
A REMARK ON FLAT AND PROJECTIVE MODULES 

CHR. U. JENSEN 

It is the purpose of this note to give some characterizations of flat and 
projective modules, partly in ideal theoretical terms, partly in terms of the 
exterior product of a module (''puissance extérieure"); cf. (1). 

We shall consider left modules over a ring R with identity element and 
without proper zero divisors. The left module M is called flat if X ®R M is an 
exact functor on the category of right i^-modules X. If M is flat over a com
mutative domain R, M is necessarily torsion-free. Therefore when looking for 
flatness of a module M over a commutative domain, one may assume from 
the start that M is torsion-free. 

In the following theorem, we shall not restrict ourselves to commutative 
rings R, but the modules concerned have to be torsion-free, which, of course, 
should mean that rm = 0 implies r = 0 or m = 0. 

Before stating the theorem, we remark that if a is a right ideal of R, aM 
means the Z-module consisting of all finite sums ^ #* Wi where a* £ a, w* G M. 

THEOREM 1. Let R be a ring with identity element and without proper zero 
divisors, and let M be a torsion-free left R-module. Then M is flat if and only if 

(*) (ar\b)M = aMC\hM 

for all right ideals a and 6 in R. 

Proof. The necessity may be shown as in (2, p. 32, Proposition 6). In fact, 
for any right ideal a of R, #(a) (in Bourbaki's notation) may be identified 
with aM by the canonical mapping from R 0 R M to M. 

Conversely, let M be a torsion-free left i^-module for which (*) is satisfied 
for all right ideals a and b. To prove that M is flat, we shall show that any 
linear relation in M is a consequence of linear relations in R (2, p. 43, Corollary 
1), i.e. for any linear relation YLri mt ~ 0 there exists a finite set of elements 
frïj G M, fij G R such that 

mi = Hjïumj and J^iri^ij = 0 

for all i and j , respectively. 
We shall show this by induction on n. For n = 1, r\ m\ = 0 implies r\ = 0 

or mi = 0, so that there is nothing to prove. Let us now assume that any 
linear relation in M with n — 1 terms is a consequence of linear relations in 
R. We shall then prove that this also holds for any linear relation 

Received May 12, 1965. 

943 

https://doi.org/10.4153/CJM-1966-093-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-093-7


944 CHR. U. JENSEN 

n 

YJ rtnii = 0 
i+l 

with n terms. 
If all the coefficients rt are zero, there is nothing to prove; so we may assume 

that at least one of them, say rn, is not zero. 
Let a be the right ideal a = r\R + . . . + rn-\ R and b be the right ideal 

b = rnR. Obviously 

(1) rn mn = — Y. ri ™<i — • • • — Z *n-i *»n_i 

is an element of aM P\ bM and hence, because of (*), an element of (a H b)M. 
Therefore rn mn admits a representation of the form 

(2) rn mn = YjCijMj, dj £ a P\ b. 

As an element of a each coefficient dj may be written as a right linear com
bination of ri, . . . , rn_i 

\0) &j = Y\ Xfj ~\~ . . . ~r ŵ—1 %n—l,j* 

Inserting this in (1) and (2), we obtain 

ri(mi + J^j xij ™>j) + . . . + rn_i (ra„_i + X); ̂ n-i,; wî ) = 0. 

We have thus obtained a linear relation with n — 1 terms; by the inductive 
assumption, we can find elements rik Ç R, 1 < i < w — 1, and elements 
mk ^ M such that 

Wj + X!;- x^- m^ = Y,k rik mkj 1 < i < w — 1, 
and 

rc-l 

(4) ^ rt fik = 0 for all &. 

As an element of b = rn R, a ; can be written dj = rn xnJ. Now, rn ?± 0 and 
ikf is torsion-free, so (2) implies 

mi, . . . , mn are now linear combinations of the m ; and mkl namely 

^ i = JLji — Xi^Mj + £ * rik mkJ 1 < i < w — 1, 

Ww = 2 ^ ; ^w,j Tftj-

(3) implies 

î(-̂ o-) + ... + v i ( -v i . i ) + n^ -̂ = -ay + aj = o 
for all j . Because of (4), (5) is now a linear representation of the mu 

1 < i < «, of the desired form. 

THEOREM 2. For any ring R without proper zero divisors the following con
ditions are equivalent: 
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(i) The weak global dimension of R is at most one, i.e. Tor2*(A, B) — 0 for 
all right R-modules A and all left R-modules B. 

(ii) (a C\ b)c = ac H be for all right ideals a and b, and all left ideals c. 
(iii) a(b P\ c) = ab C\ etc for all left ideals b and c, and all right ideals a. 

Proof, (i) => (ii). For any left ideal c we have a short exact sequence 

0 -> c -* R -» R/c -* 0 
from which we infer 

Tori* (4, c) ~Tor 2
B ( i4 , 2î/c) = 0 

for an arbitrary right i^-module A. Thus c is flat. Since R has no proper zero 
divisor, c is torsion-free, and (ii) thus follows from Theorem 1. 

(ii) => (i). By Theorem 1, (ii) implies that any left ideal c is flat. As before, 
this involves Tor2

s(i4, R/c) ^ToriR(A, c) = 0 for any right R-module A. 
Let 

0->K-> F-+A ->0 

be a short exact sequence where F is a free right jR-module. From 

TorfiKtR/c) ~Tor2
R(A,R/c) = 0 

it follows that K is flat (2, Chapter I, §4, Proposition 1). Hence for any left 
i?-module B, we have 

Tor2*04, B) ~ Tori*(If, B) = 0. 

(i) <=» (iii) follows from the equivalence (i) <=> (ii) in view of the left-right 
symmetry in the definition of the weak global dimension. 

Remark. If R is moreover assumed to be left Noetherian, then the weak 
global dimension of R is equal to the left global dimension (7, Theorem 20, 
p. 154). Hence (ii) and (iii) are characterizations of rings whose left global 
dimension is < 1, i.e. of left hereditary rings (4, VI, Proposition 2.8). 

In the following part of this note we shall restrict ourselves to modules over 
commutative rings R without proper zero divisors, i.e. to modules over integral 
domains. 

Let K be the quotient field of the integral domain R. If M is a torsion-free 
i^-module, it may be embedded in a vector space over K> viz. K ®B M. We 
begin by giving a necessary condition for a torsion-free i^-module M with 
dimK(K <S>B M) < co to be flat over R. 

THEOREM 3. Let M be a torsion-free module over the integral domain R. If 
d+l 

dimK(K ®B M) = d < 00 and M is R-flat, then A M = 0, where AM denotes 
the exterior product (llpuissance extérieure"); cf. (1, §5.5). 

Proof. Let wi, . . . , md+i be any d + l elements of M. Since 

dimK(K ®RM) < d + l, 
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there exists a non-trivial linear relation 

r\ mi + . . . + rd+i md+ï = 0, rh . . . , rd+i not all 0. 

Because M is i^-flat, there exist elements Mj 6 M, 

ftJe R(l<i<d+l,l<j<n), 
for which 

n d+l 

for all i and 7, respectively. We may assume that d + 1 < n, since otherwise 
we could formally insert elements m ; with coefficients ftj = 0. 

d+l 

The element mi A . . . A md+\ £ A M can be expressed as 

(6) Wi A . . . A wd+] = E ritil . . . fd+ifW+1 mtl A . . . A mid+1, 
î l , . . . , < d + l 

where (ii, . . . , id+i) runs through all ordered sets of d + 1 integers (equal or 
different) between 1 and n. 

If two of the i's are equal, the corresponding term in (6) vanishes according 
to the definition of the exterior product. It therefore suffices to let (ii, . . . , id+\) 
run through all ordered sets of d + 1 mutually distinct integers between 1 and 
n. 

Consider the terms in (6) where (ii, . . . , id+\) runs through the permutations 
of d + 1 fixed mutually distinct integers 1 < n\ < . . . < nd+i < n. Then 

mu A . . . A fnid+l = emni A . . . A fnnd+l 

where e = + 1 or — 1 according as (ii, . . . , id+\) is an even or odd permutation 
of (ni, . . . , nd+i). Hence the sum of the corresponding terms in (6) is 

det(fini)mni A . . . A mnd+1. 

Since (ru . . . , rd+i) is a non-trivial solution of the system of the d+l 
linear equations 

d+l 

s J %i T ini U, 
i=l 

we see that det(fini) = 0. This holds for any system 1 < n± < . . . < nd+i < n 
d+l 

of d + 1 mutually distinct integers; hence the sum (6) vanishes. Since A M 
d+l 

is generated by all elements of the form Wi A . . . A wd+i, the proof of A M = 0 
is complete. 

Before stating the next theorem, we remark that the exterior product has 
the usual localization property. In fact, let 5 be any multiplicatively closed set 
of elements of R containing the identity element but not containing 0. For any 
module M let Ms be the module of formal quotients [m/s] with respect to 5, 
considered as a module over the quotient ring Rs; cf. (7, 8.6). It is then readily 
checked that 
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L S\ J L Sn J L S\ . . . 5n J 
n n 

defines an isomorphism of A ¥ s onto (AM) s-

We shall now prove 

THEOREM 4. Let M be a torsion-free module over the integral domain R, and 
suppose dimK(K ®R M) = d < oo, where K is the quotient field of R. Then M 

d+1 

is R-projective if and only if M is finitely generated and A M — 0. 
d+1 

Proof. If M is projective, M is also flat, so that Theorem 3 implies A M = 0. 
Moreover, since K &# M is a finitely generated i£-module, it follows from 
(3, §5.5, Proposition 9) that M is a finitely generated i£-module. 

d+i 
Conversely, let M be a finitely generated i^-module for which AM = 0. 

Since M is finitely generated, it suffices to show that the local components 
Mm are free i^m-modules for any maximal ideal m in R] cf. (2, p. 138, 
Theorem 1). ^ d+1 d+1 

By the remark preceding Theorem 4, we have A^m = (AM)m = 0 for 
any maximal ideal m. Clearly dimK(K ®Rm Mm) = d so that the finitely 
generated module Mm cannot be generated by less than d elements. Let 
(mi, . . . , mv) be a minimal set of generators in the sense that no element mt 

is superfluous. We have only to show that v < d, since it then follows that 
Wi, . . . , mv will be an independent set of generators, i.e. a free Rm-base. 

Assume v > d. If a\ m\ + . . . + av mv = 0, at Ç Rm, then any at must be
long to tni^m; otherwise at would be a unit and mt an i?m-linear combination of 
the remaining ra;, i.e. mf would be superfluous in the set of generators. This 
means that for any element a\ m± + . . . + av mv G Mm, the a's are uniquely 
determined (mod m^m). Consequently, an alternating multilinear mapping 0 
of Mm

d+1 into i?m /m^ m is obtained by setting 

4>(au mx + . . . + alv mv, . . . , ad+iti mx + . . . + a,d+\,v w„) 
= det (a tj) (mod mi^m). 

Ki,j<d+1 

Since 0(mi, . . . , wd+i) = 1 (mod mRm), <t> does not vanish identically. Thus 
d+l 

<j> induces a non-vanishing homomorphism of A Mm into^m/mi^m , which means 
d+l 

that A Mm ?£ 0, contradicting our assumption on M. 
Since a flat module over an integral domain is necessarily torsion-free, the 

following corollary is a consequence of Theorems 3 and 4. 

COROLLARY 1; cf. (5). A finitely generated flat module over an integral domain 
is projective. 

Combining Theorem 1 and Corollary 1, we obtain 

COROLLARY 2. A finitely generated torsion-free module over an integral domain 
R is projective if and only if (a C\ b)M = aM C\ bM for all ideals a and b inR. 
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It is obvious that the assumption of M being torsion-free is essential for the 
validity of Corollary 2. However, for an arbitrary module M, we obtain by 
passing to the factor module of M with respect to its torsion module MT 

COROLLARY 2'. A finitely generated module M over an integral domain R is 
the direct sum of a torsion module and a projective module if and only if there 
exists a non-zero ideal c {dependent on M) such that 

(*) (aPb) ikf = aMC\bM 

holds for all ideals a and b contained in c. 

Proof. If M c^P © MT with projective P , then MT is finitely generated; 
thus there is a non-zero element c G R with cMT = 0 and (*) is satisfied for 
all ideals a and b contained in (c). To prove the "if" part, it suffices to show that 

(a P b)M/MT 3 aM/MT P bM/MT 

for all ideals a and b, for by Corollary 2 this implies that 

0 -> MT -> M -* M/MT -> 0 

is split exact. 
Any element x G aM/MT P bM/MT has the form 

x = ^idiiUi = J^ibi Mu at G a, bt G b, mt G M/MT. 

Choosing representatives x, mt G M, we obtain 

x = YLiaimi + m' = Ysibtnii + m", m' and m" G MT. 

Let c be a non-zero element in c such that cm' = cm" = 0. Then 

ex = J^icatmi = Xz ^ ^ i G caM P rf)M. 

Since c a Ç c and rf) CI c, we infer that 

caM P cbM" = (ca P cb)M = c(a P b)M 
and thus 

ex = ^j cdj mj} dj G û P b. 

Hence x — ^ 6̂ - ra;- G My or 

x = Xjdj ™>j € (a P b)M/MT. 

If P is a Priifer ring, i.e. a semi-hereditary integral domain, then any ideal 
a in P is a flatP-module; cf. (4, VII, Proposition 4.2). Therefore, by Theorem 

2 2 

3, A a = 0 for any ideal a considered as an P-module. Conversely, if A a = 0 
for any ideal a in an integral domain P , then by Theorem 4, any finitely 
generated ideal in P is a projective P-module and P is thus a Priifer ring. 
In other words 

2 

COROLLARY 3. An integral domain R is a Priifer ring if and only if A a = 0 
for any ideal a in P . 
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This may be generalized to arbitrary commutative rings with an identity 
element. 

THEOREM 5. The ideals of a commutative ring R with an identity element form 
a distributive lattice, i.e. 

a H (6 + c) =<xP\b + ctP\c for any three ideals a, b, c in R 
2 

if and only if A a = 0 for every ideal a inR. 
Proof. The lattice of ideals in R is distributive if and only if, for any maximal 

ideal m in R, the ideals in the generalized quotient ring Rm are totally ordered 
with respect to set inclusion (6). 

First, let us assume that any Rm has the above property. On account of 
2 

the localization principle, it suffices to prove A a' = 0 for any ideal a' of Rm> 
If a, b 6 Rm, we have either (a) C (b) or (b) C (a). If a = br, r Ç Rm, say, 

2 

then a A b = r(b A b) = 0. Thus A a' = 0, and the "only if" part is proved. 
2 

Conversely, if A a = 0 for every ideal a in R, any ideal in Rm has the same 
property. To prove that the ideals of Rm are totally ordered, it suffices to show 
that for any two elements a and b of Rm, we have either (a) C (b) or (b) ÇI (a). 

If this were not the case, then, for suitable a and b, {a, b) would be a minimal 
system of generators for the ideal a' = aRm + bRm. Just as in the proof of 
Theorem 4, we could define an alternating bilinear mapping <j> of a' X a' into 
Rm/mRm by setting 

<j>{axi + byi, ax2 + by2) = (xi y2 — x2 y\) (mod mRm). 
Since <t>(a, b) = 1 (mod mRm), a A b were not zero in a' A a', contradicting our 
assumption. 

Remark. By combining Theorem 5 and Corollary 3, we see that an integral 
domain is a Priifer ring if and only if its ideals form a distributive lattice. This 
may be regarded as a generalization of the well-known theorem that a 
Noetherian domain is a Dedekind domain if and only if the ideals form a 
distributive lattice. 

Added in proof. F-injectivity has been studied by D. F. Sanderson under the 
name UF-Divisibility." See his article (A generalization of divisibility and 
injectivity in modules, Can. Math. Bull., 8 (1965), 506-513) for the construction 
of the F-injective hull. 
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