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AN OSCILLATION RESULT 
FOR SINGULAR NEUTRAL EQUATIONS 

ISTVÂN GYÔRI AND JANOS TURI 

ABSTRACT. In this paper, extending the results in [ 1 ], we establish a necessary and 
sufficient condition for oscillation in a large class of singular (i.e., the difference oper
ator is nonatomic) neutral equations. 

1. Introduction. Oscillation for various classes of neutral functional differential 
equations has been studied very extensively in recent years (see e.g., the monograph [8] 
and the references therein). We also mention the recent articles [2] and [ 17] for equations 
with distributed delays. In all of the above papers the standard assumption is that the dif
ference operator in the neutral equation has an atom at zero. Here we relax the atomicity 
condition and consider a class of scalar singular (i.e., the difference operator is nonatomic 
at zero) neutral functional differential equations (SNFDE's). Such equations arise for ex
ample in aeroelastic modeling and include many singular integro-differential equations. 
Motivated by aeroelastic control applications, the questions of well-posed state-space 
formulations, approximation and stabilization of systems governed by SNFDEs have re
ceived considerable attention in recent years (see e.g., [4], [5], [6], [7], [10], [11], [12], 
[13], [14] and [15]). 

Another interesting question concerning SNFDEs (since they have been proposed to 
model aeroelastic flutter) is to provide a characterization of oscillatory, nonoscillatory 
behavior of their solutions. 

In this paper we develop an oscillation theory for SNFDEs. In particular, extending 
the results in [1], we give a necessary and sufficient condition for oscillation for a large 
class of SNFDEs via their characteristic equations. 

In Section 2, for the convenience of the reader, we summarize some results concerning 
the well-posedness of SNFDEs and give conditions (in terms of the equation in hand) 
guaranteeing exponential boundedness of their solutions. In Section 3 we state and prove 
our oscillation theorem. 

2. Preliminaries. In this section we give sufficient conditions guaranteeing expo
nential boundedness of the solution of the scalar linear neutral equation 

(2.1) -Dxt+Lxt = 0, t>0, 
dt 
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OSCILLATION IN SINGULAR EQUATIONS 55 

with initial data 

(2.2) xo(s) = Ms), se[-r,0], 

where r is a positive constant, V;(-) denotes the initial function; xjj(') G C[—r, 0], JC, stands 
for a solution segment, i.e., xt(s) = x(t + s), s G [—r, 0], and the linear operators D and 
L are assumed to belong *B(C[—r, 0] ; R), where as usual ®(X ; y) denotes the space of 
bounded operators from the Banach space X to the Banach space Y. 

We shall assume that for ?/>(•)£ C[—r, 0] the operators D and L have the representa
tions 

(2.3) Z>0= f° xl)(s)dv(s) 

and 

(2.4) £ 0 = / ^(s)d^(s), 

where z/ and /i denote scalar valued functions of bounded variation. 

REMARK 2.1. It is well known (see e.g. [9]) that under the additional assumption that 
the linear operator D in (2.1) has an atom at s = 0 (i.e. //(•) in (2.3) is atomic at s = 0) 
the initial value problem (2.1)—(2.2) leads to a linear dynamical system on C[—r,0], or 
equivalently we have 

(2.5) xt = T{t)i), t>0, 

where the family, {T(t)}t>o, is a strongly continuous (or Co) semigroup of bounded linear 
operators, satisfying ||7T0|| < Me^ for some real constants, M > 1 and UJ. 

DEFINITION 2.2. The neutral-equation (2.1) is called singular if //(•) in (2.3) is 
nonatomic at s = 0. 

REMARK 2.3. Recall that D G *B([—r, 0]) is atomic at s = 0 if there exists a nonzero 
constant, a, such that for 7/(-) in (2.3) we can write 

(2. 6) i/(s) = ap(s) + i7(s), 

where 

1 - r < s < 0 
( 2 - 7 ) 

and //(•) is of bounded variation on [—r, 0] and such that 

(2.8) lim f \di7(s)\ = 0 . 

Then for i/;(-) G C[—r,0] we have the representation 

(2.9) DVX-) = aii)(0) + f Ms)di~(s). 
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56 I. GYORI AND J. TURI 

The "singular" or nonatomic case corresponds to a — 0 in (2.6). An example for 

SNFDE's is (2.1) with Z>0(-) = j°_r^{s)\s\~a ds, which has been studied quite exten

sively (see e.g. [5], [6], [11], [14]). 

In the remaining part of this section we develop sufficient conditions for the well-

posedness (on C) of certain classes of SNFDEs. In particular, we make the following 

assumption (see also [11], [13]): 

(H) There exists an integrable function g(-), such that dv(s) = g(s)ds for 

s G [—r, 0). Moreover, the function g(-) satisfies: 

(i) g > 0 on [—r, 0) and g(s) —> oo as s —» 0" 

(ii) g e Hlj-r,0) and g' > 0 on [ - r ,0 ) . 

REMARK 2.4. Hypothesis (H) is motivitated and satisfied by the "aeroelastic" kernel 

function 

k(s) = J\ - - , s e [ - r , 0 ) , 

where c is a positive constant (see e.g., [4], [6]). Note also that hypothesis (H) implies 

lim UJ / e"sg(s) ds — oo, 
uj—>oo J — r 

which guarantees weak atomicity of //(•) at zero (i.e., that 

/•0 

lim 
A—H-OO, XeR 

j eXsdv(s) oo, 

see also [14]). It was shown in [14] that weak atomicity of//(•) is necessary for the well-

posedness of the initial value problem (2.1)—(2.2) on C[—r, 0]. 

With assumption (H) the initial value problem (2.1 )—(2.2) can be rewritten as 

d 

~dt 
(2.11) X(S) = IIJ(S), se[-r,0]. 

(2.10) — / x(t + s)g(s) ds + I x(t + s)du(s) = 0, t>0 
dt J-r J-r 

For UJ G R+ we define the function y(-) by 

(2.12) y(t) = e^x(t), t > -r, 

and consider the neutral equation 

(2.13) — / ° e^{t+s)y(t + s)g(s) ds + [° ë*"s)y(t + s) dii(s) = 0, t > 0 
dt J-r " J-r 

(2.14) y(s) = e'^ipis) = ip(s), s e [~r,0]. 

Differentiation with respect to t and simplification by e^ in (2.13) provide a more con

venient form for (2.13)-(2.14), i.e. 

d r° r° r° 
(2.15) — / e^sy(t + s)g(s) ds + UJ e^sy(t + s)g(s) ds + / e^sy(t + s) d^(s) = 0, 

dtJ—r J-r J—r 

d_ 

~dt-
(2.16) y(s) = <p(s)9 se[-r,0]. 
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Clearly, initial value problems (2.10)—(2.11) and (2.15)—(2.16) are equivalent in the 

sense thatx(-) satisfies (2.10)—(2.11) if and only it satisfies (2.15)—(2.16). 

Define the linear operator A on 

£>(A) = \(f e C([ - r ,0] ) : (p G C([ - r ,0] ) and 

(2- 1 7 ) \ o « « } 

/ e*s <p(s)g(s) ds + uj e^s ip(s)g(s) ds + e^s <p(s) dp{s) = 0 

by 

(2.18) Aip = <P, tpe(D(A). 

For the sake of completeness we include the following well-posedness result which 

is a slight modification of related developments in [7], [11] and [13]. 

THEOREM 2.5. Pick u G R+ such that 

(2. 19) CJ | ° e^gis) ds + j° e^s dp(s) > k > 0, 

assume that (H) is satisfied, and consider the initial value problem (2.15)-(2.16). Then 

the unique solution to (2.15)-(2.16), y(t), t > —r, can be represented as 

(2.20) y(t + s)= (S(t)ip)(s), t>0, se [-r,0], 

{S(t)}t>o is a Co-semigroup of bounded linear operators on the Banach-space C[—r,0] 

whose infinitesimal operator, A, is given by (2J7)-(2.18). 

PROOF. We establish that the operator A defined by (2.17)-(2.18) satisfies the fol

lowing: 

(i) A is dissipative on C[—r, 0], i.e., 

(2.21) \\(XI-A)\\ > A(^), for ^ G £>(.#), A > 0, AG/? 

(ii) For A > 0, A G R the equation 

(2.22) ( A / - J ? V = £ 

is solvable for any £(•) G C[—r, 0] with solution ip(-) G (D(A). 

(iii) <D(A) is dense in C[-r, 0]. 

Then by the Lumer-Phillips theorem ([16]) A generates a contraction semigroup, 

{S(t)}t>o, on C[—r, 0], i.e., the abstract Cauchy problem 

(2.23) l(yt) = Slyt, 
dt 

with the initial data 

(2.24) yoO) = <?(•) 
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58 I. GYORI AND J. TURI 

is well-posed and via the equivalence between the solutions of (2.15)—(2.16) and (2.23)-

(2.24) (see [6], [7]) the claim of the theorem follows. 

According to the above comments we show the validity of (i), (ii) and (iii) now to 

complete the proof. 

(i) DISSIPATIVENESS. The only nontrivial case is when | |^ | | = supvG[_r()| \f(s)\ = 

| f(0)\ T̂  0. Without loss of generality we can assume f(0) > 0. Integrating by parts and 

using hypothesis (H) yield that 

f^sf(s)g(s)ds = j\^~{f(s)f(Q))g{s)ds 

= -e-"r(v(-r) - f(0))g(-r) - [^(fis) - f(Q))g(s)ds 

- u) f_f e^s f(s)g(s) ds + < (̂0) (a; f^ <T'sg(s) ds). 

Substituting this last expression into the domain condition, i.e. into (2.17), we get 

1^ e^f(s)g(s) ds + LU J f e^ip(s)g(s) ds + j ^ e^s f(s) d^i(s) 

(2-25) = e-^ifiO) - f(-r))g{~r) + f/s(f{Q) ~ f(s))g(s)ds 

+ <p(0) (<j f_r e^sg(s) ds) + f_r e^ipis) d^s) = 0. 

Hypothesis (H) and the selection of LO imply that the left hand side of (2.25) is positive 

which is a contradiction. Therefore f <G (0(21), \\f\\ = f(0) > 0 is not possible. 

If if e <D(A), \\f\\ = \if(s)\,s G ( - r , 0 ) , t h e n £ ( s ) = 0 and \\Xf - f\\ > \Xf(s)\ = 

X\\if\\ for A > 0. The case \\f\\ = \4>(—r)\ is also trivial because then <f(—r)f(—r) < 0. 

Dissipativeness of A follows. 

(ii) UNIQUE SOLVABILITY. Consider for £ e C[—r, 0] the equation 

(2.26) (XI - %)if = Xf - f = £. 

The solution of (2.26) is given by 

(2.27) f(s) = eXsif(0) + f eMsu)i{u) du, 

where f(0) is to be determined. Substituting (2.27) into the domain condition we have 

Ç e^ (XeXsV(0) - £(s) + f eMs-u)£(u)du\g(s)ds 

+ LV | ° e^s(eXsf(0) + J'0eMs-u)£(u)du)g(s)ds 

+ f e^ (eXsif(Q) + J'0 eX(s~-ll)i{u) du) dfi(s) = 0, 

which can be solved for f(0) for À > 0 because the selection of uo and hypothesis (H) 

guarantee that 

(a; + A) f eiuJ+X)sg(s) ds + f eu+X)s dfi(s) > k > 0. 
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(iii) DENSITY OF £>(J3). Following [11], for ip e C1 [-r, 0] we define the sequence 
Wn}, Vn £ Cl[—r,Q], n — 1,2,... as follows 

V(s) se[-r,-1-] 
^(s) + cnUs+L)2 se[-l-,0l 

where 
(2.28) 

t r e"s<p(s)g(s) ds + ujf_r e^ip(s)g(s) ds + J°r e^y(s) dfi(s) 
Cn nf, e-Hs+±)g(s)ds+fjujf_, e^(s + ]~)2g(s) ds + § J° , ^ ( s + I ^ r f ^ ) " 

Note that hypothesis (H) and the selection of UJ guarantee that the denominator of (2.28) 
is not equal to zero. Then (p„(-) G (D(A). Furthermore, 

ii M \Cn\ n, 

\\(f — (fn\\ = > 0, as n —> oo , 

2n 

because 
rO / h . r0 1 / 1 \ 

i ds 
2n-n- j°L e^s(s+-^)g(s)ds > 2n2 J°± e~*—g(- — 

— -e 2ng[ 1—> oo, as n—> oo. 
2 6V In) 

Using the fact that C1 [-r, 0] is dense in C[-r, 0], the density of (D(Jl) in C[-r, 0] fol
lows. The proof of the theorem is complete. 

We conclude this section with the following result on the solutions of the initial value 
problem (2.10)-(2.11). 

COROLLARY 2.6. Let x(t), t > -r, be the unique solution of (2A0)-(2A1). Then 
there exist constants M and a such that 

(2.29) \x(t)\<Mea\ t>0. 

PROOF. By Theorem 2.5 we have 

|40 | - \e^y(t)\ < <r* 

<e^\\S(t)\\\W\\ 

<Me{u)+Q)t\\e~u'\l)(' 

< Me^^e^W 

= Mea\ 

where \\S(t)\\ < Me?\ M = Me^Hll and a = LU + û. 
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3. Oscillation in singular NFDEs. Consider the neutral functional-differential 
equation with distributed delays 

(3.1) — (jx{t + s) di'(s)) + J x(t + s) dfi(s) = 0, t > 0 

where r > 0 and o > 0 are constants and the functions //: [—r, 0] —̂  7? and //: [—cr, 0] —> 
R are of bounded variation. 

Without loss of generality we can assume that \i and // are defined on R and are nor
malized in the following sense: 

/I(M) = v(u) = 0 for u > 0 

/X(M) = Li(-cr), u < —a and //(«) = ?/(— r), w < —r, 

where /i() and //(•) are left-hand continuous functions. 

REMARK 3.1. The class of SNFDEs we have considered in the previous section 
represents a subset of the problems investigated the remaining part of this paper, i.e., 
when //(•) in (3.1) satisfies hypothesis (H) and 

(3.2) r = max {r,cr}. 

DEFINITION 3.2. A function*: [—r, oo) —* R is a solution of (3.1 ) if x(-) is continuous 
on [—r, oo), J'°rx(r + s)di/(s) is differentiable and *(•) satisfies (3.1) on [0, oo). 

We shall assume throughout this section that: 

(A) Every eventually positive/negative solution, x(-): [—r, oo) —> 7?, of (3.1 ) 
is exponentially bounded, i.e., satisfies an estimate of the type (2.29) (see 
also (3.4) below). 

REMARK 3.3. The solutions of the class of SNFDEs discussed in Section 2 satisfy 
assumption (A). On the other hand, since hypothesis (H) is only a sufficient condition for 
exponential boundedness, it is not known at this time what the largest class of SNFDEs 
is for which assumption (A) holds. 

In the sequel we shall use the (so called) characteristic equation associated with (3.1), 
i.e., 

(3. 3) A j eXs dv(s) + j'° eXs d^i(s) = 0. 

Note that if Ao is a real root of (3.3), then x(t) — eX{)t is a nonoscillatory, exponentially 
bounded solution of (3.1 ). (In Theorem 3.6 below we show that if (3.1 ) has an exponen
tially bounded nonosciallatory solution, then (3.3) has a real root.) 

DEFINITION 3.4. We say a function x: [—r, oo) —> R is oscillatory if for all t > 0 
there exists a t\ > /such that x(t\) = 0. Otherwise x(t) is called nonoscillatory. 

REMARK 3.5. Since (3.1) is autonomous one can easily verify that if x: [—r, oo) —> R 
is a solution of (3.1 ), then for all fixed c > 0 and / = 0, 1, (— 1 )lx(t + c) is also a solution 
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of (3.1). Thus it can be easily seen that (3.1) has a nonoscillatory solution if and only if 

it has a positive solution on [—r, oo). Accordingly, after a possible translation, we can 

modify (2.29) as follows: x: [—r, oo) —> R is an exponentially bounded positive solution 

of (3.1) if there exist constants M = M{x) > 0 and a = a(x) E R such that 

(3.4) x(t) < Mea\ t > -r. 

THEOREM 3.6. Suppose that assumption (A) is satisfied. Then the following two 

statements are equivalent: 

(i) The neutral equation (3.1 ) has a nonoscillatory solution, 

(ii) The characteristic equation (3.3) has a real root. 

To prove this theorem we need the following lemma which is related to the Laplace-

transform 
/•OO 

(3.5) X ^ = l e~Stx^dt 

for an exponentially bounded solutionx(t) of (3.1 ). 

LEMMA 3.7. If x: [—r, oo) —> R is an exponentially bounded solution of (3.1), then 

the spectral abscissa 6, 

(3.6) 6 = inf{Res : X(s) exists} 

satisfies S G (—oo, oo), and for all Res > 5 one has 

(3.7) X(s)F(s) = Q(s), 

where F(s) is defined as follows: 

(3. 8) F(s) = s f° esu dv(u) + Ç esu d\i(u) 

and 

(3.9) 
OC? ) = j\(u)dis(u) - s fjyfe es{d~u)x(u)du} dv(B) 

Œ-A0-") x(u)du) du(0). 

PROOF. Since x(t) is an exponentially bounded solution, there exist M = M(x) > 0 

and a = a(x) G R such that |JC(0| < Meat, t > -r. It follows that 

(3.10) 

and similarly, 

(3.11) 

f x(t + u)dv(u)\ < J° Mea(t+U)d\i/(u)\ 

M]e
a t> -r. 

/'° x(t + u)dii(u)\ < f° Meait+U)d\fi(u)\ 
J—a I J—a 

<M2e
a\ t>-r, 
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where M, = M J° r e
au d\v(u)\ and M2 = M J°a ^ d|/x(w)|. 

Inequalities (3.10)—(3.11) imply the existence of the Laplace transforms 

and 

Moreover, we have 

d 

j™e~stU x(t + u)dii{u)\dt. 

I°° e v / y ( / ° x(t + u) dv(u)) dt = - j x{u)dv{u) +s j°° (e~st J x(t + u) dv{u)\ dt 

= s j ( j'°° e~stx(t + u) dt) dv(u) - j x(u) dv(u) 

= s f (f°° e-s{x'-u)x(v)dv) dv(u) - Ç x(u)dv(u) 

= s t (f es{v~u)x(v)dv)dHu) 

/ eslt dv(u) I estx(v) dv - / x(u) dv. 

ai: 

+ s 

On the other hand, 

j°°(e~st j x(t + u)df.i(u)\ dt= j (l°° e~stx(t + u) dt) dji(u) 

s(v^l)x{v)dv\dii{u) 

= f n" e-s{v-u)x(v)dv) dii(u) 

+ / esu dfj(u) / e~stx(v)dv. 
J—a JO 

Summarizing the above relations, from equation (3.1) we have that (3.7) is valid for 
Res > a. 

Now, we show that (3.7) is valid for all Res > 6, where ë = S(x) is defined in (3.6). 
First, it can be seen easily that the functions F(s) and O(s) are analytic in the whole 
complex plane. On the other hand, X(s) is analytic for all Res > 6 and (3.7) is satisfied 
for all Res > a. Thus it is obvious, that (3.7) is satisfied for all Res > 6. The proof of 
the lemma is complete. 

PROOF OF THEOREM 3.6. (ii) => (i) is trivial. 

(i) => (ii) is proved indirectly, that is, for the sake of contradiction we assume that 
equation (3.1) has a non-oscillatory solution, say x(t), and at the same time F(s) ^ 0 
for all real s. Since equation (3.1) is autonomous and homogeneous we can (and will) 
assume that x(t) is exponentially bounded on [—r, oo). Thus by Lemma 3.7, we obtain 
that the Laplace-transform X(s) of x(t) satisfies (3.7) for all Res > <5, where the spectral 
abscissae of x(t) is defined in (3.6). 
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Now we show that X(s) exists for all real s, that is 6 = — oo. Otherwise 6 > —oo and 
by Theorem 5b on page 58 in [ 18] we have that 6 is a singularity point of X(s). This means 
that there is no analytic extension of X(s) for any neighborhood on <5. But the function 
F(s) does not have real roots and hence F(6) ^ 0. Thus there exists an E > 0 such that 
for all s such that \s — S\ < e the F(s) is not zero and hence j ^ - is analytic for all s with 
\s — 6\ < e. Moreover (3.7) yields 

Wa) = ^ 

for all s with Res > S and this means that X(s) has an analytic extension for a neighbor
hood of 6, contradicting the definition of 8. It follows that 5 = —oo. Consequently, (3.7) 
is valid for all real s since F(s) ^ 0 for s G R, we conclude that 

(3.12) x(s) = -^;9 seR. 
F(s) 

Using the definition of O(s) and F(s) we obtain the estimates: 

(3. 13) \F(s)\ < \s\ f_T \eslt\ d\v{u)\ + / ^ k'v"| £//i(M)| < to*l 

and 

\®{s)\ < £ ix(W)i d\^u)\+|J| £ ( £ I^-M )I d/i) £/|//(fl)i 

/K/0* i^~tf)iJw) d^(0)\ -KeM 

for all s, where A' and /3 are positive reals. By a result of Cartwright (see Theorem 3.3.1 
on page 43 in [3]), for e > 0, the function F(s) satisfies the relation 

(3.15) limsup(min|F(s)|)(max |F(s)|) = oo. 
r—>oo |.v|=r |.v| = r 

Therefore, taking f = 1 in (3.15) and using (3.13) we obtain 

(3. 16) — ^ — < 1—~- < (max \F(s)\f < K2e2dr" 
\F(-rk)\ min|,,=/, \F(s)\ \s\=rk

 j 

fora sequence {^}£i s u c n m a t rA -^ oo, as /c -^ oo. Combining inequalities (3.16) and 
(3.14), we have 

F(-r*) 

for all & > 1. On the other hand, for all T > 0, the estimate 

e~nT j°° x{t)dt < j™ e~rktx{t)dt < X(-rk) 

= i°° e~ntx(t) dt < K3e3'jrk, k>\ 
Jo ~ 

yields that 

j°° x{t)dt<K\03-r)rk, k> 1, 
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and for T > 3/3 

(3. 17) j°° x(t) dt < K3e0LJ~r)rk -> 0, as k -+ oo. 

On the other hand, x(t) > 0, t > 0 which implies J"£° x(0 Jr > 0. This is a contradiction 
with (3.17). The proof of the theorem is complete. 

EXAMPLE 3.8. Consider the singular neutral equation 

(3.18) -(f {-sTax{t + s)ds) + b f (sy3x(t + s-r)ds = 0, 

where a, (3 G (0,1), b > 0 and r > 0 are given constants. Now, we show that the 
characteristic equation 

(3.19) X 1° (s)-aeXs ds + b f (s)' V('V"T) ds = 0 

does not have a real root in the case when 

(3.20) f3>amdbre> 1. 

Otherwise, there is a real root Ao of (3.19), which has to be negative. Thus /IQ = —A0 > 0, 
satisfies 

which contradicts our assumption bre > 1. Thus, under condition (3.20), the charac
teristic equation (3.19) does not have a real root, and hence, by Theorem 3.6, we have 
that all of the solutions of (3.18) are oscillatory. If a — [3 the it can be easily seen that 
equation (3.19) has a real root if and only if the equation 

li = beiiT 

has a positive root, or equivalently bre < 1. This means that if a = f3 then condi
tion (3.20) is sharp. 
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