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Abstract

We give an explicit way of writing down a minimal set of generators for the canonical ideal of a
nondegenerate curve, or of a more general smooth projective curve in a toric surface, in terms of its
defining Laurent polynomial.
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1. Introduction
Let k be an algebraically closed field and consider the affine torus T2 = (k\{0})2. Let
∆ ⊂ R2 be a two-dimensional lattice polygon and define N = ](∆ ∩ Z2). In this paper
we are concerned with algebraic curves U f ⊂ T

2 that are defined by a sufficiently
generic Laurent polynomial

f =
∑

(i, j)∈∆∩Z2

ci, jxiy j ∈ k[x±1, y±1].

Here ‘sufficiently generic’ means that f is contained in a certain Zariski dense subset
of the corresponding N-dimensional coefficient space. More precisely, to each (i, j) ∈
∆ ∩ Z2 we associate a formal variable Xi, j, and we let

PN−1 = Proj k[Xi, j](i, j)∈∆∩Z2 .

We have a natural embedding

ϕ∆ : T2 ↪→ PN−1 : (x, y) 7→ (xiy j)(i, j)∈∆∩Z2 ,

the Zariski closure of the image of which is a toric surface that we denote by Tor(∆).
Note that ϕ∆(U f ) is contained in the hyperplane section

H :
∑

(i, j)∈∆∩Z2

ci, jXi, j = 0
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312 W. Castryck and F. Cools [2]

of Tor(∆) ⊂ PN−1. Then by ‘sufficiently generic’ we mean that the Zariski closure C f

of ϕ∆(U f ) is a smooth projective curve that equals this hyperplane section. Bertini’s
theorem implies that this is indeed a Zariski dense condition. Alternatively and more
explicitly, for C f to arise as a smooth hyperplane section of Tor(∆), it suffices that f is
nondegenerate with respect to ∆, in the sense that for each face τ ⊂ ∆ (vertex, edge, or
∆ itself) the system

fτ =
∂ fτ
∂x

=
∂ fτ
∂y

= 0

has no solutions in T2. Here fτ is obtained from f by restricting to those terms
that are supported on τ. Nondegeneracy is known to be generically satisfied;
see [4, Proposition 1].

Remark 1.1. Every (nef and big) smooth projective curve C on a toric surface X arises
as such a toric hyperplane section. Indeed, let DC be a torus-invariant divisor on X that
is linearly equivalent to C, and let ∆ be the two-dimensional lattice polygon associated
to DC (here we use the fact that C is nef and big). Then the T2-part of C is defined by
a Laurent polynomial f ∈ k[x±1, y±1] that is supported on ∆. The above construction
then yields a hyperplane section C f of Tor(∆) that is isomorphic to C.

We refer to [3, Sections 3, 4] and the references therein for more background, both
on curves in toric surfaces and on nondegenerate Laurent polynomials. Various of
these references assume the base field k to be of characteristic zero, but we emphasize
that the material presented below is valid in any characteristic.

The main result of this paper is an explicit recipe for writing down a minimal set
of generators for the canonical ideal of curves of the form C f , where f ∈ k[x±1, y±1]
satisfies the above generic condition (for example, nondegeneracy) with respect to a
given two-dimensional lattice polygon ∆.

A quick implementation of the resulting algorithm already heavily outperforms
Magma’s built-in function for computing canonical ideals [1]. The latter relies on
general lattice basis reduction algorithms that were developed by Hess [9]. Our code
can be found in the file canonical.m, which is available at http://dx.doi.org/10.1017/

S1446788714000573. It allows one to compute the canonical ideal of a nondegenerate
curve of genus g ≈ 100 in a matter of minutes, whereas everything beyond g = 20
looks hopeless using the Magma intrinsic, both in terms of time and memory. Of
course, this comes at the cost of working in less generality, but note that the condition
of nondegeneracy is generically satisfied (for a fixed instance of ∆), and easy to verify
in our range of interest. It therefore seems useful to begin the computation of the
canonical ideal with a test for whether the input polynomial is nondegenerate or not,
and if it is, to proceed with the method presented here.

Our starting point is a theorem by Hovanskiı̆ [10], stating that there exists a
canonical divisor K∆ on C f such that a basis for H0(C f ,K∆) is given by

{xiy j}(i, j)∈∆(1)∩Z2 ,
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where ∆(1) denotes the convex hull of the interior lattice points of ∆. Here x, y are
viewed as functions on C f through ϕ∆. See [5, Proposition 10.5.8] for a modern proof.
Two notable corollaries are:

• The genus of C f equals g = ](∆(1) ∩ Z2).
• If g ≥ 2 then the linear system |K∆|maps U f inside the image of ϕ∆(1) . In particular:

– if ∆(1) is one-dimensional, then the canonical image of C f is a rational
normal curve of degree g − 1, hence C f is hyperelliptic;

– if ∆(1) is two-dimensional, then C f is nonhyperelliptic and the canonical
image of C f is contained in the toric surface Tor(∆(1)) ⊂ Pg−1.

See [3, Section 4] and its references for more details.
In what follows we assume that C f is nonhyperelliptic or, equivalently, that ∆(1) is

two-dimensional. Then the generators for the canonical ideal of C f are gathered in
two steps.

• In Section 2, which can be seen as an addendum to previous work by
Koelman [12, 13], we will describe a method for finding a minimal set of
generators for the ideal of Tor(∆(1)). We also provide explicit formulas for the
number of generators in each degree. Because of the independent interest, we
will do this for toric surfaces Tor(Γ) where Γ is an arbitrary two-dimensional
lattice polygon (not necessarily of the form ∆(1)).

• Then in Section 3, we will explicitly describe which generators have to be added
in order to obtain a minimal set of generators for the canonical ideal of C f . These
can be seen as analogues of Reid’s rolling factors [15], where the ‘rolling’ now
happens in two directions, rather than one.

Notation and terminology. We use a special notation for two recurring polygons

Σ = conv{(0, 0), (1, 0), (0, 1)}, Υ = conv{(−1,−1), (1, 0), (0, 1)},

and write � to indicate unimodular equivalence. For instance, ∆ � Σ if and only if ∆

is a unimodular simplex. We recall that the convex hull of the interior lattice points
of a two-dimensional lattice polygon ∆ is denoted by ∆(1). If the latter is again two-
dimensional, we abbreviate ∆(1)(1) by ∆(2). We use ∆◦ to denote the topological interior
of ∆, and write ∂∆ for its boundary. A two-dimensional lattice polygon ∆ is said to be
hyperelliptic if ∆(1) is one-dimensional. If X is a projectively embedded variety over
k, we write I(X) for its defining ideal. For each nonnegative integer d we use Id(X)
to denote the k-vector space of homogeneous degree-d polynomials that are contained
in I(X).

2. The ideal of a toric surface

Let Γ ⊂ R2 be a two-dimensional lattice polygon and let N = #(Γ ∩ Z2). Define
Tor(Γ) as the Zariski closure inside PN−1 of the image of ϕΓ. A result due to

https://doi.org/10.1017/S1446788714000573 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000573


314 W. Castryck and F. Cools [4]

Koelman [12, 13] states that the ideal I(Tor(Γ)) is generated by all binomials
n∏
`=1

Xi` , j` −

n∏
`=1

Xi′
`
, j′
`

for which
n∑
`=1

(i`, j`) =

n∑
`=1

(i′`, j′`)

where n ∈ {2, 3}. Moreover, one can restrict to n = 2 if and only if ](∂Γ ∩ Z2) ≥ 4 or Γ

is a unimodular simplex. This result was generalized to property Np for arbitrary p by
Hering and Schenck; see [8, Theorem 4.20].

The current section can be seen as an addendum to Koelman’s work: we
give explicit formulas for the number of quadrics and cubics in a minimal set of
homogeneous generators for I(Tor(Γ)).

Lemma 2.1. For all integers d ≥ 0,

dimId(Tor(Γ)) =

(
](Γ ∩ Z2) + d − 1

d

)
− ](dΓ ∩ Z2).

Proof. The k-vector space morphism

χd : Id(PN−1)→ k[x±1, y±1] : Xi1, j1 · · · Xid , jd 7→ xi1+···+id y j1+···+ jd

has kernel Id(Tor(Γ)) and surjects onto 〈xiy j〉(i, j)∈dΓ∩Z2 (here we use the fact that two-
dimensional lattice polygons are always normal [2, Proposition 1.2.2–4], that is, every
lattice point in dΓ is the sum of d lattice points in Γ). �

The main result of this section is the following theorem.

Theorem 2.2. A minimal set of generators for I(Tor(Γ)) consists of(
](Γ ∩ Z2) + 1

2

)
− ](2Γ ∩ Z2) quadrics and cΓ cubics,

where

cΓ =


0 if ](∂Γ ∩ Z2) ≥ 4 or Γ � Σ,
1 if ](∂Γ ∩ Z2) = 3, Γ � Σ, Γ is nonhyperelliptic,
](Γ ∩ Z2) − 3 if ](∂Γ ∩ Z2) = 3, Γ � Σ, Γ is hyperelliptic.

Proof. The formula for the number of quadrics follows from Lemma 2.1 along with
the fact that Tor(Γ) is not contained in any hyperplane of PN−1. By Koelman’s result,
it remains to prove the formula for the number of cubics cΓ when ](∂Γ ∩ Z2) = 3 and
Γ � Σ. Moreover, we know that cΓ ≥ 1 in these cases. Also recall that I(Tor(Γ)) is
generated by binomials.

First assume that Γ is nonhyperelliptic and Γ � Υ. Along with ](∂Γ ∩ Z2) = 3
and Γ � Σ this implies that Γ(1) is two-dimensional; see, for example, Koelman’s
classification [11, Ch. 4], although this could also serve as an easy exercise. Let
{v1, v2, v3} be the three vertices of Γ and consider

Γ′ = conv((∆\{v1}) ∩ Z2).
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[5] A minimal set of generators for the canonical ideal of a nondegenerate curve 315

Then Γ′ ⊃ Γ(1) is again a two-dimensional lattice polygon. We claim that there are at
least four lattice points on its boundary. Indeed, if there were three such lattice points,
then Γ′ would be a triangle whose vertices are {v, v2, v3}, where v is contained in the
interior of Γ, and the triangles v1-v-v2 and v1-v-v3 are unimodular simplices (that is,
they do not contain any lattice points besides the vertices).

We may assume that v1 = (0, 0), v = (1, 0), v2 = (a, b) and v3 = (c, d), where b > 0 > d.
By Pick’s theorem the unimodularity of v1-v-v2 and v1-v-v3 implies that b = 1 and
d = −1, and hence that Γ is contained in a horizontal strip of width two, a contradiction
with the fact that Γ(1) is two-dimensional. So the claim follows. Now consider a
binomial

C = Xi1, j1 Xi2, j2 Xi3, j3 − Xi′1, j
′
1
Xi′2, j

′
2
Xi′3, j

′
3
∈ I3(Tor(Γ)) (2.1)

and define ΓC = conv{(i1, j1), (i2, j2), (i3, j3), (i′1, j′1), (i′2, j′2), (i′3, j′3)}.

• If ΓC ( Γ, then by the above, ΓC ⊂ Γ′ for a subpolygon Γ′ that contains at least four
lattice points on the boundary. So by Koelman’s result applied to Γ′, our cubic C
can be written as a linear combination of a number of elements of I2(Tor(Γ)).

• If ΓC = Γ then it is not hard to see that either (i1, j1), (i2, j2), (i3, j3) or
(i′1, j′1), (i′2, j′2), (i′3, j′3) are the three vertices of Γ; see [12, Lemma 2.6].

It follows that either the sum or the difference of two binomials C1,C2 ∈ I3(Tor(Γ))
that are independent of I2(Tor(Γ)) is again a cubic binomial C. But the latter satisfies
ΓC ( Γ, so by the first observation C is expressible as a linear combination of elements
of I2(Tor(Γ)). This proves that one cubic is sufficient, that is, cΓ = 1.

Next assume that Γ is hyperelliptic or Γ � Υ. Using the fact that ](∂Γ ∩ Z2) = 3 we
find that it is unimodularly equivalent to

where r = #(Γ ∩ Z2) − 3. One verifies that the irreducible binomials in I3(Tor(Γ))
involving X−1,1 or X0,−1 must involve both variables in the same monomial. This
monomial is necessarily among

X−1,1X0,−1Xi,0, i = 1, . . . , r,
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and conversely, for each of these monomials one may choose a corresponding binomial
Ci ∈ I3(Tor(Γ)). As before, we find that the difference or sum of two cubic binomials
involving the same monomial X−1,1X0,−1Xi,0 is a linear combination of elements of
I2(Tor(Γ)). So we conclude that I(Tor(Γ)) is generated by I2(Tor(Γ)) ∪ {C1, . . . ,Cr}.
Because the quadratic binomials in I(Tor(Γ)) involve neither X−1,1 nor X0,−1, the latter
r cubics are independent of I2(Tor(Γ)). �

We have included Magma code for computing such a minimal set of (binomial)
generators. See our accompanying file canonical.m. As for the quadratic
generators, this is done by naively gathering all relations of the form

(i1, j1) + (i2, j2) = (i′1, j′1) + (i′2, j′2)

for (i1, j1), (i2, j2), (i′1, j′1), (i′2, j′2) ∈ Γ ∩ Z2, and then finding a k-linearly independent
subset of the set of corresponding binomials

Xi1, j1 Xi2, j2 − Xi′1, j
′
1
Xi′2, j

′
2
.

In the case where ](∂Γ ∩ Z2) = 3, Γ � Σ and Γ is nonhyperelliptic, a single binomial
of the form (2.1), with (i1, j1), (i2, j2), (i3, j3) the vertices of Γ, is added by exhaustive
search. In the hyperelliptic case the explicit construction from the above proof is
followed.

Example 2.3. The code below carries this out for the following lattice polygon (over
k = Q):

> load "canonical.m"
Loading "canonical.m"
Loading "basic_commands.m"
> P := LatticePolytope([<0,1>,<7,0>,<2,4>]);
> time I := TorIdeal(P, Rationals());
Time: 0.110

This can be used as input to more advanced functions, such as the Magma intrinsic for
computing the Betti diagram:

> BettiTable(GradedModule(Ideal(I)));
[

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 55, 320, 891, 1424, 1470, 972, 315, 16, 0, 0, 0 ],
[ 0, 1, 11, 71, 480, 1302, 1932, 1886, 1221, 485, 110, 11 ]

]

https://doi.org/10.1017/S1446788714000573 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000573


[7] A minimal set of generators for the canonical ideal of a nondegenerate curve 317

Remark 2.4. From the point of view of efficiency the above method leaves room for
improvement. In particular, the gathering of the quadratic generators can be done more
systematically, for instance using Gröbner basis computations. These are implicitly
invoked by the code below (a continuation of the above example):

> AA<x,y> := AffinePlane(Rationals());

> lat_points := ConvexHull(P); N := #lat_points;

> PP := ProjectiveSpace(Rationals(), N-1);

> phi_P := map< AA->PP | [x^p[1]*y^p[2] : p in lat_points] >;

> time I := Ideal(Image(phi_P));

Time: 0.080

This produces a reduced Gröbner basis for Tor(Γ). In general this is not a minimal set
of generators, but its quadratic elements do form a basis of I2(Tor(Γ)), so that one can
obtain a minimal set of generators by proceeding as above.

Remark 2.5. Up to unimodular equivalence, the only two-dimensional instances of
∆(1) for which ](∂∆(1) ∩ Z2) = 3 are Σ and Υ. This can be shown using [7, Lemmas 9–
11].
Therefore, for the purposes of describing the canonical ideal of curves in toric surfaces,
the above general treatment is more elaborate than needed. We have included it
because we believe it to be of independent interest.

3. An explicit description of the canonical ideal

Let ∆ be a two-dimensional lattice polygon and let f ∈ k[x±1, y±1] be a Laurent
polynomial satisfying the sufficiently generic condition from the introduction (for
example, nondegeneracy). Assume that the corresponding curve C f is nonhyperelliptic
of genus g ≥ 3, that is, ∆(1) is two-dimensional. Let Ccan

f be the canonical model of C f

obtained using |K∆|.
We already know that I(Ccan

f ) contains I(Tor(∆(1))), and from the previous section
we know how to find a minimal set of generators for the latter. In this section
we describe which generators have to be added in order to obtain a minimal set of
generators for I(Ccan

f ). A priori, it is not entirely trivial that it suffices to merely add
some generators, but note from the previous remark that Tor(∆(1)) is almost always
generated by quadrics, in which case this is clear. The only exception is when ∆(1) � Υ,
which corresponds to curves of genus 4, and is therefore well understood.

Our main auxiliary tool is the following theorem:

Theorem 3.1. The equality

dimId(Ccan
f ) − dimId(Tor(∆(1))) = ](((d − 1)∆(1))(1) ∩ Z2)

holds for all integers d ≥ 2.
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Proof. From Lemma 2.1 it follows that

dimId(Tor(∆(1))) =

(
g + d − 1

d

)
− ](d∆(1) ∩ Z2).

On the other hand, let H(d) be the Hilbert function of the homogeneous coordinate
ring of Ccan

f ⊂ P
g−1. Then H(d) = (2g − 2)d + (1 − g) = (2d − 1)(g − 1) if d ≥ 2 (see [6,

Corollary 9.4]), hence

dimId(C) =

(
g + d − 1

d

)
− (2d − 1)(g − 1).

So we are left with proving that

](d∆(1) ∩ Z2) − ](((d − 1)∆(1))(1) ∩ Z2) = (2d − 1)(g − 1).

For this, write R(1) = ](∂∆(1) ∩ Z2) and consider the Ehrhart polynomial

Ehr∆(1) (k) = Vol(∆(1)) · k2 +
R(1)

2
· k + 1

of ∆(1); see [5, Section 9.4]. Since ](k∆(1) ∩ Z2) = Ehr∆(1) (k) and ](∂(k∆(1)) ∩ Z2) =

kR(1) for all k ∈ Z≥1, we have that

](d∆(1) ∩ Z2) − ](((d − 1)∆(1))(1) ∩ Z2)
= Ehr∆(1) (d) − Ehr∆(1) (d − 1) + ](∂((d − 1)∆(1)) ∩ Z2)

= (2d − 1)
(
Vol(∆(1)) +

R(1)

2

)
= (2d − 1)(g − 1).

This concludes the proof. �

Remark 3.2. Some readers may prefer the following cohomological proof of
Theorem 3.1. Assume for ease of exposition that Tor(∆) is smooth; if not, the argument
below has to be preceded by a toric blow-up. Let DC f be a torus-invariant divisor on
Tor(∆) that is linearly equivalent to C f , let K be a torus-invariant canonical divisor on
Tor(∆), and define L = DC f + K. When tensoring the exact sequence

0→OTor(∆)(−DC f )→OTor(∆) →OC f → 0

with OTor(∆)(dL), taking cohomology and using the standard toric vanishing theorems
for H1 we get

0→ H0(Tor(∆), (d − 1)L + K)→ H0(Tor(∆), dL)→ H0(C f , dL|C f )→ 0.

The respective dimensions of these spaces are seen to be

](((d − 1)∆(1))(1) ∩ Z2), dim
Id(Pg−1)
Id(Tor(∆(1)))

and dim
Id(Pg−1)
Id(Ccan

f )
,

(indeed, by adjunction theory L|C f is a canonical divisor on C f ), so that the theorem
follows.
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Write
f =

∑
(i, j)∈∆∩Z2

ci, jxiy j ∈ k[x±1, y±1]

and defineWd = (∆(1))◦ ∩ ((1/d − 1)Z)2. Note that

]Wd = ](((d − 1)∆(1))(1) ∩ Z2).

To every w ∈ Wd we can associate a homogeneous degree-d polynomial as follows.
For each (i, j) ∈ ∆ ∩ Z2 there exist

v1,(i, j), . . . , vd,(i, j) ∈ ∆(1) ∩ Z2

such that
(i, j) − w = (v1,(i, j) − w) + · · · + (vd,(i, j) − w). (3.1)

This follows from the inclusion ((d − 1)∆(1))(1) + ∆ ⊂ d∆(1) and the normality of the
polygon ∆(1). The d-form

Fd,w =
∑

(i, j)∈∆∩Z2

ci, jXv1,(i, j) · · · Xvd,(i, j)

is well-defined modulo the ideal of Tor(∆(1)). It clearly vanishes on ϕ∆(1) (U f ), hence it
is contained in the ideal of Ccan

f .
The forms Fd,w with w ∈ Wd are k-linearly independent of each other and of the

forms in Id(Tor(∆(1))). Indeed, this holds because

χd(Fd,w) = (x, y)(d−1)w · f ,

where χd is the vector space morphism from the proof of Lemma 2.1; here we used
multi-index notation, that is, (x, y)(a,b) should be read as xayb. Hence any linear
combination in which the Fd,w appear nontrivially is mapped to a nonzero multiple
of f , and must therefore be nonzero itself. By Theorem 3.1, we can conclude that a
basis for Id(Ccan

f ) is obtained by adjoining {Fd,w}w∈Wd to a basis for Id(Tor(∆(1))). In
other words,

Id(Ccan
f ) = Id(Tor(∆(1))) ⊕ 〈Fd,w〉w∈Wd . (3.2)

We are now ready to prove our main theorem.

Theorem 3.3. Let ∆ be a two-dimensional lattice polygon and let f ∈ k[x±1, y±1] be a
Laurent polynomial satisfying the sufficiently generic condition from the introduction
(for example, nondegeneracy). Assume that ∆(1) is two-dimensional and let g =

](∆(1) ∩ Z2).

• If ∆(2) , ∅ and ∆(1) � Υ, then a minimal set of generators for I(Ccan
f ) is given by

a basis for I2(Tor(∆(1))) and the quadrics {F2,w}w∈∆(2)∩Z2 .
• If ∆(1) � Υ then a minimal set of generators for I(Ccan

f ) is given by the cubic
defining Tor(∆(1)) ⊂ P3 and the quadric F2,w with ∆(2) = {w}.
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• If ∆(1) � Σ then a minimal set of generators for I(Ccan
f ) is given by the single

quartic F4,w with (∆(1))◦ ∩ ( 1
3Z)2 = {w}.

• If ∆(1) � 2Σ then a minimal set of generators for I(Ccan
f ) is given by a basis

for I2(Tor(∆(1))) and the three cubics F3,w,F3,w′ ,F3,w′′ with (∆(1))◦ ∩ ( 1
2Z)2 =

{w,w′,w′′}.
• In the other cases a minimal set of generators for the ideal I(Ccan

f ) is given by a
basis for I2(Tor(∆(1))) and the g − 3 cubics F3,w with w ∈ (∆(1))◦ ∩ ( 1

2Z)2.

Proof. From [3, Theorem 8.1], the assumptions ∆(2) , ∅ and ∆(1) � Υ imply that the
Clifford index of C f is at least two. In this case Petri’s theorem [14] guarantees that
I(Ccan

f ) is generated by quadrics and the statement follows from (3.2).
As for the other cases:

• If ∆(1) � Υ, the claim follows by noting that Tor(Υ) is defined by the cubic
X−1,−1X1,0X0,1 − X3

0,0 and that a canonical curve of genus g = 4 is of degree
2g − 2 = 6, so that a single (necessarily unique) quadric suffices.

• If ∆(1) � Σ or ∆(1) � 2Σ then Tor(∆(1)) � P2, and C f is a smooth plane quartic or
a smooth plane quintic, respectively. In the quartic case the statement is obvious.
As for the quintic case, by Petri’s theorem we know that I(Ccan

f ) is generated by
quadrics and cubics. Since I(Tor(∆(1))) is generated by quadrics, the statement
follows from (3.2). (Note that Tor(∆(1)) is just the Veronese surface.)

• In the other cases C f is a trigonal curve and ](∂∆(1) ∩ Z2) ≥ 4, so that Tor(∆(1))
is generated by quadrics. By Petri’s theorem we know that I(Ccan

f ) is generated
by quadrics and cubics, so that the statement again follows from (3.2). (Note that
Tor(∆(1)) is a rational normal surface scroll.) Remark that

]((∆(1))◦ ∩ ( 1
2Z)2) = ]((2∆(1))(1) ∩ Z2) = g − 3

by Pick’s theorem, hereby using the fact that ∆(1) contains no interior lattice
points.
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This concludes the proof. �

We remark that in the last case of trigonal curves, the generators F3,w are just the
‘rolling factors’ that were introduced by Reid; see [15]. For more general polygons,
our forms Fd,w can be viewed as analogues of these, where the ‘rolling’ is done in two
directions instead of one.

Theorem 3.3 immediately gives rise to an efficient algorithm for computing a
minimal set of generators for the canonical ideal of C f , for a given Laurent polynomial
f ∈ k[x±1, y±1] that is nondegenerate with respect to its Newton polygon ∆( f ). As
before we assume that:

• ](∆( f )(1) ∩ Z2) ≥ 3, so that C f is of genus g ≥ 3; and
• ∆( f )(1) is two-dimensional, so that C f is nonhyperelliptic, or equivalently that

its Clifford index is at least one (otherwise the canonical image is just a rational
normal curve).

If ∆( f )(1) � Σ the output consists of a single quartic. If not, it consists of independent
quadratic and cubic generators of the canonical ideal, that is,

(
g−2

2

)
quadrics and g − 3

cubics in the case of Clifford index one, and just
(

g−2
2

)
quadrics in the case of Clifford

index at least two. Indeed, all one needs to do is add the appropriate Fd,w to a minimal
set of generators for Tor(∆(1)). Finding these Fd,w boils down to finding relations of the
form (3.1), which can be done by exhaustive search. An implementation can be found
in the Magma file canonicalideal.m that accompanies this paper. The function of
interest is called NondegIdeal().

Example 3.4. The following sample code computes the canonical ideal of a genus-14
curve in a fraction of a second:

> load "canonical.m"
Loading "canonical.m"
Loading "basic_commands.m"
> R<x,y> := PolynomialRing(Rationals(),2);
> f := 13*x^6*y^5 - 6*x^6*y^4 + 2*x^3*y^5
> + 4*x^3*y^4 + x^3 + 3*y^4;
> AA := AffineSpace(Rationals(),2);
> C := Curve(AA,f);
> Genus(C);
14
> time I := Ideal(NondegIdeal(f));
Time: 0.130

In sharp contrast, it takes the Magma intrinsic well over an hour.
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> time I := Ideal(Image(CanonicalMap(C)));
Time: 5405.360

Note, moreover, that in the latter case, in general, the output does not consist of a
minimal set of generators.

Remark 3.5. Here again, the method can be slightly improved by taking into account
the corresponding remark from Section 2, that is, by computing a set of generators for
I(Tor(∆(1))) using Gröbner bases. It is also possible to do this at once for the entire
ideal I(Ccan

f ), as below (continuing the above example):

> lat_points := ConvexHull(InnerPoints(NewtonPolytope(f)));
> g := #lat_points;
> PP := ProjectiveSpace(Rationals(), g-1);
> phi_can := map< C->PP | [x^p[1]*y^p[2] : p in lat_points] >;
> time I := Ideal(Image(phi_can));
Time: 0.370

This is already much faster than the Magma intrinsic, but slower than the previous
method (the difference in timing increases as the genus grows). Note again that the
output does not necessarily consist of a minimal set of generators.
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