(B_n)) \le 2\tilde{\mu}_p(E_n \Delta B_n) \le 2\mu_p^*(E_n \Delta B_n) < 2\epsilon$. This holds for all $n=1,2,\ldots$ Since ϵ and p are arbitrary and $(\mu(B_n))$ is Cauchy, so is $(\hat{\mu}(E_n))$.

For a non-empty set I, $\mathcal{F}(I)$ denotes the set of all finite subsets of I. Let $\mathbb{N} = \{1, 2, 3, \ldots\}$.

The usual summability definition for a family of elements of a Hausdorff commutative topological group [2, p. 60] can be extended to S as follows: A family $(x_i)_{i \in I}$ of elements of S is summable to $s \in S$, in symbols $\sum_{i \in I} x_i = s$, if for all $p \in P$ and all $\epsilon > 0$, there exists $J_{\epsilon} \in \mathcal{F}(I)$ such that $p(\sum_{i \in J} x_i, s) < \epsilon$ whenever $J \in \mathcal{F}(I)$ and $J \supseteq J_{\epsilon}$.

The following lemma is a generalization of [2, Proposition 9, p. 69]. Since the proof does not carry over, we use an argument of [8] with appropriate modification:

- 2.4 Lemma. For a sequence $(x_i)_{i=1}^{\infty}$ in S the following statements are equivalent:
 - (a) For every permutation σ of \mathbb{N} , the series $\sum_{i=1}^{\infty} x_{\sigma(i)}$ converges.
 - (b) The family $(x_i)_{i\in\mathbb{N}}$ is summable.

If either condition is satisfied, then $\sum_{i \in \mathbb{N}} x_i = \sum_{i=1}^{\infty} x_i$.

Proof. (a) \Leftrightarrow (b). Let $s = \sum_{i=1}^{\infty} x_i$. Assume that the family $(x_i)_{i \in \mathbb{N}}$ is not summable to s. There exist $\epsilon_0 > 0$ and $p \in P$ such that, for every $J \in \mathscr{F}(\mathbb{N})$, one can find $K \in \mathscr{F}(\mathbb{N})$ with $K \supseteq J$ and $p(\sum_{i \in K} x_i, s) \ge \epsilon_0$. Also there is a positive integer N such that $n \ge N$ implies $p(\sum_{i=1}^n x_i, s) < \frac{1}{2}\epsilon_0$. Now let $J_1 = \{1, 2, \ldots, N\}$ and let $K_1 \in \mathscr{F}(\mathbb{N})$ be such that $K_1 \supseteq J_1$ and $p(\sum_{i \in K_1} x_i, s) \ge \epsilon_0$. Let $J_2 = \{1, 2, \ldots, \max_{i \in K_1} i\}$ and let $K_2 \in \mathscr{F}(N)$ be such that $K_2 \supseteq J_2$ and $p(\sum_{i \in K_2} x_i, s) \ge \epsilon_0$. Construct in the same way $J_3, K_3, J_4, K_4, \ldots$ and define a permutation σ of \mathbb{N} enumerating the elements of the union

$$J_1 \cup (K_1 - J_1) \cup (J_2 - K_1) \cup (K_2 - J_2) \cup (J_3 - K_2) \cup (K_3 - J_3) \cup \dots$$

Since

$$p(\sum_{i \in K_n} x_i, \sum_{i \in J_n} x_i) \ge p(\sum_{i \in K_n} x_i, s) - p(\sum_{i \in J_n} x_i, s) \ge \frac{1}{2} \epsilon_0$$

and $\sum_{i \in K_n} x_i = \sum_{i=1}^{k_n} x_{\sigma(i)}$, $\sum_{i \in J_n} x_i = \sum_{i=1}^{j_n} x_{\sigma(i)}$ (where k_n , j_n denote the number of elements of K_n , J_n , respectively), the sequence $(\sum_{i=1}^n x_{\sigma(i)})_{n=1}^{\infty}$ is not Cauchy, contrary to (a).

(b) \Rightarrow (a). Same argument as in [8, p. 960].

The following associativity lemma generalizes equation (2) of [2, Théorème 2, pp. 63-64]:

2.5 LEMMA. Let $(x_{ij})_{(i,j)\in I\times J}$ be a family of elements of S. If $\sum_{(i,j)\in I\times J} x_{ij} = s$ and, for every $i\in I$, $\sum_{i\in J} x_{ij} = s_i$, then the family $(s_i)_{i\in I}$ is summable to s.

Proof. Let $p \in P$, $\epsilon > 0$. There exists $K_0 \in \mathcal{F}(I \times J)$ such that $p(\sum_{(i,j) \in K} x_{ij}, s) < \frac{1}{2}\epsilon$ whenever $K \in \mathcal{F}(I \times J)$ and $K \supseteq K_0$. Let $H_0 = \{i \in I: K_i = (\{i\} \times J) \cap K_0 \neq \phi\}$. Then $H_0 \in \mathcal{F}(I)$. Let $H \in \mathcal{F}(I)$ be such that $H \supseteq H_0$ and let n be the number of elements of H. Then, for each $i \in H$, there exists $L_i \in \mathcal{F}(J)$ such that $\{i\} \times L_i \supseteq K_i$ and $p(\sum_{j \in L_i} x_{ij}, s_i) < \epsilon/2n$. Let $K = \bigcup_{i \in H} \{i\} \times L_i$. Then $K \in \mathcal{F}(I \times J)$ and $K \supseteq K_0$. Since $\sum_{(i,j) \in K} x_{ij} = \sum_{i \in H} (\sum_{j \in L_i} x_{ij})$, we have

$$p(\sum_{i \in H} s_i, s) \leq p(\sum_{i \in H} s_i, \sum_{i \in H} \sum_{j \in L_i} x_{ij})) + p(\sum_{(i,j) \in K} x_{ij}, s)$$

$$\leq \sum_{i \in H} p(s_i, \sum_{i \in L_i} x_{ij}) + \epsilon/2 < n. \epsilon/2n + \epsilon/2 = \epsilon.$$

The following lemma is crucial to the proof of the main result of this section:

2.6 LEMMA. A monotonely convergent measure $\mu: \delta(\mathcal{R}) \to S$ extends uniquely to a measure μ' on $\sigma(\mathcal{R})$.

Proof. The uniqueness being trivial, we prove the existence of μ' . Set $\mu'(\bigcup_{n=1}^{\infty}A_n)=\sum_{n=1}^{\infty}\mu(A_n)$ for an arbitrary disjoint sequence (A_n) in $\delta(\mathcal{R})$. To see that μ' is well-defined, suppose also that $\bigcup_{n=1}^{\infty}A_n=\bigcup_{m=1}^{\infty}B_m$ where the $B_m\in\delta(\mathcal{R})$ are disjoint. We order the double sequence $(\mu(A_n\cap B_m))_{m,n=1}^{\infty}$ into a sequence $(x_i)_{i=1}^{\infty}$. Because μ is monotonely convergent, for any permutation σ of \mathbb{N} , the series $\sum_{i=1}^{\infty}x_{\sigma(i)}$ converges. So, by Lemma 2.4, the family $(\mu(A_n\cap B_m))_{n\in\mathbb{N}}$ is summable. Also, for every $m\in\mathbb{N}$, the family $(\mu(A_n\cap B_m))_{n\in\mathbb{N}}$ is summable to $\mu(B_m)$, so, by Lemmas 2.5 and 2.4, $\sum_{m=1}^{\infty}\mu(B_m)=\sum_{(n,m)\in\mathbb{N}\times\mathbb{N}}\mu(A_n\cap B_m)$. In same way it is established that $\sum_{n=1}^{\infty}\mu(B_n)=\sum_{(n,m)\in\mathbb{N}\times\mathbb{N}}\mu(A_n\cap B_m)$. So $\sum_{m=1}^{\infty}\mu(B_m)=\sum_{n=1}\mu(A_n)$. It remains to show that μ' is σ -additive. Let $E=\bigcup_{m=1}^{\infty}E_n$, where the $E_n\in\sigma(\mathcal{R})$ are disjoint for $n=1,2,3,\ldots$ Write $E_n=\bigcup_{m=1}^{\infty}A_{nm}$, where $(A_{nm})_{m=1}^{\infty}$ is a disjoint sequence in $\delta(\mathcal{R})$. Using the definition of μ' and Lemma 2.4 we see that $\sum_{(n,m)\in\mathbb{N}\times\mathbb{N}}\mu(A_{nm})=\mu'(E)$. Also, by the definition, $\sum_{m=1}^{\infty}\mu(A_{nm})=\mu'(E_n)$ for all $n=1,2,3,\ldots$ So, by lemmas 2.5 and 2.4, $\sum_{n=1}^{\infty}\mu'(E_n)=\mu'(E)$.

2.7 THEOREM. A locally s-bounded monotonely convergent measure $\mu: \Re \to S$ extends uniquely to a measure $\mu': \sigma(\Re) \to S$ such that $\mu' \mid \delta(\Re)$ is locally s-bounded.

Proof. Apply successively Theorem 2.1, Lemma 2.3 and Lemma 2.6.

2.8 Remark. It is easy to see that Theorem 2.7 contains the following unrelated results: The classical Carathéodory theorem, the extension theorem of Sion [15] (see also [5]) and the recent extension theorem of Weber [20, Satz (4.4) (b) and (d)].

3. **Monocompact additive set function.** A paving is a class \mathcal{K} of subsets of X such that $\phi \in \mathcal{K}$. Following Marczewski [12], a paving \mathcal{K} is called *compact* if, for every countable subpaving \mathcal{K}_0 of \mathcal{K} with empty intersection, there exists a finite subpaving \mathcal{K}_{00} of \mathcal{K}_0 with empty intersection. Following Mallory [11] (see also [19]) a paving \mathcal{K} is called *monocompact* if every decreasing sequence of \mathcal{K} -sets, with empty intersection, contains the empty set. If \mathcal{K} is compact, so are \mathcal{K}_s (set of all finite unions of \mathcal{K} -sets) and \mathcal{K}_δ (set of all countable intersections of \mathcal{K} -sets). However, if \mathcal{K} is monocompact, neither \mathcal{K}_s nor \mathcal{K}_δ need be monocompact [11, Example 1.3].

To the notation we add the symbol \mathcal{H} denoting a pre-ring of subsets of X, i.e. a system such that the difference and intersection of two sets of \mathcal{H} is a finite disjoint union of sets of \mathcal{H} . It can be verified that the ring $\mathcal{R}(\mathcal{H})$ generated by \mathcal{H} consists of finite disjoint unions of sets of \mathcal{H} .

Let $\mu:\mathcal{H}\to S$ be a set function vanishing at ϕ . A paving \mathcal{H} is an approximating paving for μ if, for every $H\in\mathcal{H}$ and every neighbourhood V of 0 in S, there exists $K\in\mathcal{H}$ and $H'\in\mathcal{H}$ such that $H'\subseteq K\subseteq H$ and $\sum_{i=1}^n \mu(H_i)\in V$ whenever the H_i are disjoint sets in \mathcal{H} with $\bigcup_{i=1}^n H_i\subseteq H-H'$. We note that if \mathcal{H} is an approximating paving for μ , then for $H\in\mathcal{H}$, $p\in P$ and $\epsilon>0$, there exist $K\in\mathcal{H}$, $H'\in\mathcal{H}$ such that $H'\subseteq K\subseteq H$ and $\tilde{\mu}_p(H-H')<\epsilon$, where $\bar{\mu}:\mathcal{R}(\mathcal{H})\to S$ is the additive extension of μ . We say that μ is compact (monocompact) if it has a compact (monocompact) approximating paving.

A Souslin scheme on X is a mapping $I: \bigcup_{k=1}^{\infty} \mathbb{N}^k \to 2^X$. To prove the main result of this section, we need the following lemma, stated without proof by Tops ϕ e [18]:

- 3.1 LEMMA. Let I be a Souslin scheme such that
 - (i) For each $k=2,3,\ldots$ and each $(n_1,n_2,\ldots,n_{k-1})\in\mathbb{N}^{k-1}$, $I(n_1,n_2,\ldots,n_{k-1},n_k)=\phi$ eventually (in n_k), and $I(n_1)=\delta$ eventually in n_1 .
- (ii) For every $(n_1, n_2, n_3, \ldots) \in \mathbb{N}^{\mathbb{N}}$, $I(n_1, n_2, \ldots, n_k) = \phi$ eventually (in k).
- (iii) $I(n_1, n_2, ..., n_k) = \phi$ implies $I(n_1, n_2, ..., n_k, n_{k+1}) = \phi$

Then there exists a positive integer k such that

$$\bigcup_{(n_1,n_2,\ldots,n_k)\in\mathbb{N}^k} I(n_1,n_2,\ldots,n_k) = \phi.$$

Proof. Supposing the contrary, for k = 1, 2, ..., there exists $(n_1, n_2, ..., n_k) \in \mathbb{N}^k$ such that $I(n_1, n_2, ..., n_k) \neq \phi$. We will verify for Z, the set of all such finite sequences, the conditions 1^0 , 2^0 and 3^0 of [12, Lemma 1 (iii), p. 115]: The condition 1^0 is satisfied because of (i) and 2^0 is satisfied by the definition of Z. Finally, 3^0 is satisfied because of (iii). By the lemma referred to, there exists an infinite sequence $(n_1, n_2, n_3, ...)$ such that $I(n_1, n_2, ..., n_k) \neq \phi$ for all k = 1, 2, ... But this contradicts (ii).

3.2 Lemma. Let $\mu: \mathcal{H} \to \mathcal{G}$ be an additive set function with monocompact approximating class \mathcal{H} . Then, for every $p \in P$, the set function $\tilde{\mu}_p \mid \mathcal{R}(\mathcal{H})$ is continuous at ϕ .

Proof. Let $A_n \downarrow \phi$, $A_n \in \mathcal{R}(\mathcal{H})$. Let $p \in P$, $\epsilon > 0$. There is a disjoint sequence $(H'(n_1))_{n_1=1}^{\infty}$ in \mathcal{H} such that $A_1 = \bigcup_{n_1} H'(n_1)$ and $H'(n_1) = \phi$ eventually. Choose sets $H(n_1) \in \mathcal{H}$, $K(n_1) \in \mathcal{H}$ such that $H(n_1) \subseteq K(n_1) \subseteq H'(n_1)$ and $\tilde{\mu}_p(H'(n_1) - H(n_1)) < \epsilon/2^{n_1+1}$. Then $\tilde{\mu}_p(A_1 - \bigcup_{n_1} H(n_1)) < \epsilon/2$. To each n_1 there corresponds a disjoint sequence $(H'(n_1, n_2))_{n_2=1}^{\infty}$ in \mathcal{H} such that $A_2 \cap H(n_1) = \bigcup_{n_2} H'(n_1, n_2)$ and $H'(n_1, n_2) = \phi$ eventually in n_2 . Choose sets $H(n_1, n_2) \in \mathcal{H}$, $K(n_1, n_2) \in \mathcal{H}$ such that $H(n_1, n_2) \subseteq K(n_1, n_2) \subseteq H'(n_1, n_2) \subseteq A_2 \cap H(n_1)$ and $\sum_{n_1} \bar{\mu}_p(A_2 \cap H(n_1) - \bigcup_{n_2} H(n_1, n_2)) < \epsilon/2^2$. Continuing, we construct Souslin schemes H, K of sets in \mathcal{H} , \mathcal{H} , respectively, with the properties:

- (1) $H(n_1, n_2, \ldots, n_k) \subseteq K(n_1, n_2, \ldots, n_k) \subseteq A_k \cap H(n_1, n_2, \ldots, n_{k-1})$
- (2) for fixed $(n_1, n_2, \ldots, n_{k-1}) \in \mathbb{N}^{k-1}$ the sets $K(n_1, n_2, \ldots, n_{k-1}, n_k)$ are disjoint and eventually empty.
- (3) $\sum_{(n_1,n_2,\ldots,n_{k-1})} \tilde{\bar{\mu}}_p(A_k \cap H(n_1,n_2,\ldots,n_{k-1}))$

$$-\bigcup_{n_k} H(n_1, n_2, \ldots, n_{k-1}, n_k)) < \epsilon/2^k.$$

(If k=1, put $H(n_1,n_2,\ldots,n_{k-1})=X$.) We verify for K the conditions of Lemma 3.1: (i) follows from (2); since $K(n_1,n_2,\ldots,n_k)\supseteq K(n_1,n_2,\ldots,n_k,n_{k+1})$, (iii) follows. Given $(n_1,n_2,n_3,\ldots)\in\mathbb{N}^\mathbb{N}$, we have $K(n_1,n_2,\ldots,n_k)\downarrow$ and $\bigcap_{k=1}^\infty K(n_1,n_2,\ldots,n_k)\subseteq \bigcap_{k=1}^\infty A_k=\phi$. Since \mathcal{K} is monocompact, $K(n_1,n_2,\ldots,n_k)=\phi$ eventually, thus (ii) is satisfied. So, by the lemma, $\bigcup_{(n_1,n_2,\ldots,n_k)\in\mathbb{N}^k} K(n_1,n_2,\ldots,n_k)=\phi$ for some $k\in\mathbb{N}$, then also $\bigcup_{(n_1,n_2,\ldots,n_k)\in\mathbb{N}^k} H(n_1,n_2,\ldots,n_k)=\phi$. It will be shown that $A_k\subseteq\bigcup_{i=1}^k\bigcup_{(n_1,n_2,\ldots,n_{i-1})\in\mathbb{N}^k} [A_i\cap H(n_1,n_2,\ldots,n_{i-1})-\bigcup_{n_i} H(n_1,n_2,\ldots,n_{i-1},n_i)]$. Let $x\in A_k$. Denote by T_i the ith term of the union on the right. Since $\bigcup_{(n_1,n_2,\ldots,n_{k-1})\in\mathbb{N}^{k-1}} \bigcup_{n_k} H(n_1,n_2,\ldots,n_{k-1},n_k)=\phi$, $T_k=\bigcup_{(n_1,n_2,\ldots,n_{k-1})\in\mathbb{N}^{k-1}} [A_k\cap H(n_1,n_2,\ldots,n_{k-1})\in\mathbb{N}^{k-1}]$. If, for some $(n_1,n_2,\ldots,n_{k-1})\in\mathbb{N}^{k-1}$, $x\in H(n_1,n_2,\ldots,n_{k-1})$, then x belongs to the right member of the asserted inclusion. In the contrary case.

$$x \notin \bigcup_{(n_1,n_2,\ldots,n_{k-1}) \in \mathbb{N}^{k-1}} H(n_1, n_2, \ldots, n_{k-1}).$$

Then, since

$$T_{k-1} = \bigcup_{(n_1, n_2, \dots, n_{k-2}) \in \mathbb{N}^{k-2}} \left[A_{k-1} \cap H(n_1, n_2, \dots, n_{k-2}) - \bigcup_{n_{k-1}} H(n_1, n_2, \dots, n_{k-1}) \right]$$

we have $x \in T_{k-1}$ or

$$x \notin \bigcup_{(n_1, n_2, \dots, n_{k-2}) \in \mathbb{N}^{k-2}} H(n_1, n_2, \dots, n_{k-2}).$$

Passing to T_{k-2} and so on we conclude finally that x belongs to the right member or $x \notin \bigcup_{n_1} H(n_1)$. But $T_1 = A_1 \cap X - \bigcup_{n_1} H(n_1)$ so, in the second

case, $x \in T_1$. The inclusion established, we have

$$\begin{split} \tilde{\bar{\mu}}_{p}(A_{k}) &\leq \sum_{i=1}^{k} \sum_{(n_{1},n_{2},\ldots,n_{i-1}) \in \mathbb{N}^{i-1}} \tilde{\bar{\mu}}_{p} \Big[A_{i} \cap H(n_{1},n_{2},\ldots,n_{i-1}) \\ &- \bigcup_{n_{i}} H(n_{1},n_{2},\ldots,n_{i-1},n_{i}) \Big] \\ &\leq \sum_{i=1}^{k} \frac{\epsilon}{2^{i}} < \epsilon. \end{split}$$

Thus $\lim_n \tilde{\mu}_p(A_n) \leq \epsilon$ with $\epsilon > 0$ arbitrary, so $\tilde{\mu}_p(A_n) \downarrow 0$.

3.3 THEOREM. If $\mu : \mathcal{R}(\mathcal{H}) \to S$ is additive and $\mu \mid \mathcal{H}$ is monocompact, then μ is a measure.

Proof. By Lemma 3.2, μ is continuous at ϕ . Thus, being additive, μ is also σ -additive.

- 3.4 REMARK. Theorem 3.3 contains a result of Huneycutt [9, Theorem 2.1, p. 506], a result of Dinculeanu–Kluvanek [4, Theorem 3, p. 510] and a result of Millington [13, Lemma 4.1, p. 20] (which, in turn, generalizes a classical result of Marczewski [12, 4(i), p. 118] and this latter generalizes the Alexandroff theorem [1, Theorem 5, p. 590])
- 3.5 Remark. Let X be a pseudo-compact topological space and let $\mathscr L$ be the lattice of zero-sets of X. If $\mathscr A(\mathscr L)$ is the algebra generated by $\mathscr L$, a bounded set function $\mu:\mathscr A(\mathscr L)\to R$ is called $\mathscr L$ -regular if $\mu(A)=\sup\{\mu(L):L\in\mathscr L,\ L\subseteq A\}$ for all $A\in\mathscr A(\mathscr L)$. Using the characterizations of pseudo-compactness [17, Theorem 2.3, p. 438], it is easily seen that the above mentioned lemma of Millington contains the following result of Glicksberg [7, pp. 256–258]: If $\mu:\mathscr A(\mathscr L)\to\mathbb R$ is additive, bounded and $\mathscr L$ -regular, then μ is a measure.
- 3.6 Remarks 3.4 and 3.5, the set function is always compact. If μ is supposed to be compact in Theorem 3.3, then the proof is trivial (see proof of [12, 4(i), p. 118]). However, our Theorem 3.3 implies that the monocompact set function (not necessarily compact) appearing in [11, Theorem 1.2, p. 548] is a measure.
- 4. **Extensions of an additive monocompact set function.** The following lemma is proved in a straightforward manner:
- 4.1 Lemma. If $\mu: \mathcal{H} \to S$ is additive with monocompact approximating paving \mathcal{H} , then \mathcal{H}_s is an approximating paving for $\bar{\mu}$.
- 4.2 LEMMA. Let $\mu : \delta(\mathcal{R}) \to S$ be a locally s-bounded measure. If $\mu \mid \mathcal{R}$ has \mathcal{H} as approximating paving, then μ has \mathcal{H}_{δ} as approximating paving.

Proof. Let Σ be the set of $E \in \delta(\mathcal{R})$ such that, for every closed neighbourhood

V of 0 in S, there exist $K \in \mathcal{X}_{\delta}$, $E' \in \delta(\mathcal{R})$ such that $E' \subseteq K \subseteq E$ and $\mu((E-E') \cap F) \in V$ for all $F \in \delta(\mathcal{R})$. We must show that $\mathcal{R} \subseteq \Sigma$ and that Σ is monotone with respect to $\delta(\mathcal{R})$. Let $E \in \mathcal{R}$. Let V be a closed neighbourhood of 0 in S. There exist $K \in \mathcal{K}$, $E' \in \mathcal{R}$ such that $E' \subseteq K \subseteq E$ and $\mu((E-E') \cap F) \in V$ for all $F \in \mathcal{R}$. Then $\Sigma_0 = \{F \in \delta(\mathcal{R}): \mu((E-E') \cap F) \in V\}$ contains \mathcal{R} . Using the local s-boundedness of μ , it may be verified that Σ_0 is monotone with respect to $\delta(\mathcal{R})$, so $\Sigma_0 = \delta(\mathcal{R})$, proving that $E \in \Sigma$.

Let $E_n \downarrow E$, $E_n \in \Sigma$. Then $E \in \delta(\mathcal{R})$. Using the same argument as Lipecki in his proof of [10, Lemma 4, p. 109], we conclude that $E \in \Sigma$. Finally, let $E_n \uparrow E$, $E_n \in \Sigma$, where $E_n \subseteq A$ for some $A \in \delta(\mathcal{R})$. Then $E \in \delta(\mathcal{R})$. Using Corollary 2.3 of [14, p. 318] and applying again the argument of Lipecki, we conclude easily that $E \in \Sigma$.

- 4.3 THEOREM. Let $\mu: \mathcal{H} \to \mathcal{G}$ be an additive set function with monocompact approximating paving \mathcal{H} . If $\bar{\mu}: \mathcal{R}(\mathcal{H}) \to S$ is locally s-bounded, then μ extends uniquely to a locally s-bounded measure $\hat{\mu}$ on $\delta(\mathcal{H})$ with approximating paving $\mathcal{H}_{s\delta}$.
- **Proof.** By Theorem 3.3 and Lemma 4.1, $\bar{\mu}$ is a measure with \mathcal{K}_s as approximating paving. By Theorem 2.1 we extend $\bar{\mu}$ uniquely to a locally s-bounded measure $\hat{\mu}$ on $\delta(\mathcal{R}(\mathcal{H})) = \delta(\mathcal{H})$. By Lemma 4.2, $\hat{\mu}$ has $\mathcal{H}_{s\delta}$ as approximating paving.
- 4.4 Remark. Under the hypothesis of Theorem 4.3, with the additional hypothesis that $\bar{\mu}$ be monotonely convergent, we obtain, by Theorem 2.7, a unique extension to a measure μ' on $\sigma(\mathcal{H})$ such that $\mu' \mid \delta(\mathcal{H})$ is locally s-bounded. This result is an improvement of Theorem 1.2 of Mallory [11], which, in turn, contains the first statement of Topsøe following his Lemma 1 [19]; this latter contains earlier results of Alexandroff [1] and of Marczewski [12].

ACKNOWLEDGEMENT. The authors express their thanks to the referee for corrections to the text and for improvements to the original version of this paper.

REFERENCES

- 1. A. D. Alexandroff, Additive set functions in abstract spaces II, Mat. Sb. 9 (51) (1941), 563-628.
- 2. N. Bourbaki, Topologie générale, 3rd. ed., Actualités Sci. Ind. No. 1143, Chap. 3 and 4, Hermann, Paris (1960).
 - 3. N. Dinculeanu, Vector Measures, Pergamon Press, New York (1967).
- 4. N. Dinculeanu and I. Kluvanek, On vector measures, Proc. London Math. Soc. 17 (1967), 505-512.
- 5. L. Drewnowski, Topological ring of sets, continuous set functions, integration III, Bull. Acad. Polon. Sci., Ser. Sci. Math., Astr., Phys. 20 (1972), 439-445.
- 6. G. Fox and P. Morales, *Uniform semigroup-valued measures I*, Rapport de recherche N. 80-17, Université de Montréal (Septembre 1980), 20 pages.

- 7. I. Glicksberg, Representation of functionals by integrals, Duke Math. J. 19 (1952), 253-261.
- 8. T. H. Hildebrandt, On unconditional convergence in normed vector spaces, Bull. Amer. Math. Soc. 46 (1940), 959–962.
- 9. J. E. Huneycutt Jr., Extensions of abstract valued set functions, Trans. Amer. Math. Soc. 141 (1969), 505-513.
- 10. Z. Lipecki, Extensions of tight set functions with values in a topological group, Bull. Acad. Polon. Sci., Ser. Sci. Math., Astr., Phys. 22 (1974), 105–113.
- 11. D. Mallory, Extension of set functions to measures and applications to inverse limit measures, Canad. Math. Bull. **18** (1975), 547–553.
 - 12. E. Marczewski, On compact measures, Fund. Math. 40 (1953), 113-124.
 - 13. H. Millington, Products of group-valued measures, Studia Math. 54 (1975), 7-27.
- 14. P. Morales, Regularity and extension of semigroup valued Baire measures, Proc. Conf. Measure Theory Oberwolfach 1979, Lect. Notes Math. 794, Springer-Verlag, New York (1980), 317–323.
- 15. M. Sion, Outer measures with values in a topological group, Proc. London Math. Soc. 19 (1969), 89–106.
- 16. M. Sion, A theory of semigroup value measures, Lect. Notes Math. 355, Springer-Verlag, New York (1973).
 - 17. R. M. Stephenson, Pseudo-compact spaces, Trans. Amer. Math. Soc. 134 (1968), 437–448.
- 18. F. Topsøe, On construction of measures, Copenhagen University Preprint Series No. 27 (1974).
- 19. F. Topsøe, Approximating pavings and construction of measures, Coll. Math. 42 (1979), 377-385.
- 20. H. Weber, Fortsetzung von Massen mit Werten in uniformen Halbgruppen, Arch. Math. 27 (1976), 412-423.

DÉPARTEMENT DE MATHÉMATIQUES ET DE STATISTIQUES UNIVERSITÉ DE MONTRÉAL MONTRÉAL, QUÉBEC H3C 3J7

DÉPARTEMENT DE MATHÉMATIQUES ET D'INFORMATIQUE UNIVERSITÉ DE SHERBROOKE SHERBROOKE, QUÉBEC J1K 2R1