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Abstract. We present a construction of framed torsion free instanton sheaves on a
projective variety containing a fixed line which further generalises the one on projective
spaces. This is done by generalising the so called ADHM variety. We show that the
moduli space of such objects is a quasi projective variety, which is fine in the case of
projective spaces. We also give an ADHM categorical description of perverse instanton
sheaves in the general case, along with a hypercohomological characterisation of these
sheaves in the particular case of projective spaces.
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1. Introduction. An unexpected connection between theoretical physics and
algebraic geometry appeared in the late 1970’s, when Atiyah, Drinfeld, Hitchin and
Manin provided a complete classification of instantons on the 4-dimensional sphere S4

using algebraic geometric techniques. More precisely, these authors used the Penrose-
Ward correspondence between instantons on S4 and certain holomorphic vector
bundles on �3 together with a characterisation of holomorphic vector bundles on
�3 due to Horrocks [2].

Nowadays, such link between theoretical physics and algebraic geometry can be
found many forms, perhaps the most prominent of which is the so-called Hitchin-
Kobayashi correspondence.

Later, Donaldson noticed in [10] that (framed) instantons on S4 were also in
correspondence with (framed) holomorphic bundles on �2, while Nakajima considered
in [35] framed torsion-free sheaves on �2.

On a different direction, Mamone Capria and Salamon [32] generalised the
Penrose-Ward correspondence to a correspondence between quaternionic instantons
on ��k and certain holomorphic vector bundles on �2k+1. This paper motivated
Okonek and Spindler to introduce the notion of mathematical instanton bundles on
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�2k+1 [37]. Since then, such objects have attracted the attention of many authors, see
for instance [1, 6, 39] and the references therein.

More recently, the following generalisation of mathematical instanton bundles was
proposed in [25]: an instanton sheaf on �n (n ≥ 2) is a torsion free sheaf E which is the
cohomology of a linear monad of the form:

O�n (−1)⊕c −→ O⊕a
�n −→ O�n (−1)⊕c. (1)

When so, c and is called the charge of E, while r = 2c − a is its rank. In general, a sheaf
E on �n is said of trivial splitting type if there is an isomorphism φ : E|� → O⊕r

� for
some line � ⊂ �n, and, if so, the pair (E, φ) is called a framed sheaf. With these
definitions in mind, a mathematical instanton bundle in the sense of [1, 37] is a
rank 2k locally free instanton sheaf on �2k+1 of trivial splitting type. Moreover, the
framed torsion free sheaves considered by Nakajima in his extension of Donaldson’s
classification of framed holomorphic vector bundles [35, Chapter 2] are precisely
the framed instanton sheaves on �2. Similarly to what was done in these two cases,
cohomological characterisations of torsion free instanton sheaves on �n can be found,
for instance, in [7, 25].

The concept of framed instanton sheaf readily generalises from a projective space
to a projective variety � containing a line � ⊂ �, simply by substituting � for �n in
the monad above. This idea has already been explored, for instance, by L. Costa and
R. M. Miró-Roig in [7].

More precisely, let � be a projective scheme in �n of dim � ≥ 2 which contains a
line � ⊂ �n. Fix homogeneous coordinates (z0 : · · · : zd : x : y) ∈ �n where d = n − 2
such that � is given by the equations z0 = · · · = zd = 0. We consider linear monads of
the form

V ⊗ O�(−1)
α−→ (V ⊕ V ⊕ W ) ⊗ O�

β−→ V ⊗ O�(1)

with maps given by

α =
⎛
⎝ A′ + 1 ⊗ x

B′ + 1 ⊗ y
J

⎞
⎠ β = (−B − 1 ⊗ y A + 1 ⊗ x I

)
,

where V and W are vector spaces of dimension c and r, respectively, and

A, A′, B, B′ ∈ End(V ) ⊗ H0(O�(1)),

I ∈ Hom(W, V ) ⊗ H0(O�(1)) and J ∈ Hom(V, W ) ⊗ H0(O�(1)).

The ADHM equation obtained from the condition βα = 0 is

AB′ − BA′ + IJ + (B′ − B) ⊗ x + (A − A′) ⊗ y = 0.

If � = �n, it necessarily follows that A = A′ and B = B′ and the previous equation
becomes the usual ADHM equation. However, note that if � is nondegenerate and cut
out by at least one hyperquadric, then it can happen that either A 
= A′ or B 
= B′; the
extra effort is worthwhile since many relavant varieties are so. To see how the equation
changes in particular cases, see Examples 2.7 e 2.8 below. Otherwise, if � is only cut
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out by hypersurfaces of degree greater than 2, then the ADHM equation above does
not depend precisely on �, but just on the ambient space.

The goal of this paper is to present a construction of framed torsion free instanton
sheaves on � which further generalises the construction of framed torsion free sheaves
on �2 done in [10, 35] and on �3 [12]; these are in turn a generalisation of the original
ADHM construction of instantons [2, 10]. A research announcement outlining the
case � = �n appeared in [26].

In this way, we provide an explicit parametrisation of the moduli space of framed
instanton sheaves on � via matrices satisfying certain quadratic equations. The first
step is generalising ADHM data and even the very ADHM equation, which we do in,
respectively, Sections 2.1 and 2.2. Afterwards, we build the quotient ADHM varietyMst

�

of stable points in Section 2.3, as a natural candidate variety for the moduli problem.
We prove in Theorem 3.8 that an open set within Mst

�, consisting of what we call
globally weak stable points, is indeed in 1-1 correspondence to isomorphism classes of
framed torsion free instanton sheaves on � (with fixed rank and charge); hence the
moduli of framed torsion free instanton sheaves in � is a quasi projective variety since
Mst

� is so. A more general statement holds in the case � = �n. In fact, we prove in
Theorem 4.2 that the moduli space of framed instanton bundles on �n is fine.

Motivated by [5, 20], we also consider perverse instanton sheaves on � in Section
5, generalising what was done by the second and third named authors in [29]. More
precisely, A. Braverman, M. Finkelberg and D. Gaitsgory proved a result due to
Drinfeld, [5, Theorem 5.7], which extended Nakajima-Donaldson’s discussion from
torsion free to perverse sheaves on �2. Recently in [20], M. Hauzer and H. Langer
discussed perverse instanton sheaves on �3 generalising the ADHM construction of
framed torsion free instanton sheaves in [12], together with a more refined study of
stability. Here, we further generalise the results in these two papers.

Roughly speaking, perverse instanton sheaves are complexes of sheaves of the
form (1) regarded as objects in the heart (or core) of particular t-structures on Db(�)
constructed in Subsections 5.2 and 5.3. The extension of the theory from torsion
free to perverse instanton sheaves corresponds to disregard the “globally weak stable"
condition on ADHM data satisfying the ADHM equation. This is the content of
Theorem 5.9, a connection between what we call the ADHM category and the one of
perverse instanton sheaves. Again, in the very case where � = �n it is also possible
to give a hypercohomological characterisation of perverse instanton sheaves which
generalises the well known cohomological characterisation of torsion free instanton
sheaves. This is Theorem 5.13, which closes the paper.

2. Generalised ADHM data. For the remainder, � is a projective scheme in �n =
�n

� which contains a line �. Fix homogeneous coordinates (z0 : · · · : zd : x : y) ∈ �n

where d = n − 2 such that � is given by the equations z0 = · · · = zd = 0. Set

H� := 〈z0, . . . , zd〉 ⊂ H0(O�(1)).

2.1. The ADHM data. Let V and W be complex vector spaces of dimension,
respectively, c and r. Set

A : = End(V )⊕2 ⊕ Hom(W, V ) A′ := End(V )⊕2 ⊕ Hom(V, W )

B = B(W, V ) = B(r, c) := A × A′
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and consider the affine spaces

A� : = A ⊗ H� A′
� := A′ ⊗ H�

B� = B�(W, V ) = B�(r, c) := A� × A′
�

A point of B� will be called in this paper an ADHM datum over �. The ADHM
data over � = �n were considered in [26] in a slightly different way; it will be the
most relevant case in the present paper. It is important to point out that the subspace
〈x, y〉 ⊂ H0(O�(1)) will play no special role until Subsection 2.2.

One can write a point of X ∈ B� as

X = (Y, Y ′)

with

Y = (A, B, I) Y ′ = (A′, B′, J)

where the above components are

A = A0 ⊗ z0 + · · · + Ad ⊗ zd A′ = A′
0 ⊗ z0 + · · · + A′

d ⊗ zd

B = B0 ⊗ z0 + · · · + Bd ⊗ zd B′ = B′
0 ⊗ z0 + · · · + B′

d ⊗ zd

I = I0 ⊗ z0 + · · · + Id ⊗ zd J = J0 ⊗ z0 + · · · + Jd ⊗ zd

with Ak, Bk, A′
k, B′

k ∈ End(V ), Ik ∈ Hom(W, V ) and Jk ∈ Hom(V, W ). Hence we
naturally regard A, B, A′, B′ ∈ Hom(V, V ⊗ H�), and also I ∈ Hom(W, V ⊗ H�) and
J ∈ Hom(V, W ⊗ H�). Setting Yk := (Ak, Bk, Ik) ∈ A and Y ′

k := (A′
k, B′

k, Jk) ∈ A′,
sometimes it is convenient to write

Y = Y0 ⊗ z0 + · · · + Yd ⊗ zd = (Y0, . . . , Yd) ∈ Ad+1

Y ′ = Y ′
0 ⊗ z0 + · · · + Y ′

d ⊗ zd = (Y ′
0, . . . , Y ′

d) ∈ (A′)d+1

and consider the ADHM datum as

X = (Y, Y ′) ∈ Ad+1 × (A′)d+1.

For any P ∈ � we define the evaluation maps given on generators by

ev1
P : A� −→ �(A)

Yi ⊗ zi 
−→ [zi(P)Yi]
ev2

P : A′
� −→ �(A′)

Y ′
i ⊗ zi 
−→ [zi(P)Y ′

i ].

Note that zi(P) ∈ � depends on a choice of trivialisation of O�(1) at P but the class
on projective space does not. We set YP := ev1

P(Y ) and, similarly, Y ′
P := ev2

P(Y ′). In
particular, AP, BP, A′

P, B′
P, IP and JP are defined as well. For any subspace S ⊂ V , we

are able to naturally well define the subspaces AP(S), BP(S), A′
P(S), B′

P(S), IP(W ) and
ker JP of V . We also consider

evP : B� −→ �(A) × �(A′)
(Y, Y ′) 
−→ (YP, Y ′

P)

and set XP := evP(X). With this in mind we define the following.
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DEFINITION 2.1. Let Y = (A, B, I) ∈ A� and Y ′ = (A′, B′, J) ∈ A′
�. Let also P be

a point in �.

(i) YP is said stable if there is no proper subspace S ⊂ V for which hold the
inclusions AP(S), BP(S), IP(W ) ⊂ S;

(ii) Y ′
P is said costable if there is no nonzero subspace S ⊂ V for which hold the

inclusions A′
P(S), B′

P(S) ⊂ S ⊂ ker JP;
(iii) YP is said weak stable if there is no subspace S ⊂ V of codimension 1 for which

hold the inclusions AP(S), BP(S), IP(W ) ⊂ S;
(iv) Y ′

P is said weak costable if there is no subspace S ⊂ V of dimension 1 for which
hold the inclusions A′

P(S), B′
P(S) ⊂ S ⊂ ker JP;

(v) Y is said stable if there is no proper subspace S ⊂ V for which hold the
inclusions A(S), B(S), I(W ) ⊂ S ⊗ H�;

(vi) Y ′ is said costable if there is no nonzero subspace S ⊂ V for which hold the
inclusions A′(S), B′(S) ⊂ S ⊗ H� and S ⊂ ker J;

(vii) Y is said locally (resp. globally) stable (corresp. weak stable) if YP is stable
(corresp. weak stable) for some (resp. every) P ∈ �;

(viii) Y ′ is said locally (resp. globally) costable (corresp. weak costable) if YP is
costable (corresp. weak costable) for some (resp. every) P ∈ �.

We are now able to introduce the key definitions of this paper.

DEFINITION 2.2. The datum X = (Y, Y ′) ∈ B� is said

(i) stable (resp. locally stable, locally weak stable, globally stable, globally weak
stable) if Y is stable (resp. locally stable, locally weak stable, globally stable,
globally weak stable);

(ii) costable (resp. locally costable, locally weak costable, globally costable, globally
weak costable) if Y ′ is costable (resp. locally costable, locally weak costable,
globally costable, globally weak costable);

(iii) regular (resp. locally regular, locally weak regular, globally regular, globally
weak regular) if it is both stable and costable (resp. locally stable and locally
costable, locally weak stable and locally weak costable, globally stable and
globally costable, globally weak stable and globally weak costable).

REMARK 2.3. For � = �2, i.e., B� = B, stability, costability and regularity
essentially coincide with the usual notions for ADHM data (cf. [35, Theorem 2.1]).
For � = �n, the present notions of global stability and global regularity correspond,
respectively, to stability and regularity in [12, p. 29] and [26, Definition 2.1]; global
stability along with regularity here correspond to semiregularity in [12, 26]; and the
present notions of stability, costability and regularity have no parallel in [12, 26]. But
the reader should note that each of the items in the previous definitions do not depend
precisely on �, since its very ample sheaf is yet not affected by the second twist.
The reason for so many new definitions has to do with the fact that new data were
introduced, something which will be more clear later on.

DEFINITION 2.4. Let Y = (A, B, I) ∈ A� and P ∈ �. The stabilising subspace
SYP is the intersection of all subspaces S ⊂ V for which hold the inclusions
AP(S), BP(S), IP(W ) ⊂ S. The stabilising subspace SY is the intersection of all
subspaces S ⊂ V such that A(S), B(S), I(W ) ⊂ S ⊗ H�.
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If S ⊆ V satisfies A(S), B(S), I(W ) ⊂ S ⊗ H�, then one may consider

Y |S := (A|S, B|S, I) ∈ A�(W, S).

It is clear that Y |SY is stable and this justifies the term we use. A similar statement
holds for points, that is, if YP|S := ev1

P(Y |S) then YP|SYP
is stable as well. Moreover, Y

is stable if and only if SY = V and YP is stable if and only if SYP = V .

PROPOSITION 2.5. SYP ⊂ SY for every P ∈ �. In particular, if Y is locally stable then
it is stable.

Proof. Let S ⊂ V and consider � ⊂ �n. Then A(S) ⊂ S ⊗ H� if and only if Ai(S) ⊂
S for i = 0, . . . , d, which holds if and only if

∑d
i=0 piAi(S) ⊂ S for every P = (p0 : · · · :

pd : a : b) ∈ �n. So applying the same to B and I we see that A(S), B(S), I(W ) ⊂
S ⊗ H� if and only if AP(S), BP(S), IP(W ) ⊂ S for every P ∈ �n. The result
follows. �

In [20, Section 6.1] there is an example, with c = 2, r = 1 and � = �3, for which
the converse of the above proposition does not hold, that is, there exists a stable
Y ∈ A�3 such that YP is not stable for every P ∈ �3. Equivalently, there exists Y ∈ A�3

such that SYP � SY = V for every P ∈ �3. So one may ask if, in general, at least
TY := ∑

P∈� SYP = SY . If c = 1 and � is reduced, this trivially holds. If c = 2, as in the
example of [20], and � is integral, this holds as well. In fact, write Y = (A, B, I) and
note that for every P ∈ � hold: IP(W ) ⊂ SYP and, also, IP = 0 if and only if SYP = 0.
Besides, SY = 0 if and only if I = 0. But the entries of I are sections in H0(O�(1)) and
� is reduced, thus SY = 0 if and only if IP = 0 for every P ∈ �. Set LY := ∑

P∈� IP(W ).
If LY = 0 then TY = SY = 0; if LY = V then TY = SY = V ; and if dim(LY ) = 1 then
either exists P ∈ � such that IP(W ) is not invariant by AP or BP and then SYP = V
which implies TY = SY = V , or, otherwise, TY = SY = LY since � is irreducible.

The above assumption on � to be reduced for c = 1 is necessary. In fact, take � to
be the nonreduced variety given by z2

0 = 0 in �2 = Proj �[z0, x, y]. Then z0 ∈ H0(O�(1))
is not the zero section but vanishes at every point of �. So if r = 1 as well and Y is
such that I = (z0) then SY cannot be zero. On the other hand, IP = 0 for every P ∈ �,
so SYP = 0 and hence TY = 0.

The variety � needs also to be irreducible for the case c = 2. In fact, take �

to be the reducible variety given by z0z1 = 0 in �3 = Proj �[z0, z1, x, y]. Consider
Y = (A, B, I) ∈ A�(1, 2) where

A =
(

z0 z1

0 z0

)
I =

(
z0

z0

)

and B = 0. Let P = (p0 : p1 : a : b) ∈ �. If p0 
= 0 then IP(W ) = N := 〈(1, 1)〉 and N is
also AP-invariant because p1 = 0; hence SYP = N in such a case. If p0 = 0 then SYP = 0.
Hence TY = N. On the other hand, if N = SY then, in particular, A(N) ⊂ N ⊗ H�;
but

A(N) = 〈(z0 + z1, z0)〉 
⊂ 〈(z0, z0), (z1, z1)〉 = N ⊗ H�

which implies that TY � SY .
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For c = 3, we can have TY � SY even when � = �3 = Proj �[z0, z1, x, y]. In fact,
consider Y = (A, B, I) ∈ A�3 (1, 3) where

A =
⎛
⎝ z1 z1 0

0 z1 z0

0 0 2z1

⎞
⎠ I =

⎛
⎝ z0

z0

z1

⎞
⎠

and B = 0. Use [29, Lemma 3.2.(i)] to get SYP = ∑2
i=0 Ai

PIP(W ) and compute

AI =

⎛
⎜⎜⎝

2z0z1

2z0z1

2z2
1

⎞
⎟⎟⎠ (A)2I =

⎛
⎜⎜⎝

4z0z2
1

4z0z2
1

4z3
1

⎞
⎟⎟⎠ .

Let P = (p0 : p1 : a : b) ∈ �3. If p0, p1 
= 0 then SYP = N := 〈(1, 1, 0), (0, 0, 1)〉. If p0 =
0 (resp. p1 = 0) then SYP = 〈(0, 0, 1)〉 (resp. SYP = 〈(1, 1, 0)〉). Thus TY = N. However,
if N = SY then, as seen above, A(N) ⊂ N ⊗ H�; but

A(N) = 〈(2z1, z1, 0), (0, z0, 2z1)〉

⊂ 〈(z0, z0, 0), (0, 0, z0), (z1, z1, 0), (0, 0, z1)〉
= N ⊗ H�

which implies that TY � SY .
We define Bst

�, Blws
� , Bls

�, Bgws
� , Bgs

� , Bgwr
� and Bgr

� as the subsets of B� consisting of
stable, locally weak stable, locally stable, globally weak stable, globally stable, globally
weak regular and globally regular ADHM data over �, respectively. Clearly, each of
these sets are open subsets of B� (in the Zariski topology), and one has strict inclusions

Bgr
� ⊂ Bgs

� ⊂ Bls
�

∩ ∩ ∩
Bgwr

� ⊂ Bgws
� ⊂ Blws

� ⊂ Bst
�

2.2. The ADHM variety. One of the main goals of this paper is to consider, for
data X = ((A, B, I), (A′, B′, J)) ∈ B�, the generalised ADHM equation

AB′ − BA′ + IJ + (B′ − B) ⊗ x + (A − A′) ⊗ y = 0 (2)

which we also call the ADHM equation over �.
Considering the map

μ : B� −→ End(V ) ⊗ H0(O�(2))
X 
−→ AB′ − BA′ + IJ + (B′ − B) ⊗ x + (A − A′) ⊗ y

we set the space of all solutions to the ADHM equation over � as

V� = V�(W, V ) = V�(r, c) := μ−1(0)
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which is an affine variety. We call it the ADHM variety over � of which we select the
subvarieties

Vgr
� ⊂ Vgs

� ⊂ V ls
�

∩ ∩ ∩
Vgwr

� ⊂ Vgws
� ⊂ V lws

� ⊂ V st
�

consisting of globally regular, globally stable, locally stable, globally weak regular,
globally weak stable, locally weak stable and stable points of V�.

EXAMPLE 2.6. The most relevant case is � = �n. When so, note that if X =
((A, B, J), (A′, B′, I)) ∈ V�n then necessarily A = A′ and B = B′. So one may write
the datum as X = (A, B, I, J) and the ADHM equation as

[A, B] + IJ = 0

as extensively done in the literature. For instance, note that, for � = �2, (2) reduces to
the most usual one taken in End(V ). The case where � = �3 was considered in [10, 12]
in the context of Yang-Mills theory and the Penrose correspondence. It can be written
as follows:

[A0, B0] + I0J0 = 0

[A1, B1] + I1J1 = 0

[A0, B1] + [B0, A1] + I0J1 + I1J0 = 0

which were called complex ADHM equations in [12, equations (7)–(9)]. More generally,
in � = �n = �d+2, (2) can be broken down into

(d+2
2

)
matrix equations involving the

linear maps Ak, Bk, Ik and Jk:

[Ak, Bk] + IkJk = 0 k = 0, . . . , d

[Ak, Bm] + [Bk, Am] + IkJm + ImJk = 0 k < m = 0, . . . , d

to which we refer here as the d-dimensional ADHM equations.

EXAMPLE 2.7. Consider the case where � = S ⊂ �3 = Proj �[z0, z1, x, y] is the
scroll given by the equation

z0y − z1x = 0

which is isomorphic to �1 × �1. It is easily found data in S which do satisfy the
ADHM equation though not satisfying the conditions A = A′ and B = B′. In fact, let
X = ((A, B, I), (A′, B′, J)) ∈ BS be such that

A = C ⊗ z0 B = C ⊗ z1 A′ = B′ = J = 0

where C is a c × c matrix. Then

AB′ − BA′ + IJ + (B′ − B) ⊗ x + (A − A′) ⊗ y = (−C ⊗ z1) ⊗ x + (C ⊗ z0) ⊗ y

= (z0y − z1x)C = 0.
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In this case, the ADHM equation (2) over S splits into the following matrix equations:

A0B′
0 − B0A′

0 + I0J0 = 0

A1B′
1 − B1A′

1 + I1J1 = 0

A0B′
1 − B0A′

1 + A1B′
0 − B1A′

0 + I0J1 + I1J0 = 0

A1 = A′
1 B0 = B′

0 A0 − A′
0 = B1 − B′

1.

EXAMPLE 2.8. Now consider the hyperquadric � = Q ⊂ �4 =
Proj �[z0, z1, z2, x, y] given by the equation

z0y + z1x + z2
2 = 0.

Let X = ((A, B, I), (A′, B′, J)) ∈ BQ be such that

A = C ⊗ z0 B = −C ⊗ z1 I = I ′ ⊗ z2 A′ = B′ = 0 J = J ′ ⊗ z2

where C, I ′, J ′ are, respectively, c × c, c × r, r × c matrices such that C = I ′J ′. Then
we have

AB′ − BA′ + IJ + (B′ − B) ⊗ x + (A − A′) ⊗ y = 0

(I ′ ⊗ z2) ⊗ (J ′ ⊗ z2) + (C ⊗ z1) ⊗ x + (C ⊗ z0) ⊗ y = 0

z2
2(I ′J ′) + (z1x + z2y)C = 0

(z0y + z1x + z2
2)C = 0

and so here one finds data in the ADHM variety not satisfying the conditions A = A′,
B = B′ either. The ADHM equation (2) over � now splits into the following matrix
equations:

A0B′
0 − B0A′

0 + I0J0 = 0

A1B′
1 − B1A′

1 + I1J1 = 0

A0B′
1 − B0A′

1 + A1B′
0 − B1A′

0 + I0J1 + I1J0 = 0

A0B′
2 − B0A′

2 + A2B′
0 − B2A′

0 + I0J2 + I2J0 = 0

A1B′
2 − B1A′

2 + A2B′
1 − B2A′

1 + I1J2 + I2J1 = 0

A1 = A′
1 A2 = A′

2 B0 = B′
0 B2 = B′

2

A2B′
2 − B2A′

2 + I2J2 = A0 − A′
0 = B′

1 − B1

2.3. The quotient ADHM variety of stable points. The importance of the ADHM
variety will be clear in the next sections and has to do with the very aim of this work,
that is, the construction of framed instanton sheaves by means of ADHM data. In
fact, we will see how to build such sheaves from points of V�; how to establish a
correspondence between points of Vgws

� and torsion free instanton sheaves and, also,
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how to even get a moduli space of instanton bundles on �n from points of Vgr
�n . In

order to do so, we introduce an action of G := GL(V ) on B�.
Given g ∈ G, Y = (A, B, I) ∈ A and Y ′ = (A′, B′, J) ∈ A′ one defines

g · Y := (gAg−1, gBg−1, gI)

g · Y ′ := (gA′g−1, gB′g−1, Jg−1).

The action naturally extends to B� as

g · (Y ⊗ z, Y ′ ⊗ w) = ((g · Y ) ⊗ z, (g · Y ′) ⊗ w)

for any Y ∈ A, Y ′ ∈ A′ and z, w ∈ H�.

PROPOSITION 2.9. If X ∈ B� is stable, then its stabiliser subgroup GX is trivial.

Proof. Write X = (Y, Y ′) with Y = (A, B, I). If GX is nontrivial, take g 
= 1V in GX .
Since I 
= 0 because X is stable and also gI = I , then S := ker(g − 1V ) is proper and
A(S), B(S), I(W ) ⊂ S ⊗ H� which contradicts the stability of X . Thus GX is trivial. �

The action of G on � naturally restricts toV�, and induces an action of G on �(V�),
the ring of regular functions of V�. Fix l > 0 and consider the group homomorphism
χ : G → �∗ given by χ (g) = (det g)l. This can be used to lift the action of G from V�

to V� × � as follows

g · (X, z) := (g · X, χ (g)−1z) (3)

for any X ∈ V� and z ∈ �. Then one can form the variety

V�//χ G := Proj

⎛
⎝⊕

n≥0

�(V�)G,χn

⎞
⎠

where

�(V�)G,χn
:= {

f ∈ �(V�) | f (g · X) = χ (g)nf (X) ∀g ∈ G
}

Clearly, V�//χG is projective over Spec
(
�(V�)G

)
, and it is quasi-projective over �. The

GIT tells us that V�//χG is the space of orbits G · X ⊂ V� such that the lifted orbit
G · (X, z) is closed within V� × � \ {0} for all z 
= 0.

PROPOSITION 2.10. The orbit G · (X, z) is closed for z 
= 0 if and only if X is stable.

Proof. The usual proof of the case � = �2 generalises to the current framework.
Take X = (Y, Y ′) with Y = (A, B, I) and, first, assume that the orbit G · (X, z) is not
closed. Then there is a nontrivial one parameter subgroup λ : �∗ → G such that the
limit

(L, w) = lim
t→0

λ(t) · (X, z) (4)

exists but does not belong to the orbit G · (X, z).
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Take a weight decomposition of V with respect to λ, so that V = ⊕mV (m). The
existence of the limit implies that

A(V (m)), B(V (m)) ⊂ (⊕n≥mV (n)) ⊗ H�,

I(W ) ⊂ (⊕n≥0V (n)) ⊗ H� .

Set S = ⊕n≥0V (n), so that A(S), B(S), I(W ) ⊂ S ⊗ H�. We claim that S is a proper
subspace of V , which implies that X is not stable. Indeed, the existence of the limit
(4) implies that det λ(t) = tN for some N ≤ 0. If N = 0, then actually λ(t) = 1V and
V = V (0), which contradicts the fact that the limit (4) does not belong to the orbit
G · (X, z). Hence N < 0, which implies that S is proper, as desired.

Conversely, assume that X is not stable. Then there exists a proper subspace
S ⊂ V such that A(S), B(S), I(W ) ⊂ S ⊗ H�. Taking any subspace T ⊂ V such that
V = S ⊕ T , the maps A, B and I may be written, with respect to this decomposition,
as follows

A, B =
(

	 	

0 	

)
and I =

(
	

0

)
.

Defining the 1-parameter subgroup λ : �∗ → G as

λ(t) =
(

1S 0
0 t−11T

)
,

note that

λ(t)Aλ(t)−1, λ(t)Bλ(t)−1 =
(

	 t · 	

0 	

)
and λ(t)I = I.

It follows that L = limt→0 λ(t) · X exists. Thus

lim
t→0

λ(t) · (X, z) = (L, 0),

which means that the orbit G · (X, z) is not closed within V� × � \ {0}. �
From the above proposition, we are able to introduce a variety which will play a

central role in Section 4, namely, the quotient ADHM variety of stable points over �,
defined as

Mst
� = Mst

�(r, c) :=
{

stable solutions of the
ADHM equation

}/
G � V�//χG.

So Mst
� = V st

� /G is a quasiprojective variety. Note that we may consider the
following sequence of varities

Mgr
� ⊂ Mgs

� ⊂ Mls
�

∩ ∩ ∩
Mgwr

� ⊂ Mgws
� ⊂ Mlws

� ⊂ Mst
�

consisting of globally regular, globally stable, locally stable, globally weak regular,
globally weak stable, locally weak stable and stable orbits of Mst

�. The next natural
questions are to determine whetherMst

M is irreducible and nonsingular, and to compute
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its dimension . If Mst
� is not irreducible, one would like to characterise and count

its irreducible components. If Mst
� is singular, one would like to characterise the

singularity locus. We ask some of these questions for the case of projective spaces
in Section 4. Notice that since G acts freely and properly on V st

� , it follows that Mst
� is

irreducible/nonsingular if and only if V st
� is irreducible/nonsingular, and that

dimMst
�(r, c) = dimV st

� (r, c) − c2.

REMARK 2.11. Any stable solution of the ADHM equation is GIT stable by
Propositions 2.9 and 2.10 (see also [20, Proposition 4.3]). ThenMst

� is a good categorical
quotient since the group G is reductive [34, Theorem 1.10]; in particular Mgws

� is also
a good categorical quotient.

3. Torsion free instanton sheaves. Our aim here is to establish a correspondence
between torsion free instanton sheaves of trivial splitting type on � and globally stable
solutions of the ADHM equation over �.

3.1. The ADHM construction. In this subsection we will see how to construct
coherent sheaves on � which restrict trivially to �, out of ADHM data over �. To begin
with, for any datum X = ((A, B, I), (A′, B′, J)) ∈ B�, consider the sequence of sheaf
maps

E•
X : V ⊗ O�(−1)

α−→ (V ⊕ V ⊕ W ) ⊗ O�
β−→ V ⊗ O�(1) (5)

given by

α =
⎛
⎝ A′ + 1 ⊗ x

B′ + 1 ⊗ y
J

⎞
⎠ β = (−B − 1 ⊗ y A + 1 ⊗ x I

)
. (6)

Given a point P ∈ �, we will denote by αP and βP the fiber maps.
Note that βα = 0 iff X satisfies the ADHM equation, which is a straightforward

calculation left to the reader. Therefore, for such an X , we are able to do the following
definition.

DEFINITION 3.1. For any X ∈ V�, we call E•
X the ADHM complex over � associated

to X and we refer to E := ker β/im α as the cohomology sheaf of E•
X .

It is also important to check when the ADHM complex E•
X happens to be a monad,

that is, when α is injective and β surjective. We will see below that global weak stability
is precisely the property required. Before that, let us just introduce some notation. Let
X be an ADHM datum; we denote by

DX := {P ∈ � | αP is not injective},

which is the degeneration locus of the map α, and by

dX := codim�(DX )
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its codimension respect to �. We call X ∈ V� a nondegenerate datum if dX ≥ 2, and
say it is degenerate otherwise. The set of nondegenerate points of the ADHM variety
plays a central role in this work and is denoted by V n̄

�.

REMARK 3.2. Note that for n ≥ 2, one always has V n̄
�n = V�n , that is, there are

no degenerate data over these projective spaces. More generally, if � has dimension
at least 2 and Pic(�) = � then V n̄

� = V� as well. On the other hand, for instance,
Example 2.7 does provide the existence of degenerate points in the ADHM variety: if
X = ((C ⊗ z0, C ⊗ z1, I), (0, 0, 0)) ∈ VS where S is the scroll z0y − z1x = 0 in �3, then
the degeneration locus of X is the line x = y = 0, and hence dX = 1.

PROPOSITION 3.3. The following hold:
(i) α is injective;

(ii) αP is injective for every P ∈ � iff X is globally weak costable;
(iii) β is surjective iff X is globally weak stable.

Proof. It is easy to see that αP is injective for all P ∈ �. This means that the localised
map αP may fail to be injective only at a subvariety of � which does not intersect �,
and hence dX ≥ 1. In particular, α is injective as a sheaf map and (i) follows.

To check (ii) and (iii), write X = ((A, B, I), (A′, B′, J)). For (ii), if XP is not
weak costable for some P ∈ �, there is a one dimensional subspace S ⊂ V such that
A′

P(S), B′
P(S) ⊂ S ⊂ ker JP. Fixing coordinates for P, we may assume that (A′

P, B′
P, JP)

lies in A′. It follows that there exists a nonzero v ∈ V , and a, b ∈ � such that

A′
P(v) = av B′

P(v) = bv JP(v) = 0 (7)

and since the last coordinates of P does not affect costability, we may suppose P =
(p0 : · · · : pd : a : b) and hence the fiber map αP is not injective. Conversely, if for such a
P ∈ � the map αP is not injective, then (7) holds for a nonzero v ∈ V and thus S = 〈v〉
makes XP non weak costable.

Finally, β is surjective iff βP is surjective for all P ∈ �, which holds iff βt
P is injective

for all P ∈ �, which, by the prior item, holds iff (Bt
P, At

P, It
P) is weak costable for all

P ∈ �. Now it is easily seen that (Bt
P, At

P, It
P) is weak costable iff (AP, BP, IP) is weak

stable and (iii) holds. �
For the next result, we recall some definitions. A projective scheme is called

arithmetically Cohen-Macaulay (ACM) if its homogeneous coordinate ring is a Cohen-
Macaulay ring. The charge of a coherent sheaf E on a projective scheme is the integer
h1(E(−1)).

PROPOSITION 3.4. Let X ∈ V�(r, c) and E be the cohomology sheaf of the ADHM
complex E•

X . Then the following hold:
(i) E is a coherent sheaf which restricts trivially to �;

(ii) E is a torsion free sheaf if and only if X is nondegenerate;
(iii) E•

X is a monad if and only if X is globally weak stable;
(iv) E is a locally free sheaf if and only if X is globally weak costable;
(v) If X is nondegenerate globally weak stable and � is either �2 or ACM of dimension

at least 3, then E is a torsion free sheaf of rank r and charge c.

Proof. The degeneration locus DX agrees with the singularity locus of E, that is,
the points P ∈ � for which the stalk EP is not a free OP-module. Thus, it follows from
[37, Section 2.1.1] that E is coherent iff dX ≥ 1, which always hold as seen in the proof
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of the prior proposition, and E is torsion free iff dX ≥ 2. So the first statement of (i)
and (ii) are proved. In order to check the other statement of (i), note that the restriction
of (5) to � yields

0 → V ⊗ O�(−1)
α�−→ (V ⊕ V ⊕ W ) ⊗ O�

β�−→ V ⊗ O�(1)

where

α� =
⎛
⎝ x

y
0

⎞
⎠ β� = (−y x 0

)
.

Its cohomology, which coincides with the restriction of E to �, is just W ⊗ O�, so (i)
is proved. Itens (iii) and (iv) hold due to Proposition 3.3 while (v) holds owing to [28,
Proposition 3.2]. �

3.2. The inverse construction. In this subsection we will do the inverse
construction, that is, build an ADHM datum out of a cohomology sheaf of a monad
in �. First, we specify the relevant class of sheaves.

DEFINITION 3.5. A coherent sheaf E on � is called an instanton sheaf if there exists
a complex of the form

O�(−1)⊕c α−→ O⊕a
�

β−→ O�(1)⊕c

where α is injective, β is surjective and E = ker β/im α. If E restricts trivially to �, then
E is also called of trivial splitting type.

The above definition does agree with the known one in the case of projective spaces
(see [25, p. 69]) as can be easily derived from [25, Proposition 2 and Theorem 3].

PROPOSITION 3.6. If E is a torsion free instanton sheaf on � of trivial splitting type
with respect to �, then E is the cohomology sheaf of a monad of the form

E•
X : V ⊗ O�(−1)

α−→ (V ⊕ V ⊕ W ) ⊗ O�
β−→ V ⊗ O�(1)

where W � H0(E|�) and X ∈ V n̄gws
� (W, V ), i.e., X is a nondegenerate globally weak

stable datum in the ADHM variety. Moreover, if � is either �2 or an ACM variety of
dimension at least 3, then V � H1(E(−1)).

Proof. Since E is instanton, it is the cohomology sheaf of a monad of the form

V ⊗ O�(−1)
α−→ U ⊗ O�

β−→ V ⊗ O�(1).

Restricting it to �, we get

V ⊗ O�(−1)
α�−→ U ⊗ O�

β�−→ V ⊗ O�(1). (8)

The maps α� and β� can then be expressed in the following manner:

α� = α1x + α2y

β� = β1x + β2y
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where αk ∈ Hom(V, U) and βk ∈ Hom(U, V ) for each k = 1, 2. The condition β�α� =
0 then implies that

β1α1 = β2α2 = 0 (9)

β1α2 + β2α1 = 0. (10)

From (8) we get the exact sequence

0 −→ V ⊗ O�(−1)
α�−→ ker β� −→ E|� −→ 0.

Now Hp(O�(−1)) = 0, for p = 0, 1, and E|� � O⊕rk E
� , hence H1(ker β�) = 0 and

H0(ker β�) � H0(E|�) � EP (11)

for some P ∈ �. Notice that the choice of a basis for H0(ker β�) corresponds to the
choice of a trivialisation for E|�.

Similarly, from (8) we also get the exact sequence

0 −→ ker β� −→ U ⊗ O�

β�−→ V ⊗ O�(1) −→ 0

from which we obtain the short exact sequence of linear spaces

0 −→ H0(ker β�) −→ U
β�−→ V ⊗ H0(O�(1)) −→ 0 (12)

because H0(O�) � � and H1(ker β�) = 0. Since H0(O�(1)) � �2 we rewrite (12) as

0 −→ H0(ker β�) −→ U
β1⊕β2−→ V ⊕ V −→ 0. (13)

Now E is locally free on a neighborhood of �, so we can apply the same argument
to the dual monad

0 −→ V∗ ⊗ O�(−1)
βt

�−→ U∗ ⊗ O�

αt
�−→ V∗ ⊗ O�(1) −→ 0

of which we derive the exact sequence

0 −→ H0(ker αt
�) −→ U∗ αt

1⊕αt
2−→ V∗ ⊕ V∗ −→ 0 (14)

with H0(ker αt
�)∗ � H0(E|�) � H0(ker β�). Dualising (14) we get

0 −→ V ⊕ V
α1⊕α2−→ U −→ H0(ker β�) −→ 0, (15)

hence (13) splits and U � V ⊕ V ⊕ W where W = H0(ker β�) � H0(E|�) as desired.
Then E is the cohomology sheaf of the monad

V ⊗ O�(−1)
α−→ (V ⊕ V ⊕ W ) ⊗ O�

β−→ V ⊗ O�(1)

described above. Now choose P = (0 : · · · : 0 : 1 : 0) to write (11) as

ker β1 ∩ ker β2 = H0(ker β�) � EP = ker β1/imα1.
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Thus imα1 ∩ ker β2 = 0, so that β1α2 = −β2α1 : V → V are isomorphisms. Therefore,
we can choose basis to write

α1 =
⎛
⎝ 1

0
0

⎞
⎠ α2 =

⎛
⎝ 0

1
0

⎞
⎠ β1 = (

0 1 0
)

β2 = (−1 0 0
)

and the description of α and β as coming from a datum X easily follows. Moreover, X
needs to satisfy the ADHM equation since βα = 0; by Proposition 3.4.(ii)-(iii), it has
to be globally weak stable since β is surjective and nondegenerate since E is torsion
free.

Finally, the last claim follows easily from the short exact sequences

0 −→ K −→ (V ⊕ V ⊕ W ) ⊗ O�
β−→ V ⊗ O�(1) −→ 0

0 −→ V ⊗ O�(−1)
α−→ K −→ E −→ 0

and we are done. �

The following concept is crucial for establishing the correspondence between data
and torsion free instanton sheaves.

DEFINITION 3.7. A framed instanton sheaf on � is a pair (E, φ) where E is an
instanton sheaf of trivial splitting type on � and φ : E|� → O⊕r

� is an isomorphism.

Two framed instanton sheaves (E, φ) and (E′, φ′) are said to be isomorphic if there
is a sheaf isomorphism 
 : E −→ E and a constant λ ∈ �∗ such that the following
diagram is commutative:

E|� 
|� ��

φ

��

E′|�
φ′

��
O⊕r

�

λ ��O⊕r
�

On the other hand, two ADHM data in B�(W, V ) are said to be equivalent if their
orbits modulo the action of G = GL(V ) coincide.

THEOREM 3.8. Let � be either �2 or an ACM projective variety of dimension at least
3. Then there is a 1-1 correspondence between the following sets:
� equivalence classes of nondegenerate globally weak stable data in the ADHM variety
V�(r, c);

� isomorphism classes of rank r framed torsion free instanton sheaves of charge c on �.

Proof. For g ∈ GL(V ) and h ∈ GL(W ), consider the following data in V�(W, V ):

X = ((A, B, I), (A′, B′, J))

X ′ = ((gAg−1, gBg−1, gIh−1), (gA′g−1, gB′g−1, hJg−1))
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Then the map between ADHM complexes on �, given by

E•
X : 0 ��V ⊗ O�

α ��

g⊗1

��

(V ⊕ V ⊕ W ) ⊗ O�

(g⊕g⊕h)⊗1

��

β ��V ⊗ O�
��

g⊗1

��

0

E•
X ′ : 0 ��V ⊗ O�

α′
��(V ⊕ V ⊕ W ) ⊗ O�

β ′
��V ⊗ O�

��0

is an isomorphism. Conversely, any isomorphism between ADHM complexes are of
the above form. But we have already seen in Proposition 3.6 that any torsion free
instanton sheaf of rank r and charge c is the cohomology of an ADHM complex
associated to a nondegenerate globally weak stable datum in V� and conversely by
Proposition 3.4.(v). Moreover, isomorphisms between cohomology sheaves lift in an
unique way to isomorphisms between monads since the conditions of [38, Lemma
4.1.3] are satisfied for linear monads on both �2 and ACM varieties. So, in order to
get the result, we just observe that an h ∈ GL(W ) is nothing but a choice of framing
for the cohomology sheaf of an ADHM complex. �

In particular, Theorem 3.8 provides a (set-theoretical) bijection between the set of
isomorphism classes of rank r framed torsion free instantons sheaves of charge c on �

and points of Mn̄gws
� (r, c). So we have the following.

COROLLARY 3.9. The moduli space of isomorphism classes of rank r framed torsion
free instanton sheaves of charge c on � is a quasi projective variety.

We now turn our attention to the case of � = �n.

4. Instantons on projective spaces. We devote this section to the particular case
of projective spaces, that is, the case where � = �n with n = d + 2 ≥ 2. When so, as
seen in Example 2.6, any datum X ∈ V�n is of the form X = ((A, B, I), (A, B, J)), so it
is more convenient to write

X = (A, B, I, J) ∈ B′ ⊗ H0(O�d (1))

where

B′ = B′(W, V ) = B′(r, c) := End(V )⊕2 ⊕ Hom(W, V ) ⊕ Hom(V, W ).

The ADHM equation reduces to

[A, B] + IJ = 0. (16)

Moreover, weak global (resp. local) stability (corresp. costability) agrees with global
(resp. local) stability (corresp. costability) in such a case. Indeed, write X =
(A, B, I, J) ∈ V�n , fix P ∈ �n and assume XP is not costable. Hence there is a nonzero
subspace S ⊂ V such that AP(S), BP(S) ⊂ S ⊂ ker JP. Fixing coordinates for P, we
may assume that XP = (AP, BP, IP, JP) lies in B′. Now, since X ∈ V�n , we have that AP|S
and BP|S commute because JP|S = 0. In particular, AP|S and BP|S are simultaneously
diagonalisable. In particular, AP and BP have a common eigenvector in S so XP is not
weak costable. Hence global (resp. local) costability agrees with global (resp. local)
costability. A similar statement holds for stability because XP is (resp. weak) stable
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iff Xt
P := (Bt

P, At
P, Jt

P, It
P) is (resp. weak) costable for all P ∈ �n. Besides, there are no

degenerate data in V�n .
For the sake of simplicity, we adopt the notation

Vd := V�d+2 = V�n

and, as seen above, it is enough to consider the sequence of proper inclusions

Vgr
d ⊂ Vgs

d ⊂ V ls
d ⊂ V st

d .

As well as for the ADHM variety in projective spaces, we adopt the same notation

Md := M�d+2 = M�n

for the ADHM quotient variety of stable orbits in which we naturally consider the
sequence

Mgr
d ⊂ Mgs

d ⊂ Mls
d ⊂ Mst

d .

The simplest case, when d = 0, is well known and can be found, for instance, in [35]:
Mst

0 (r, c), which agrees with Mgs
0 (r, c), is an irreducible, nonsingular quasi-projective

variety of dimension 2rc, and it admits a complete hyperkähler metric. In [12], it is
also proved that Mgs

1 (r, 1) is irreducible and nonsingular, which we generalise to any d
in the following proposition.

PROPOSITION 4.1. Mgs
d (r, 1) is a nonsingular quasi-projective variety of dimension

2(d + 1)r − 1
2 d(d − 1) if r > d and empty otherwise.

Proof. Write a datum X = (A, B, I, J) where the components are

A = A0 ⊗ z0 + · · · + Ad ⊗ zd B = B0 ⊗ z0 + · · · + Bd ⊗ zd

I = I0 ⊗ z0 + · · · + Id ⊗ zd J = J0 ⊗ z0 + · · · + Jd ⊗ zd

In this case, since c = 1, the Ak, Bk in are in �, while the Ik (resp. Jk) can be regarded
as row (resp. column) matrix vectors in �r. Global stability reduces to the condition
that the Ik are linearly independent, so Mgs

d (r, 1) is empty if r ≤ d. The group G = �∗

acts trivially on the Ak, Bk and by multiplication by t (resp. t−1) on the Ik (resp. Jk).
The ADHM equations reduce to

IkJk = 0 k = 0, . . . , d
IkJm + ImJk = 0 k < m = 0, . . . , d

It is then easily seeing thatMgs
d (r, 1) = �2(d+1) × B(d, r), whereB(d, r) is the (open)

set of solutions of the ADHM equations in the (2(d + 1)r − 1)-dimensional weighted
projective space

�(1, . . . . . . , 1︸ ︷︷ ︸, −1, . . . . . . ,−1︸ ︷︷ ︸)

(d + 1)r (d + 1)r
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such that the Ik are linearly independent. This shows that Mgs
d (r, 1) is quasi-projective.

The ADHM equations also yield the
(d+2

2

) × 2(d + 1)r Jacobian matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

Jt
k Ik

. . .
. . .

Jt
m Im

. . .
. . .

...
...

Jt
m Jt

k Im Ik
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which is of maximal rank if and only if the Ik are linearly independent. This shows that
Mgs

d (r, 1) is nonsingular of the desired dimension. �

4.1. The moduli of framed instanton bundles on �n. In this section we study the
moduli functor problem of framed instanton bundles on �n by means of their monadic
description.

Theorem 3.8 is an important step forward to get a moduli space for isomorphism
classes of framed instanton bundles on projective spaces, which is the main concern of
this subsection. In order to do so, we first introduce few notation: for every two sheaves,
F on �n and G on a scheme S, we put F � G := p∗F ⊗ q∗G, where p : �n × S −→ �n

is the projection on the first factor and q is the projection �n × S −→ S on the second
one. We also denote by k(s) the residue field of a closed point s ∈ S.

Now, we start by introducing a moduli functor. Let

M�n

r,c : Sch −→ Set

be the functor from the category of noetherian schemes of finite type to the category
of sets, which is defined as follows: to every scheme S ∈ Obj(Sch) we associate the set

M�n

r,c (S) = { equivalence classes of pairs (F , φ) }
where we have:

(i) F is a coherent sheaf on �n × S which is flat on S;
(ii) φ : F |�×S → G is an morphism (called framing) to a certain sheaf G on � × S

which is flat on S and such that G ⊗ k(s) ∼= O⊕r
� for every s ∈ S;

(iii) (Fs, φ(s)) is a framed instanton bundle on �n of rank r and charge c for every
s ∈ S, where Fs := F ⊗ k(s) and φ(s) := φ ⊗ k(s);

(iv) (F , φ) ∼ (F ′, φ′) if there is a line bundle L on S such that F ′ ∼= F ⊗ q∗L, and
such that the following diagram commutes:

F ⊗ q∗L|�×S ��

φ

��

F ′|�×S

φ′

��
G �� G ′
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The pull-back is defined as follows. Given a morphism f : S′ → S and [(F , φ)] ∈
M�n

r,c (S), we set

f ∗([(F , φ)]) := [((id�n × f )∗F , φ∗)]

where we naturally define

φ∗ : (id� × f )∗(F |�) −→ G∗.

This turns M�n

r,c into a contravariant family functor.

Now, the key point will be the use of the relative version of the Beilinson’s Theorem.
We remark that most of this subsection is a generalisation of Le Potier’s techniques [31],
which he used in order to describe the moduli space of stable bundles of rank 2 on �2.
Le Potier’s proof can also be found in [38, Chapter II, Section 4], and its generalisation
to the case framed torsion-free sheaves on multi-blow-ups of the projective plane can
be found in [23].

Let us consider a scheme S which is noetherian and of finite type. Consider the
following diagram:

�n × �n × S
pr13 ��

pr23

��

�n × S

q

��
�n × S q

��S

and the relative Euler sequence:

0 −→ O�n×S(−1) −→ O⊕(n+1)
�n×S −→ Q � OS −→ 0

where Q = T�n(−1) is the twisted tangent bundle. One has the following:
Relative Beilinson’s Theorem. For every coherent sheaf F on �n × S there is a spectral
sequence Ei,j

r with E1-term

Ei,j
1 = O�n (i) � Rjq∗(F ⊗ �−i

�n×S/S(−i))

which converges to

Ei,j
∞ =

{
F i + j = 0
0 otherwise.

The above result is the tool we need to have the following.

THEOREM 4.2. The quasiprojective scheme Mgr
d (r, c) of globally regular solutions to

the d-dimensional ADHM equation modulo the action of GL(c) is a fine moduli space for
the isomorphism classes of rank r framed instantons bundles of charge c on �d+2.

Proof. We first construct the natural transformation

M�n

r,c (•) −→ Hom(•,Mgr
d (r, c)),
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where n := d + 2, between the moduli functor of framed instanton bundles on �n and
the Yoneda functor associated to the solutions to the d-dimensional ADHM equation
modulo the action of G.

So let S be a scheme and take [(F , φ)] ∈ M�n

r,c (S). We claim thatF is the cohomology
of a monad

M• : O�n (−1) � R1q∗(F ⊗ �2
�n×S/S(1)) −→ O�n � R1q∗(F ⊗ �1

�n×S/S) (17)

−→ O�n (1) � R1q∗(F ⊗ p∗O�n (−1)).

In fact, by the Relative Beilinson’s Theorem, we just use the fact that F is S-flat, so
that

Rjq∗(F ⊗ �−i
�n×S/S(−i)) ⊗ k(s) � Hj(�n,Fs ⊗ �−i

�n (−i)).

Then (17) follows by using the vanishing properties of instanton bundles.
Therefore, on every point s ∈ S, one has a monad

M•
s : H1(Fs ⊗ �2

�n (1)) ⊗ O�n (−1) → H1(Fs ⊗ �1
�n ) ⊗ O�n → H1(Fs(−1)) ⊗ O�n (1).

Now, consider an open covering {Sj}j∈J of S. Then on every open affine Sj the
restriction M•|Sj is isomorphic to a monad of the form

M•
j : O�n (−1) � (V ⊗ OSj )

αj−→ O�n � (W ⊗ OSj )
βj−→ O�n (1) � (V ′ ⊗ OSj )

where

αj : Sj −→ Hom(H0(O�n (1))∗, Hom(V, W ))

βj : Sj −→ Hom(H0(O�n (1))∗, Hom(W , V ′)).

From the monad condition βj ◦ αj = 0 we have a map fj = (αj, βj) : Sj → Vgr
d and by

construction these maps satisfy

fi(s) ∼G fj(s)

for any point s in the intersection Si ∩ Sj. The maps fj glue to form a global morphism

f = f[(F,φ)] : S −→ Mgr
d .

This defines the desired natural transformation:


(•) : M�n

r,c (•) −→ Hom(•,Mgr
d (r, c))

χ 
−→ fχ : • −→ Mgr
d .

(18)

Taking a closed point s ∈ S, and using the resulting monad on �n it is easy to see
that 
 : M�n

r,c (Spec k(s)) −→ Hom(Spec k(s),Mgr
d (r, c)) is a bijection owing to Theorem

3.8.
Finally, take N to be another parameterising scheme such that there is a natural

transformation

� : M�n

r,c (•) −→ Hom(•,N ),
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and consider the monad

�• : O�n (−1) � (V ⊗ OVgr
d

) → O�n � (W ⊗ OVgr
d

) → O�n (1) � (V ⊗ OVgr
d

) (19)

of which the cohomology we call F. We first claim that the map

ψ := �(Vgr
d )[(F,φ)] : Vgr

d −→ N

is constant along the fibers of the natural projection

π = 
(Vgr
d )[(F,φ)] : Vgr

d −→ Mgr
d

for any framing φ. Actually, the assertion is not particular for the chosen scheme and
family. Rather, it easily comes from the fact that M�n

r,c is a contravariant family functor
and � and 
 are natural transformations, that is, the square diagrams obtained fom
� and 
 by pull-backing families and composing morphisms are all commutative.

The projection π : Vgr
d −→ Mgr

d locally has sections, so one can construct local
mappings ϕ̄ : Mgr

d −→ N , but since ψ is constant along the fibers of π , then the map
ϕ̄ can be lifted to a global map ϕ such that the following diagram commutes:

Vgr
d

ψ ��

π
��

N

Mgr
d

ϕ

��������

(20)

Again, from the very naturality of 
 and � we have that the natural morphism
ϕ : Mgr

d → N as in (20) is enough to get a unique natural transformation

� : Hom(•,Mgr
d ) −→ Hom(•,N )

such that � = � ◦ 
. Hence M�n

r,c is a coarse moduli space.
To finish the proof, we shall now descend the universal monadic description on

�n × Vgr
d to a well behaved monadic description on �n × Mgr

d . This can be realised due
to the fact that the space �n × Vgr

d is a G-space since there is a natural action

G × �n × Vgr
d −→ �n × Vgr

d
(g, (x, X)) 
−→ (x, g · X)

(21)

This induces a G-action on the universal monad �, in (19), which descends to an action
on its cohomology F, but since the action is free and the isotropy subgroup is trivial at
all points owing to Proposition 2.9, we have a well defined family F/G −→ �n × Vgr

d /G.
We put U := F/G which is a canonical family

U −→ �n × Mgr
d

parameterised by Mgr
d .

Finally, we claim that for any noetherian scheme S of finite type, the mapping

Hom(S,Mgr
d ) −→ M�n

(r,c)(S)
φ 
−→ φ∗[U] = [(id�n × φ)∗U]

is bijective.
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In fact, for injectivity, if there are homomorphisms φ1, φ2 : S −→ Mgr
d such

that (id�n × φ1)∗U ∼= (id�n × φ2)∗U then for every point s ∈ S, one has the equality
U(φ1(s)) = U(φ2(s)). Since the bundle U(φi(s)) is the one given by the globally regular
ADHM data associated to the point φi(s) ∈ Mgr

d , then φ1(s) = φ2(s) for every point
s ∈ S, thus φ1 = φ2.

For surjectivity, given a family F parameterised by S, one has the morphism
φ = 
(F) given by the natural transformation (18). Then F is the pull-back of the
family U parameterised by Mgr

d . Hence Mgr
d is a fine moduli space. �

5. Perverse instanton sheaves. We will conclude this paper by providing a
geometrical interpretation for arbitrary solutions of the ADHM equation as perverse
coherent sheaves on �. Indeed, as remarked in Section 3, arbitrary solutions of the
ADHM equation give rise to the complexes of sheaves of the form (5) which, thought
as an object of the derived category Db(�), are perverse coherent sheaves with very
particular properties.

5.1. t-structures and perverse sheaves. Let T be a triangulated category. We recall
from [13] that a t-structure on T consists of two full subcategories, denoted D≤0 and
D≥0 satisfying the following conditions:

(i) D≤0 ⊂ D≤0[−1] and D≥0[−1] ⊂ D≥0;
(ii) if X ∈ D≤0 and Z ∈ D≥0, then homT (X ,Z) = 0;

(iii) for every Y ∈ T , there exists an exact triangle X → Y → Z → X [1] with X ∈
D≤0 and Z ∈ D≥0.

The full subcategory of T consisting of those objects in D≤0 ∩ D≥0 is called the
heart (or core) of the t-structure (D≤0, D≥0); one can show that it is always an abelian
category, see [13].

If T is the (bounded) derived category of an abelian category A, then one can
define the so-called standard t-structure:

stdD≤0 = {C• ∈ D(A) | Hk(C•) = 0 ∀k > 0}
stdD≥0 = {C• ∈ D(A) | Hk(C•) = 0 ∀k < 0}.

One easily checks that (stdD≤0, stdD≥0) is indeed a t-structure, and that its heart is
equivalent to A.

The main goal of this section is to outline two methods of construction of non-
standard t-structures on derived categories of coherent sheaves on projective varieties.
From now on, let � denote a non-singular irreducible projective variety over an
algebraically closed field.

5.2. Kashiwara’s t-structures. Let Mod(O�) denote the abelian category of
sheaves of O�-modules, and set D(O�) to be its derived category; let also D(�) to
be the derived category of Coh(�). As usual, we set Dqc(O�) (Dcoh(O�)) to be the
full triangulated subcategory of D(O�) consisting of complexes with quasi-coherent
(coherent) cohomology. Recall that Db(�) is naturally equivalent to Db

coh(O�).
We will also use the costumary notation D≤n

qc (O�) to mean complexes C• in Dqc(O�)
such that Hk(C•) = 0 for all k > n; similarly, D≥n

qc (O�) means complexes C• in Dqc(O�)
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such that Hk(C•) = 0 for all k < n. The curly cohomology H is used to denote the
cohomology of a complex in D(O�), which is an O�−module, while the straight H
denotes the cohomology with respect to the global sections functor �, in the category
of vector spaces.

A family of supports on � is a set 
 of closed subsets of � satisfying the following
conditions: (i) if Z ∈ 
 and Z′ is a closed subset of Z, then Z′ ∈ 
; (ii) if Z, Z′ ∈ 
,
then Z ∪ Z′ ∈ 
; (iii) ∅ ∈ 
. For any such family of supports, consider the functor
�
 : Mod(O�) → Mod(O�) defined as follows:

�
(F) := lim
Z∈


�Z(F).

Then one has, for each open subset U ⊂ �:

�
(F)(U) = {σ ∈ F(U) | suppσ ∈ 
}. (22)

A support datum on � is a decreasing sequence 
 := {
n}n∈� of families of supports
satisfying the following conditions: (i) for n � 0, 
n is the set of all closed subsets of
X ; (ii) for n � 0, 
n = {∅}.

Finally, the support (or perversity) function associated to the support datum 
 (see
[30, Lemma 5.5]) is:

p
 : �top −→ �

x 
−→ max{n ∈ � | {x} ∈ 
n}
where �top denotes the topological space underlying the natural scheme structure on
the variety �.

Given a support datum on �, Kashiwara introduces the following subcatgories of
Db

qc(O�):


D≤n
qc (O�) := {C• ∈ Db

qc(O�) | supp(Hk(C•)) ∈ 
k−n ∀k}

D≥n

qc (O�) := {C• ∈ Db
qc(O�) | R�
k (C•) ∈ D≥k+n(O�) ∀k}.

Now consider as in [30, p. 857]:


D≤0
coh(O�) := 
D≤0

qc (O�) ∩ Db(�)


D≥0
coh(O�) := 
D≥0

qc (O�) ∩ Db(�).

It is shown in [30, Theorem 5.9] that if the support function p
 satisfies the following
condition

p
(y) − p
(x) ≤ codim({y}) − codim({x}) ∀y ∈ {x}, (23)

then (
D≤0
coh(O�), 
D≥0

coh(O�)) defines a t-structure on Db(�).

EXAMPLE 5.1. For the scheme � with the line �, consider the following support
datum 
 = {
k}k∈� with


k := {all closed subsets of �} for k ≤ 0


1 := {all closed subsets of � which do not intersect �}

k := {∅} for k ≥ 2.
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The corresponding perversity function p
 : �top → � is given by: p
(x) = 0 if and
only if {x} ∩ � 
= ∅ and p
(x) = 1 otherwise. One easily checks that such function does
satisfy the condition (23). We will denote by C� the heart of this t-structure.

The objects of C� can be characterised as follows.

PROPOSITION 5.2. C• ∈ C� if and only if the following hold:
(i) Hk(C•) = 0 for k 
= 0, 1;

(ii) H0(C•) has all nonzero sections with support intersecting �;
(iii) H1(C•) is supported away from �.

Proof. We first assume that C• ∈ C�. On the one hand, C• ∈ 
D≤0
coh(O�). Then

supp(Hk(C•)) is empty for k ≥ 2, i.e., Hk(C•) = 0 for k ≥ 2, and also supp(H1(C•))
does not intersect �.

On the other hand, C• ∈ 
D≥0
coh(O�). Then, first, R�
0 (C•) ∈ D≥0(O�). But �
0 is

just the identity functor on Mod(O�), thus R�
0 (C•) = C• ∈ D≥0(O�), i.e,Hk(C•) = 0
for k ≤ −1. Besides, R�
1 (C•) ∈ D≥1(O�) and hence H0(R�
1 (C•)) vanishes. But, by
[30, Lemma 3.3.(iii)], H0(R�
1 (C•)) = �
1 (H0(C•)) since C• ∈ D≥0(O�). Therefore
�
1 (H0(C•)) = 0 which is equivalent to saying (ii).

Conversely, let us first check that C• ∈ 
D≤0
coh(O�). This is quite clear, since

supp(H1(C•)) ∈ 
1 by (iii) and supp(Hk(C•)) = ∅ ∈ 
k for k ≥ 2 by (i).
To check that C• ∈ 
D≥0

coh(O�), since C• ∈ D≥0(O�) we use [30, Lemma 3.3.(iii)]
again. It gets R�
k (C•) ∈ D≥0(O�) and H0(R�
k (C•)) = �
k (H0(C•)) for every k. So,
first, R�
k (C•) ∈ D≥0(O�) ⊂ D≥k(O�) for every k ≤ 0. Besides, we have R�
1 (C•) ∈
D≥0(O�) and H0(R�
1 (C•)) = �
1 (H0(C•)) which vanishes by (ii); hence R�
1 (C•) ∈
D≥1(O�). Since R�
k (C•) = 0 for every k ≥ 2 (
k = {∅} in this range), we also have
that R�
k (C•) ∈ D≥k(O�) for k ≥ 2. �

5.3. Tilting on torsion pairs. LetA be an abelian category, and let (T ,F) be a pair
of full subcategories of A. One says that (T ,F) is a torsion pair in A if the following
conditions are satisfied:

(i) HomA(T, F) = 0 whenever T ∈ T and F ∈ F ;
(ii) For every A ∈ A, there is a short exact sequence 0 → T → A → F → 0 with

T ∈ T and F ∈ F .
Now let (T ,F) be a torsion pair in A. Consider the full subcategories of Db(A):

D≤0 := {C• ∈ Db(A) | Hp(C•) = 0 for p > 0 and H0(C•) ∈ T }
D≥0 := {C• ∈ Db(A) | Hp(C•) = 0 for p < −1 and H−1(C•) ∈ F}.

According to [19, Proposition 2.1 and Corollary 2.2], we have that (D≤0, D≥0) is a t-
structure on Db(A), and the full subcategories (F [1], T ) is a torsion pair in its heart. In
this situation, one says that the t-structure (and its heart) is obtained from A through
tilting on the torsion pair (T ,F).

EXAMPLE 5.3. For the scheme �, take A = Coh(�); given a coherent sheaf E on
�, let Tk(E) be the maximal subsheaf of E whose support has dimension at most k, see
[20, p. 3]. Consider the following full subcategories of Coh(�):

T : = {E ∈ Coh(�) | Tn−2(E) = E}
F : = {E ∈ Coh(�) | Tn−2(E) = 0}.
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One easily checks that they form a torsion pair in Coh(�). Let B be the heart of the
t-structure obtained from Coh(�) through tilting on (T ,F). We set

C ′
� := B[1]

The objects of C ′
� can easily be characterised as follows.

PROPOSITION 5.4. C• ∈ C ′
� if and only if the following hold:

(i) Hp(C•) = 0 for p 
= 0, 1;
(ii) H0(C•) has no subsheaves supported in codimension at least 2;

(iii) H1(C•) is supported in codimension at least 2.

We remark that the two t-structures obtained in Examples 5.1 and 5.3 are distinct,
and so are their hearts. For instance, O�[1] is an object of C ′

�, but not of C�; on the
other hand, the sheaf O� is an object in C�, but not of C ′

�.

5.4. Perverse instanton sheaves. Broadly speaking, a perverse coherent sheaf on
an algebraic variety � is an object within the heart of some t-structure on Db(�).
Therefore, motivated by the above examples, we introduce the following definition.

DEFINITION 5.5. A perverse (coherent) sheaf on � is a complex C• ∈ Db(�)
satisfying the following conditions:

(i) Hp(C•) = 0 for p 
= 0, 1;
(ii) H0(C•) is a torsion free sheaf;

(iii) H1(C•) is a torsion sheaf supported away from a line �.
The rank r of C• is defined to be the rank of H0(C•).

Let P� denote the category of perverse sheaves on �, as a full subcategory of
Db(�). It is easy to see that P� is additive, closed under direct summands and closed
under extensions. Moreover, P� is contained both in C� and in C ′

�, and it contains the
category of torsion-free sheaves on � as a subcategory.

Let F� be the category of torsion free sheaves on � as a subcategory of P�, i.e.,
F• ∈ F� if H1(F•) = 0, and let Z� be the category of rank zero perverse sheaves, i.e.,
Z• ∈ Z� if H0(Z•) = 0. Note that (F�,Z�) is a torsion pair in P�; in particular, for
every C• ∈ P�, there is a short exact sequence

0 → F• → C• → Z• → 0

with F• ∈ F� and Z• ∈ Z�.
One can then extend Definition 3.5 from coherent to perverse sheaves.

DEFINITION 5.6. An object C• in Kom(�) is said to be a perverse instanton sheaf if
it is quasi-isomorphic to a complex of the form

O�(−1)⊕c −→ O⊕a
� −→ O�(1)⊕c

such that Lj∗C• is a sheaf object, where j : � ↪→ � is the inclusion. If the sheaf object
Lj∗C• on � is trivial, then C• is called of trivial splitting type. A framed perverse instanton
sheaf is the pair (C•, φ) consisting of a perverse instanton sheaf C• of trivial splitting
type and a framing φ : Lj∗C• ∼→ O⊕r

� .
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We point out that perverse instanton sheaves may fail to be perverse sheaves. In
fact, if X is a datum in the ADHM variety then E•

X is, by construction, a perverse
instanton sheaf, but if X is degenerate then H0(E•

X ) is not torsion free, in particular E•
X

is not a perverse sheaf, and we have seen in Remark 3.2 examples of degenerate data.
On the other hand, if for instance Pic(�) = � then one may adjust the proof of [20,
Proposition 2.7] to conclude that perverse instanton sheaves on � are always perverse
sheaves.

PROPOSITION 5.7. Let � be such that Pic(�) = �, then a complex is a perverse
instanton sheaf of trivial splitting type on � if and only if it is quasi-isomorphic to an
ADHM one.

Proof. Given a complex C• ∈ Db(�), first we assure that H0(C•) is torsion free
using the fact that Pic(�) = � and adjusting [20, Proposition 2.7]. Then we apply
verbatim the proof of Proposition 3.6 without obliging the complex to be a monad. �

5.5. Functorial point of view. The correspondence indicated in the previous
proposition can also be described in terms of a functor. First, we construct the ADHM
category over � which we denote A(�). The objects of A(�) are triples (V, W, X) with
X ∈ V�(W, V ), and a morphism

ρ : (V, W, X) −→ (V ′, W ′, X ′)

consists of two linear maps f : V → V ′ and g : W → W ′ such that if we write

X = (Xi)6
i=1 ∈ Hom(V, V ⊗ H�)⊕4 ⊕ Hom(W, V ⊗ H�) ⊕ Hom(V, W ⊗ H�)

X ′ = (X ′
i )

6
i=1 ∈ Hom(V ′, V ′ ⊗ H�)⊕4 ⊕ Hom(W ′, V ′ ⊗ H�) ⊕ Hom(V ′, W ′ ⊗ H�)

then the diagrams

V
Xi ��

f

��

V ⊗ H�

f ⊗1

��
V ′ X ′

i �� V ′ ⊗ H�

are commutative for 1 ≤ i ≤ 4, and the diagrams

W
X5 ��

g

��

V ⊗ H�

f ⊗1

��
W ′ X ′

5 �� V ′ ⊗ H�

V
X6 ��

f

��

W ⊗ H�

g⊗1

��
V ′ X ′

6 �� W ′ ⊗ H�

are commutative as well.
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Note that A(�2) is the category of representations of the ADHM quiver

•
v

j
��

a �� b
��

•
w

i

��

with the relation ab − ba + ij = 0. It is also possible to use the notion of twisted
representations of quivers in the sense [15, 27] to describe A(�) for a general �. Note
also that A(�) is abelian. We denote by S(�) the full subcategory of A(�) whose objects
are globally weak stable if regarded as ADHM data.

On the other hand, let PI(�) denote the full subcategory of Db(�) whose objects
are perverse instanton sheaves of trivial splitting type; let also I(�) denote the full
subcategory of Coh(�) consisting of instanton sheaves of trivial splitting type. In the
sequel we want to establish a relation between the categories A(�) and PI(�). In order
to do so, we start by a lemma.

LEMMA 5.8. Let � be such that H1(O�(−i)) = 0 for i = 1, 2. Let also φ : E• → F•

be a morphism of ADHM complexes over �. Then the following hold:
(i) if H0(F•) = H1(φ) = 0 then φ = 0;

(ii) if H1(E•) = H0(φ) = 0 then φ = 0;

Proof. First, write

E• : O�(−1)⊕c α−→ O⊕a
�

β−→ O�(1)⊕c

F• : O�(−1)⊕c′ α′−→ O⊕a′
�

β ′
−→ O�(1)⊕c′

and break down φ into the following three morphisms between exact sequences

0 �� O�(−1)⊕c α ��

φ−1

��

ker β ��

φ0|ker β

��

H0(E•)

H0(φ)
��

�� 0 (I)

0 �� O�(−1)⊕c′ α′
�� ker β ′ �� H0(F•) �� 0 (II)

(24)

0 �� ker β ��

φ0|ker β

��

O⊕a
�

β ��

φ0

��

im β

φ1|im β

��

�� 0 (I)

0 �� ker β ′ �� O⊕a′
�

β ′
�� im β ′ �� 0 (II)

(25)

0 �� im β ��

φ1|im β

��

O�(1)⊕c ��

φ1

��

H1(E•)

H1(φ)
��

�� 0 (I)

0 �� im β ′ �� O�(1)⊕c′ �� H1(F•) �� 0. (II)

(26)
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Applying Hom(O�(1)⊕c, •) to (26.II) one gets the exact sequence

Hom(O(1)⊕c, im β ′) −→ Hom(O(1)⊕c,O(1)⊕c′
)

γ−→ Hom(O(1)⊕c,H1(F•)) (27)

but we have

Hom(O�(1)⊕c, im β ′) � H0(im β ′(−1))⊕c � H1(ker β ′(−1))⊕c (28)

where the second isomorphism can be deduced from (25.II) since H1(O�(−1)) = 0 by
hypothesis. On the other hand, Hom(O⊕a

� , •) applied to (25.II) yields

Hom(O⊕a
� , ker β ′) −→ Hom(O⊕a

� ,O⊕a′
� )

δ−→ Hom(O⊕c
� , im β ′) (29)

but we also have

Hom(O⊕a
� , ker β ′) � H0(ker β ′)⊕a. (30)

Now assume H0(F•) = 0. Then ker β ′ � O�(−1) owing to (24.II). It implies first,
by (28), that Hom(O�(1)⊕c, im β ′) = 0 since H1(O�(−2)) = 0 by hypothesis, so γ is
injective by (27). It also implies, by (30), that Hom(O⊕a

� , ker β ′) = 0, so δ is injective
by (29). Assume also H1(φ) = 0. Then γ (φ1) = 0 so φ1 = 0 because γ is injective.
Thus γ (φ1)|im β = 0, so δ(φ0) = 0 and hence φ0 = 0 because δ is injective. In particular,
φ0|ker β = 0 which implies that φ−1 = 0 since α and α′ are injective. Therefore φ = 0
and (i) is proved.

To prove (ii), apply Hom(ker β, •) to (24.II) and get the exact sequence

Hom(ker β,O�(−1)⊕c′
) −→ Hom(ker β, ker β ′)

μ−→ Hom(ker β,H0(F•)) (31)

but we have

Hom(ker β,O�(−1)⊕c′
) � H0((ker β)∨(−1))⊕c′

. (32)

On the other hand, Hom(•,O⊕a′
� ) applied to (25.I) yields

Hom(im β,O⊕a′
� ) → Hom(O⊕a

� ,O⊕a′
� )

ν−→ Hom(ker β,O⊕a′
� ) (33)

but we also have

Hom(im β,O⊕a′
� ) � H0((im β)∨)⊕a′

. (34)

Now assume H1(E•) = 0. Then im β = O�(1)⊕c. It implies first, by (34), that
Hom(im β,O⊕a′

� ) = 0 so ν is injective by (33). It also implies, dualising (25.I)
and tensorising it by O�(−1), that H0((ker β)∨(−1)) = 0, so Hom(ker β,O�(−1)⊕c′

)
vanishes by (32) and μ is injective by (31). Assume alsoH0(φ) = 0. Then μ(φ0|ker β) = 0
so φ0|ker β = 0 because μ is injective. So φ−1 = ν(φ0) = 0. Hence φ0 = 0 because ν is
injective. But if φ0 = 0 so is φ1|im β which implies φ1 = 0 with our assumption. Therefore
φ = 0 and (ii) is proved. �

Now we state the close relation between A(�) and PI(�), as mentioned above.
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THEOREM 5.9. The following hold:
(i) The assignment

	 : Ob(A(�)) −→ Ob(PI(�))
(V, W, X) 
−→ E•

X

defines a functor between the ADHM category and the category of perverse
instantons sheaves of trivial splitting type.
If � is such that Pic(�) = �, then:

(ii) 	 is essentially surjective.
If � is either �2 or an ACM variety of dimension at least 3, it also holds:

(iii) 	 is faithfull;

Proof. To prove (i), it is enough to define how the assignment X 
→ E•
X acts

on morphisms. So let ρ = {f, g} be a morphism between two triples (V, W, X) and
(V ′, W ′, X ′); thus f : V → V ′ and g : W → W ′. One then has the following morphism
of complexes φ : E•

X → E•
X ′ defined by

V ′ ⊗ O�(−1) α′
��

f ⊗1
��

(V ′ ⊕ V ′ ⊕ W ′) ⊗ O�

β ′
��

(f ⊕f ⊕g)⊗1
��

V ′ ⊗ O�(1)

f ⊗1
��

V ⊗ O�(−1) α �� (V ⊕ V ⊕ W ) ⊗ O�

β �� V ⊗ O�(1)

.

So one defines 	(ρ) to be the roof E•
X

1← E•
X

φ→ E•
X′ and (i) is proved.

The assertion (ii) is nothing but Proposition 5.7 within the categorical framework
just introduced. The proof of (iii) reduces to verifying the following statement: if a
morphism φ : E• → F• between ADHM complexes vanish in all cohomologies then φ

is the zero morphism. But it suffices to prove this when either H0(E•) = H0(F•) = 0 or
H1(E•) = H1(F•) = 0 since PI(�) splits into a torsion pair defined precisely by these
two properties. Then one applies Lemma 5.8. �

REMARK 5.10. We do not know whether the functor 	 : A(�) → PI(�, �) is also
full in the case of � being either �2 or an ACM variety of dimension at least 3. It is
not difficult to see that HomK(�)(E•

X1
, E•

X2
) is indeed isomorphic to HomA(�)(X1, X2);

here, K(�) denotes the homotopy category. However, we do not know how to check
whether the natural map

HomK(�)(E•
X1

, E•
X2

) → HomDb(�)(E
•
X1

, E•
X2

)

is also surjective in general. This fact holds when both X1 and X2 are globally stable.

5.6. Perverse instanton sheaves on �n. In this subsection we characterise the case
of projective spaces by means of vanishing of some hypercohomologies. In order to
achieve our goal, first we prove the following version of Beilinson’s Theorem.

THEOREM 5.11. Let C• be a perverse sheaf on �n, then there exists a spectral sequence



−p,q
r with E1-term of the form



−p,q
1 = �q(C•(p)) ⊗ �

p
�n (p) (35)
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for which the degree zero converges to


i=0
∞ = C• (36)

where i = q − p and p ≥ 0.

Proof. Let C• be a perverse sheaf on �n. The proof is a generalisation of the
Beilinson’s Theorem [38, Chapter II, Section 3] to the case of sheaf complexes.

The Koszul resolution of the sheaf associated to the diagonal � ∼= �n in �n × �n

is given by the complex K̃• defined by

K̃−j := O�n (−j) � �
j
�n (j)

dj
K̃

: O�n (−j) � �
j
�n (j) −→ O�n (−j + 1) � �

j−1
�n (j − 1).

Let p1 and p2 be the two natural projections from �n × �n to �n. Twisting the resolution
above by p∗

1(C•) one obtain the double complex K•• given by

Ki,−j := Ci(−j) � �
j
�n (j)

dj
K : Ci(−j) � �

j
�n (j) −→ Ci(−j + 1) � �

j−1
�n (j − 1)

di
C : Ci(−j) � �

j
�n (j) −→ Ci+1(−j) � �

j
�n (j).

Let us denote by (T•(K), DK ) the total complex associated to the double complex K••.
Then it is easy to see that the complexes T•(K) and C•|� are quasi-isomorphic, i.e.,
[T•(K)] ∼= [C•|�] in Db(�n × �n).

Let L••• be a triple complex such that for each term Ki,−j the complex

0 −→ Ki,−j −→ Li,−j,1 D1−→ Li,−j,2 D2−→ · · · Li,−j,k Dk−→ · · ·
is an injective resolution, i.e., the complex L••• can be seen as a generalised Cartan-
Eilemberg resolution in the category of bounded complexes Komb(�n × �n), where
Li,−j,0 = Ki,−j. The k-th hyperdirect images of the double complex K••, with respect to
the projection p2, can then be defined as in [18] by

Rkp2∗(K••) := Hk
D(p2∗(L•••)).

Then one has two spectral sequences with E2−terms



p,q
2 = Hp

dK
(Rqp2∗(K••))

′
p,q
2 = Rpp2∗(Hq

dK
(K••)).

Let us compute the ′
2−term. Since K•• is a resolution of p∗
1(C•)|�, then one has

Hq
dK

(K••) =
{

p∗
1(C•)|� for q = 0

0 otherwise.

It follows that

′
p,q
2 =

{
Rpp2∗(p∗

1(C•)|�) for q = 0
0 otherwise
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and hence

′
p,q
2 =

{
C• for p = q = 0
0 otherwise.

That is, the spectral sequence above degenerates at second step and converges to

′
p,q
∞ =

{
C• for p = q = 0
0 otherwise.

The E1−term of the other spectral sequence is given by



−p,q
1 = Rqp2∗(p∗

1(K•,−p))

= Rqp2∗(p∗
1(C•(−p) � �

p
�n (p)))

= Rqp2∗(p∗
1(C•(−p)) ⊗ �

p
�n (p))

= �q(C•(−p)) ⊗ �
p
�n (p)

where in the last step above we just used the projection formula. �
Twisting the Koszul resolution by p∗

2(C•) and following the same reasoning, one
also shows the following

THEOREM 5.12. Let C• be a perverse sheaf on �n, then there exists a spectral sequence



−p,q
r with E1-term of the form



−p,q
1 = �q(C• ⊗ �

p
�n (p)) ⊗ O�n (−p) (37)

for which the degree zero converges to


i=0
∞ = C• (38)

where i = q − p and p ≥ 0.

We are finally ready to establish the cohomological characterisation of perverse
instanton sheaves on �n promised above.

THEOREM 5.13. Let C• be a perverse sheaf on �n. Consider the following statements:
(1) C• is a perverse instanton sheaf;
(2) C• satisfies the following conditions:

(i) for n ≥ 2; �0(C•(−1)) = �n(C•(−n)) = 0;
(ii) for n ≥ 3; �1(C•(−2)) = �n−1(C•(1 − n)) = 0;

(iii) for n ≥ 4; �p(C•(k)) = 0 ∀k, for 2 ≤ p ≤ n − 2.
Then (2) implies (1). Moreover if C• is a perverse instanton sheaf of trivial splitting type,
then the two statements are equivalent.

Proof. (2) ⇒ (1). If C• satisfies (2) we claim that it is quasi-isomorphic to the
following complex

�1(C• ⊗ �2
�n (1)) ⊗ O�n (−1)

α−→ �1(C• ⊗ �1
�n ) ⊗ O�n

β−→ �1(C•(−1)) ⊗ O�n (1).

Indeed, the proof follows [25, Theorem 3]. Since hypercohomology is
cohomological functor [18] it carries all the properties of the usual sheaf cohomology
on short exact sequences (of complexes or of sheaves considered as complexes
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concentrated in degree zero) and their restriction to subschemes: given a hyperplane
L ⊂ �n, consider the restriction sequence

0 −→ C•(−1) −→ C• −→ C•|L −→ 0

Clearly, �0(C•(−1)) = 0 implies that �0(C•(k)) = 0 for k ≤ −1, while
�n(C•(−n)) = 0 forces �0(C•(k)) = 0 for k ≥ −n. Since

�0(C•(−1)) = �1(C•(−2)) = 0,

it follows that �0(C•(−1)|L) = 0, hence �0(C•(k)|L) = 0 for k ≤ −1. So we have the
sequence

0 −→ �1(C•(k − 1)) −→ �1(C•(k))

for k ≤ −2, thus by induction �1(C•(k)) = 0 for k ≤ −2.
Since �n(C•(−n)) = �n−1(C•(1 − n)) = 0, it follows that �n−1(C•(1 − n)|L) = 0,

hence by further restriction �n−1(C•(k)|L) = 0 for k ≥ 1 − n. So we have the sequence

�n−1(C•(k − 1)) −→ �n−1(C•(k)) −→ 0

for k ≥ 1 − n, thus by induction �n−1(C•(k)) = 0 for k ≥ 1 − n.
We will show that �q(C•(−1) ⊗ �

p
�n (p)) = 0 for q = 1, p ≥ 3. This follows from

repeated use of the exact sequence

�q(C•(k))⊕m → �q(C•(k + 1) ⊗ �
p−1
�n (p − 1)) → �q(C•(k) ⊗ �

p
�n (p))

→ �q+1(C•(k))⊕m

associated with the Euler sequence for p−forms on �n twisted by C•(k), [38, Chapter
I,Section 1]:

0 −→ C•(−1) ⊗ �
p
�n (p) −→ C•(k)⊕m −→ C•(−1) ⊗ �

p−1
�n (p) −→ 0.

where q = 0, . . . , n, p = 1, . . . , n, and m =
(

n + 1
p

)
. It is easy to see that

�0(C•(k) ⊗ �
p
�n (p)) = 0 for all p and k ≤ −1;

�q(C•(−1) ⊗ �n
�n (n)) = �q(C•(−2)) = 0 for all q;

�q(C•(−1)) = 0 for all q 
= 1;

�n(C•(k) ⊗ �
p
�n (p)) = 0 for all p and k ≥ −n.

Setting q = n − 1, we also obtain

�n−1(C•(k) ⊗ �
p
�n (p)) = 0 for p ≤ n − 1 and k ≥ −n − 1,

and so on. The final step to get the claim is a matter of applying the vanishing of the
hypercohomologies to Theorem 5.12 above.

Now suppose C• is an instanton perverse sheaf of trivial splitting type on a line �

in �n. By definition, C• is quasi-isomorphic to a complex of the form

O�n (−1)⊕c α−→ O⊕a
�n

β−→ O�n (1)⊕c. (39)
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Then we have

H0(C•) � ker β/im α

H1(C•) � coker β.

We can break down (39) into three short exact sequences

0 −→ ker β −→ O⊕a
�n

β−→ im β −→ 0 (40)

0 −→ im β −→ O�n (1)⊕c −→ H1(C•) −→ 0 (41)

0 −→ O�n (−1)⊕c α−→ ker β −→ H0(C•) −→ 0. (42)

Twisting (40)–(42) by O�n (k), with the right k, we get

for n ≥ 2, H0(H0(C•)(−1)) � H0(ker β(−1)) = 0

for n ≥ 3, Hn(ker β(−n)) � Hn−1(im β(−n)) � Hn−2(H1(C•)(−n))

for n ≥ 3, H1(H0(C•)(−2)) � H1(ker β(−2)) � H0(im β(−2)) = 0

for n ≥ 4, Hn−1(H0(C•)(1 − n)) � Hn−1(ker β(1 − n)) � Hn−2(im β(1 − n))

� Hn−3(H1(C•)(1 − n))

for n ≥ 4, Hp(H0(C•)(k)) � Hp(ker β(k)) � Hp−1(im β(k)), ∀k, for 2 ≤ p ≤ n − 2

Now choose a flag of linear subspaces of �n as in the following

� ⊂ L2 ⊂ · · · Ln−1 ⊂ �n,

where the index of each space is its dimension. By successive restrictions

0 −→ C•|Li (k − 1) −→ C•|Li (k) −→ C•|Li−1 (k) −→ 0,

one reaches the complex C•|�(k), on the line l, which is quasi-isomorphic to O⊕r
� (k)

by the trivial splitting type hypothesis. Applying the same reasoning in the proof
of [35, Lemma 2.4], one obtains Hn(H0(C•)(−n)) = 0. Now the rest of the proof is
a matter of using the vanishing properties above to the spectral sequence defining
hypercohomology:

Let (C•, d) be a complex of sheaves and (C••, D) the Cartan-Eilemberg complex
obtained by taking the C̆ech resolution of every term. Let D = d + δ be the total
differential, where δ is the C̆ech differential. The defining spectral sequences for the
hypercohomology of a complex C•, i.e.,

Ep,q
2 = Hp

d(Hq
δ(C••))

′Ep,q
2 = Hp

δ(Hq
d(C••))
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converge to Ep,q
∞ = �p+q(C•). For the complex (C•(k), d), one can easily compute the

E2−term of the spectral sequence ′Ep,q, given by

0 0 0 . . . 0 0

H0
δ(Q)

d2

		������������� H1
δ(Q)

d2



������������� H2
δ(Q) . . .

d2

		�������������� 0 0

H0
δ(F) H1

δ(F) H2
δ(F) . . . Hn−1

δ (F) Hn
δ(F)

0 0 0 . . . 0 0

where we put H0
d(C••(k)) := F and H1

d(C••(k)) := Q. The differential of this term is
d2 : ′Ep,q

2 → ′Ep+2,q−1
2 , vanishing everywhere but for d2 : ′Ep,1

2 → ′Ep+2,0
2 , as in the

diagram above. Since the cohomology Hdr (Er) is canonically isomorphic to Er+1 then
the third term of the spectral E3 is of the following form:

0 0 . . . 0 0
E0,0

3 E1,0
3 . . . En−1,0

3 En,0
3

0 0 . . . 0 0

where the terms are given by

Ep,0
3 =

⎧⎪⎨
⎪⎩

H0
δ(F) p = 0

H1
δ(F) p = 1

Hp
δ (F)

Hp−2
δ (Q)

p ≥ 2

Since the differential d3 is identically zero, then the spectral sequence degenerate. It
follows that

�p(C•) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H0
δ(F) p = 0

H1
δ(F) p = 1

Hp
δ (F)

Hp−2
δ (Q)

p ≥ 2

and we are done. �
Following [20, Definition 5.1], we say that a perverse instanton sheaf on � is stable

if it comes from a stable ADHM data over �. In this sense, every instanton sheaf
is stable as a perverse instanton sheaf. It also follows that the GIT quotient Mst

� is
a (fine) moduli space of stable framed perverse instanton sheaves on �. However, it
would be interesting to have an intrinsic definition of stability in the derived category
for perverse instanton sheaves that does not refer to the underlying ADHM data.
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7. L. Costa and R. M. Miró-Roig, Monads and instanton bundles on smooth
hyperquadrics, Math. Nachr. 282 (2009), 169–179.

8. L. Costa and G. Ottaviani, Nondegenerate multidimensional matrices and instanton
bundles, Trans. Am. Math. Soc. 355 (2002), 49–55.

9. D.-E. Diaconescu, Moduli of ADHM sheaves and local Donaldson-Thomas theory,
Preprint math/0801.0820.

10. S. Donaldson, Instantons and geometric invariant theory, Commun. Math. Phys. 93
(1984), 453–460.

11. G. Floystad, Monads on projective spaces, Commun. Algebra 28 (2000), 5503–5516.
12. I. B. Frenkel and M. Jardim, Complex ADHM equations, and sheaves on �3, J. Algebra

319 (2008), 2913–2937.
13. Yu. Manin Gelfand, Methods of homological algebra.
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