Can. J. Math., Vol. XXXI, No. 3, 1979, pp. 449-457

GRADED *π***-RINGS**

D. D. ANDERSON AND J. MATIJEVIC

1. Introduction. All rings considered will be commutative with identity. By a *graded ring* we will mean a ring graded by the non-negative integers.

A ring R is called a π -ring if every principal ideal of R is a product of prime ideals. A π -ring without divisors of zero is called a π -domain. A graded ring (domain) is called a graded π -ring (-domain) if every homogeneous principal ideal is a product of homogenous prime ideals. A ring R is called a general ZPI-ring if every ideal is a product of primes. A graded ring is called a graded general ZPI-ring if every homogenous ideal is a product of homogeneous prime ideals.

In Section 2 we review the known results about (ungraded) π -rings and general ZPI-rings. Eight characterizations of π -domains are given, several of which are new. The characterization to be used in Section 3 is that a domain D is a π -domain if and only if D is locally a UFD (D_M is a UFD for every maximal ideal M of D) and D is a Krull domain.

In Section 3 we investigate graded π -rings. We show that a graded π -ring is a finite direct product of special principal ideal rings, graded π -domains and a special type of graded π -ring which is not a π -ring. We show that a graded π -domain is actually a π -domain. We also show that a graded general ZPI-ring is a general ZPI-ring.

The authors wish to thank the referee for several helpful suggestions.

Section 2. The ungraded case. Mori has completely characterized the structure of π -rings in a series of four papers [12]–[15]. We state this characterization as Theorem 1, the proof of which may also be found in [7].

THEOREM 1. A ring R is a π -ring if and only if R is a finite direct product of π -domains and special principal ideal rings.

Thus the study of π -rings is essentially reduced to the study of π -domains. Next we give eight characterizations of π -domains.

THEOREM 2. For a domain D the following conditions are equivalent:

(1) D is a π -domain, (2) every principal ideal is a product of invertible prime ideals, (3) every invertible ideal is a product of invertible prime ideals, (4) every nonzero prime ideal contains an invertible prime ideal, (5) D is locally a UFD and the minimal primes are finitely generated, (6) D is locally a UFD and a Krull domain, (7) D is a Krull domain with the minimal primes being invertible, (8) D(X) is a UFD.

Received April 27, 1976 and in revised form July 26, 1978.

Proof. (1) \Rightarrow (2): Any factor of a principal ideal is invertible. (2) \Rightarrow (4): Let P be a nonzero prime ideal and let $0 \neq x \in P$. Then $(x) = P_1 \dots P_n$ a product of invertible prime ideals. Since P is prime, some $P_i \subset P$ and P_i is invertible. $(4) \Rightarrow (3)$: The proof then is similar to the proof of Theorem 5 [8] but using "generalized" multiplicatively closed sets. (Also see Theorem 4.6 [2]). As $(3) \Rightarrow (1)$ is trivial, we see that (1)-(4) are equivalent. $(1) \Rightarrow (5)$: A localization of a π -domain is a π -domain and in a quasi-local domain, invertible ideals are principal. $(5) \Rightarrow (1)$: Since D is locally a UFD, every nonzero prime contains a minimal prime P, which is by hypothesis finitely generated. Since P is finitely generated and locally principal, P is invertible. That (1) implies (6) is clear. (6) \Rightarrow (1): Let $0 \neq x \in D$ be a nonunit. We show that xD is a product of prime ideals. Since D is a Krull domain, $xD = P_1^{(n_1)} \cap \ldots \cap P_s^{(n_s)}$ where P_1, \ldots, P_s are the rank one primes containing x. We show that xD = $P_1^{n_1} \ldots P_s^{n_s}$ locally. Let M be a fixed maximal ideal of D. If $P_i \not\subset M$, then $P_{i_M}^{(n_i)} = D_M = P_{i_M}^{n_i}$. If $P_i \subseteq M$, then P_{i_M} is a rank one prime in the UFD D_M and hence is principal. Thus $P_{i_M}^{n_i}$ is primary and hence $P_{i_M}^{n_i} =$ $P_{i_M}^{(n_i)}$. Since the P_{i_M} 's are principal,

$$xD_{M} = P_{1_{M}}{}^{(n_{1})} \cap \ldots \cap P_{s_{M}}{}^{(n_{s})} = P_{1_{M}}{}^{n_{1}} \cap \ldots \cap P_{s_{M}}{}^{n_{s}}$$
$$= P_{1_{M}}{}^{n_{1}} \ldots P_{s_{M}}{}^{n_{s}} = (P_{1}{}^{n_{1}} \ldots P_{s}{}^{n_{s}})_{M}.$$

Thus $(6) \Rightarrow (1)$. It is clear that $(1)-(6) \Rightarrow (7)$ and that $(7) \Rightarrow (6)$. If D is a π -domain, then D[X] is also a π -domain as is easily seen from the equivalence of (1) and (6). Thus $D(X) = D[X]_S$ is a π -domain where $S = \{f \in D[X] | A_f = D\}$ and A_f is the content of f. Since every invertible ideal in D(X) is principal (Theorem 2 [4]), D(X) is a UFD. Hence (1) \Rightarrow (8). Conversely, suppose that D(X) is a UFD. By Proposition 6.10 [6], D is a Krull domain and every rank one prime ideal of D is invertible. Hence D is a π -domain.

Theorem 2 supports our philosophy that a π -domain is just a UFD where invertible ideals have taken the place of principal ideals. Thus π -domains are related to UFD's in a manner similar to the way that Dedekind domains are related to PID'S. One question of interest is: Given a π -domain D, does there exist a UFD D' such that D and D' have isomorphic lattices of ideals? (See [1] and [3] for a discussion of this question.)

The equivalence of (1), (5), and (7) appears as Theorem 46.7 [7, page 573]. The following theorem characterizes general ZPI-rings. The equivalence of (1) and (2) is due to Mori [16] and the equivalence of (1) and (3) to Levitz [9], [10]. Also see [7].

THEOREM 3. For a ring R the following statements are equivalent:

(1) R is a general ZPI-ring, (2) every ideal of R generated by two elements is a product of prime ideals, (3) R is a finite direct product of Dedekind domains and special principal ideal rings.

450

Section 3. The graded case. In this section we consider graded π -rings and graded \rightarrow general ZPI-rings of the form $R = R_0 \oplus R_1 \oplus R_2 \oplus \ldots$ Our characterization of graded π -rings will be given by a number of lemmas. Our first lemma follows directly from Theorem 1.

LEMMA 1. Suppose that $R = R_0 \oplus R_1 \oplus \ldots$ is a graded π -ring. Then R_0 is a π -ring. Moreover, R is a finite direct product of graded π -rings each of which has for its zero component a π -domain or a special principal ideal ring.

The case where R_0 is a special principal ideal ring is easily handled.

LEMMA 2. Suppose that $R = R_0 \oplus R_1 \oplus \ldots$ is a graded π -ring where R_0 is a special principal ideal ring. Then $0 = R_1 \oplus R_2 \oplus \ldots$

Proof. Let $0 \neq pR_0$ be the unique prime ideal of R_0 and suppose that $p^n = 0$. Let $a \in R_1$, then aR is a product of homogeneous prime ideals. Since the zero degree part of any homogeneous prime ideal must be pR_0 , we see that $R_1 = pR_1$. Hence $R_1 = p^nR_1 = 0$. By induction $R_m = 0$ for m > 0.

Thus we are reduced to the case where R_0 is a π -domain.

LEMMA 3. Let $R = R_0 \oplus R_1 \dots$ be a graded π -ring. Then any rank zero prime P in R is a "homogeneous" multiplication ideal (i.e., $A \subseteq P$ with A homogeneous implies A = BP for some homogeneous ideal B of R.) Furthermore, $P \cap R_0$ is a multiplication ideal of R_0 .

Proof. It is well-known that a rank zero prime in a graded ring is homogeneous. Let $A \subseteq P$ be a homogeneous ideal and let $A = (x_{\alpha})$ where x_{α} is homogeneous. Then $x_{\alpha}R = P_{\alpha_1} \ldots P_{\alpha_t}$ is a product of homogeneous prime ideals. Now rank P = 0 implies some $P_{\alpha_i} = P$ so that $x_{\alpha}R = PB_{\alpha}$ for some homogeneous ideal B_{α} . Hence $A = (x_{\alpha}) = \sum PB_{\alpha} = P(\sum B_{\alpha})$. It is easily seen that $P \cap R_0$ is a multiplication ideal in R_0 .

LEMMA 4. Let $R = R_0 \oplus R_1 \oplus ...$ be a graded π -ring where R_0 is a field. Then R is a domain or $R \approx R_0[X]/(X^n)$ for some n > 1 where X ix an indeterminate over R_0 assigned positive degree.

Proof. Suppose that R is not a domain. Now $M = R_1 \oplus R_2 \oplus \ldots$ is the unique maximal homogeneous ideal of R. We show that rank M = 0. Now since (0) is a finite product of (homogeneous) primes, R has only a finite number of minimal primes P_1, \ldots, P_n , each of which is homogeneous. Assume that $P_i \subseteq M$ for $i = 1, \ldots, n$. We set $A = P_1 \cap \ldots \cap P_n$ and $\overline{R} = R/A$. It is easy to see that $Z(\overline{R}) = P_1/A \cup \ldots \cup P_n/A$ (here $Z(\overline{R})$ denotes the zero-divisors of \overline{R} .) By Prop. 8 [5, p. 161] there exists a homogeneous element $m \in M - (P_1 \cup \ldots \cup P_n)$ and $\overline{m} = m + A$ is a regular element of \overline{R} . Let $(m) = Q_1 \ldots Q_t$ be a prime factorization of (m) into a product of homogeneous prime ideals. Then $(\overline{m}) = \overline{Q}_1 \ldots \overline{Q}_t$ is a prime factorization of (\overline{m}) in

 \overline{R} . Since \overline{m} is regular, the ideal \overline{Q}_1 is invertible and \overline{Q}_1 properly contains some \bar{P}_i . Therefore $\bar{P}_i = \bar{P}_i \bar{Q}_1$ and hence $\bar{P}_i = \bar{P}_i \bar{M}$. Suppose that $\bar{P}_i \neq 0$. Then there exists a nonzero homogeneous element $y \in \overline{P}_i$. By Lemma 3, $(y) = B\overline{P}_i$ for some homogeneous ideal B. Hence $(y) = B\bar{P}_i = B(\bar{P}_i\bar{M}) = (B\bar{P}_i)\bar{M} =$ $(y)\overline{M}$. Thus $\overline{R} = \overline{M} + (\overline{0}; y)$. But since y is a nonzero homogeneous element, $(\overline{0}; y)$ is a proper homogeneous ideal and hence $(\overline{0}; y) \subseteq \overline{M}$, the unique maximal homogeneous ideal of \overline{R} . Thus $\overline{P}_i = \overline{0}$. Hence $P_i = A$ so R has a unique prime P of rank zero. Thus R/P is a graded π -domain, in fact since $(R/P)_0 = R_0$ is a field, R/P is a graded UFD and hence a UFD (Theorem 5). Choose a homogeneous non-zero prime element q + P of R/P. If $(q) = Q_1 \dots$ Q_t is a homogeneous prime factorization of (q) in R, then $(\bar{q}) = \bar{Q}_1 \dots \bar{Q}_t$ is the prime factorization of (\bar{q}) in R/P. Consequently t = 1 and (q) is a homogeneous prime ideal of R with $P \subsetneq (q) \subseteq M$. Hence P = P(q) and so P = PM. As before, this implies that P = 0. This contradiction shows that M is the unique minimal prime ideal of R and hence the unique homogeneous prime ideal of R. We show that M is principal. Let $M = (x_{\alpha})$ where x_{α} is homogeneous. By Lemma 3, $(x_{\alpha}) = MB_{\alpha}$ where B_{α} is some homogeneous ideal. Hence $M = \sum (x_{\alpha}) = \sum M B_{\alpha} = M(\sum B_{\alpha})$. If $\sum B_{\alpha} = R$, then some $B_{\alpha_0} = R$ so $M = (x_{\alpha_0})$ is principal. Otherwise $M = M^2$ and the argument used above shows that M = 0. Let X be an indeterminate over R_0 assigned the degree of x_{α_0} . Then the graded homomorphism $f: R_0[X] \to R$ given by $X \to x_0$ is clearly onto. Since M is the unique homogeneous prime of R, there exists an n > 0such that $M^n = 0$, but $M^{n-1} \neq 0$. Thus ker $f = (X^n)$ so $R \approx R_0[X]/(X^n)$.

LEMMA 5. Let $R = R_0 \oplus R_1 \oplus \ldots$ be a graded π -ring where (R_0, M_0) is a quasi-local domain but not a field. Then R is either a domain or R_0 is a DVR and $R \approx R_0[X]/A$ where A is a homogeneous ideal with $\sqrt{A} = XM_0[X]$.

Proof. First suppose that dim $R_0 > 1$. Then R_0 is a quasi-local UFD with an infinite number of principal primes. Assume that R is not a domain, so that *R* has a finite number of minimal primes P_1, \ldots, P_n . By Lemma 3, $P_i \cap R_0$ is a multiplication ideal, so each $P_i \cap R_0$ is either 0 or a principal prime. Thus we can choose a homogeneous element in $M_0 \oplus R_1 \oplus R_2 \oplus \ldots$, but not in P_1, \ldots, P_n . Proceeding as in Lemma 4, we get that R must be a domain. Thus we may suppose that dim $R_0 = 1$, so that R_0 must be a DVR. Since R_0 is a domain, $Q = R_1 \oplus R_2 \oplus \ldots$ is a prime ideal. We show that rank Q = 0. Let $S = R_0 - \{0\}$, then $R_s = R_{0s} \oplus R_{1s} \oplus \ldots$ is a graded π -ring with R_{0s} a field. Hence by Lemma 4, R_s contains a unique minimal prime, and hence Rmust contain a unique minimal prime P with $P \cap R_0 = 0$. Let $M_0 = pR_0$. Now pR is a product of homogeneous primes and hence itself must be prime. Now pR must be minimal. For if $P' \subsetneq pR$ is a prime, then either $P' \cap R_0 = 0$ so $pR \supseteq P' \supseteq P$ or $P' \cap R_0 = pR_0$ so $P' \supseteq pR$. If $pR \supset P$, then P would be the unique minimal prime of R. Passing to R/P we see that this would imply that P = (0) and thus R would be a domain. Thus R has exactly two minimal primes: pR and P. As in Lemma 4, we see that P is principal. Suppose that

GRADED π -RINGS

 $Q \neq P$. Then by Proposition 8 [5, page 161], there exists a homogeneous element $m \in pR_0 \oplus R_1 \oplus \ldots$, but not in pR or P. Proceeding as in Lemma 4, we see that $R/pR \cap P$ must have a unique minimal prime. This contradiction shows that Q = P. Thus $P = Q = R_1 \oplus R_2 \oplus \ldots$ is principal. The result now follows as in Lemma 4.

LEMMA 6. Let $R = R_0 \oplus R_1 \oplus \ldots$ be a graded π -ring where R_0 is a domain but not a field. Then either R is a domain or $R \approx R_0[X]/A$ where A is a homogeneous ideal of $R_0[X]$ with $\sqrt{A} = XM_1 \ldots M_n[X]$ where M_1, \ldots, M_n are invertible maximal ideals of R_0 .

Proof. Assume that R is not a domain. Let $S = R_0 - \{0\}$, then R_s is a graded π -ring with R_{0_s} a field, so that R_s is a domain or is isomorphic to $R_0[X]/(X^n)$ and hence contains a unique minimal prime. Hence R contains a unique minimal (necessarily homogeneous) prime P with $P \cap R_0 = 0$. Let M_0 be a maximal ideal of R_0 and put $S(M_0) = R_0 - M_0$. Then $R_{S(M_0)}$ is a graded π -ring so $R_{S(M_0)}$ is a domain or $P_{S(M_0)} = (R_1 \oplus R_2 \oplus \ldots)_{S(M_0)}$. In the latter case $P = R_1 \oplus R_2 \oplus \ldots$ (for both are prime ideals of R). Suppose that $P \neq R_1 \oplus R_2 \oplus \ldots$. Then we may assume that $R_{S(M_0)}$ is a domain for every maximal ideal M_0 of R_0 , so that $P_M = 0_M$ for every homogeneous maximal ideal of R. Hence P = 0 and R is a domain. This contradiction shows that $P = R_1 \oplus R_2 \oplus \ldots$ is the unique minimal prime ideal of R contracting to 0 in R_0 .

Suppose that P, P_1, \ldots, P_n are the minimal prime ideals of R (n > 0 since R is not a domain). Then $P_i' = P_i \cap R_0 \neq 0$ is a multiplication ideal in the domain R_0 . Thus P_i is invertible [7, page 77]. Let M be a maximal ideal of R_0 containing P_i' and put $S = R_0 - M$. Then P_{is} and P_s are distinct minimal primes in R_s . By Lemma 5, R_{0s} must be a DVR and hence we see that each P_i' is also a maximal ideal in R_0 . Also, $P_i'R$ and P_i are homogeneous ideals that are equally locally at the maximal homogeneous ideals of R. Thus $P_i R =$ P_i . We next show that $P = R_1 \oplus R_2 \oplus \ldots$ is principal. Let M be a maximal homogeneous ideal containing P. Let $M_0 = M \cap R_0$ and $S = R_0 - M_0$. If $P_i \subseteq M$ for some *i*, then R_s contains two minimal prime ideals. By Lemma 5, $M = P_i' \oplus R_1 \oplus R_2 \oplus \ldots$ If $P_i \not\subset M$ for all $i = 1, \ldots, n$, then P_s is the unique minimal prime ideal of R_s and hence R_s is a domain. Then $P_M = 0_M$. Thus $P_M = 0_M$ for almost all maximal homogeneous ideals M of R. An easy modification of Theorem 2 [3] shows that P is principal. Thus $R \approx R_0[X]/A$ where A is a homogeneous ideal of $R_0[X]$. Since $\sqrt{0} = P \cap P_1 \cap \ldots \cap P_n$ in R, we have $\sqrt{A} = (X) \cap P_1'[X] \cap \ldots \cap P_n'[X] = XP_1' \ldots P_n'[X]$ in $R_0[X].$

LEMMA 7. Let R_0 be a π -domain that is not a field. Suppose that A is a homogeneous ideal of $R_0[X]$ with $\sqrt{A} = XM_1 \dots M_n[X]$ where $\{M_1, \dots, M_n\}$ is a (possibly empty) set of invertible maximal ideals of R_0 . Then $R = R_0[X]/A$ is a graded π -ring if and only if $A = X^s M_1^{s_1} \dots M_n^{s_n}[X]B$ where s, s_1, \dots, s_n are positive integers, B is a (possibly vacuous) product of $M_i[X] + (X)$ -primary ideals and s = 1 unless $\{M_1, \ldots, M_n\}$ is the set of all maximal ideals of R. R is a π -ring if and only if A = (X).

Proof. Suppose that $A = X^s M^{s_1} \dots M^{s_n}[X]B$. Then the ideals $\overline{X}R$, M_1R , \dots , M_nR are prime ideals in R. If N is another invertible prime ideal in R_0 , then N[X] and $M_1^{s_1} \dots M_n^{s_n}[X]B$ are comaximal. Thus

$$N[X] + M_1^{s_1} \dots M_n^{s_n}[X]B = R[X]$$
 so
 $XN[X] + XM_1^{s_1} \dots M_n^{s_n}[X]B = (X).$

Since in this case s = 1, N[X] + A = N[X] + (X) so NR is also a prime ideal in R. Since every homogeneous element of R has the form $r\bar{X}^m$ where $r \in R_0$ and $\bar{X} = X + A$, R is a graded π -ring.

Conversely, suppose that R is a graded π -ring. Now A has a homogeneous primary decomposition with minimal primes (X), $M_1[X]$, ..., $M_n[X]$. Since each of these primes is invertible, the primary ideals belonging to these minimal primes are prime powers. From Lemma 5 we see that $M_i[X] + (X)$, $i = 1, \ldots, n$ are the only possible embedded prime ideals. Thus

$$A = (X)^{s} \cap M_{1}^{s_{1}}[X] \cap \ldots \cap M_{n}^{s_{n}}[X] \cap Q_{1} \cap \ldots \cap Q_{n}$$

where Q_i is either $M_i[X] + (X)$ -primary or $R_0[X]$. Since $(X)^s$, $M_1^{s_1}[X]$, ..., $M_n^{s_n}[X]$ are invertible primary ideals, we have

$$(X)^{s} \cap M_{1}^{s_{1}}[X] \cap \ldots \cap M_{n}^{s_{n}}[X] = (X)^{s} M_{1}^{s_{1}}[X] \ldots M_{n}^{s_{n}}[X].$$

Hence

$$A = (X)^{s} M_{1}^{s_{1}}[X] \dots M_{n}^{s_{n}}[X] \cap Q_{1} \cap \dots \cap Q_{n}$$

= $(X)^{s} M_{1}^{s_{1}}[X] \dots M_{n}^{s_{n}}[X](Q_{1} \cap \dots \cap Q_{n}; (X)^{s} M_{1}^{s_{1}}[X] \dots M_{n}^{s_{n}}[X]).$

But

$$(Q_1 \cap \ldots \cap Q_n; (X)^s M_1^{s_1}[X] \ldots M_n^{s_n}[X]) = \bigcap_{i=1}^n (Q_i; (X)^s M_1^{s_1}[X] \ldots M_n^{s_n}[X] \text{ and} Q_i' = Q_i; (X)^s M_1^{s_1}[X] \ldots M_n^{s_n}[X]$$

is either $M_i[X] + (X)$ -primary or $R_0[X]$. Since Q_1', \ldots, Q_n' are comaximal, $Q_1' \cap \ldots \cap Q_n' = Q_1' \ldots Q_n'$. Suppose that M is a maximal ideal of R_0 other than M_1, \ldots, M_n . Then $R_{(R_0-M)} = R_{0_M}[X]/(X)^s R_{0_M}$ is a graded π -ring. By Lemma 5 this is not possible unless $R_{(R_0-M)}$ is a domain, that is, s = 1.

Clearly if A = (X), $R = R_0[X]/A$ is a π -domain. If $A \neq (X)$, then R is not a domain. Since R is indecomposable, R cannot be a π -ring.

Thus we have established

THEOREM 4. Let $R = R_0 \oplus R_1 \oplus \ldots$ be a graded π -ring. Then R is a finite direct product of graded π -domains and special graded π -rings of the following types:

https://doi.org/10.4153/CJM-1979-050-0 Published online by Cambridge University Press

(1) special principal ideal rings (ungraded), (2) $k[X]/(X^n)$, k a field, X an indeterminate assigned positive degree, (3) D[X]/A where D is a π -domain, X is an indeterminate over D assigned positive degree and A is a homogeneous ideal of D[X] with

 $A = X^{s} M_1^{s_1}[X] \dots M_n^{s_n}[X] B$

where s_1, \ldots, s_n are positive integers, $\{M_1, \ldots, M_n\}$ is a (possibly empty) set of invertible maximal ideals of D and B is a (possibly vacuous) product of $M_i[X]$ + (X)-primary ideals. If M_1, \ldots, M_n are not all the invertible prime ideals of D, then s = 1.

We are now reduced to the case where $R = R_0 \oplus R_1 \oplus \ldots$ is a graded π -domain.

THEOREM 5. Let $R = R_0 \oplus R_1 \oplus \ldots$ If R is a graded UFD, then R is a UFD. If R is a graded π -domain where R_0 is quasi-local, then R is a graded UFD and hence a UFD.

Proof. We may assume that $R \neq R_0$. Let S be the set of homogeneous non-zero elements of R. Now S is a multiplicatively closed set in R generated by the non-zero homogeneous principal primes. By Lemma 1.2 [11], R_s is isomorphic to $K[u, u^{-1}]$ where K is a field and u is transcendental over K. Thus R_s is a UFD. By Nagata's Lemma to show that R is a UFD it is sufficient to show that R satisfies ACC on principal ideals. Let $(f_1) \subseteq (f_2) \subseteq (f_3) \subseteq \ldots$ be an ascending chain of principal ideals in R. Surely R satisfies ACC on principal homogeneous ideals. It is easily verified that R[X] satisfies ACC on homogeneous principal ideals when X is an indeterminate assigned degree 1. We homogenize the chain of principal ideals to R[X] and then de-homogenize them back into R (for the process of homogenization see [11] or [17, p. 179]). Thus $(f_1)^h \subseteq (f_2)^h \subseteq (f_3)^h \subseteq \ldots$ is an ascending chain of homogeneous principal ideals in R[X]. Hence the chain becomes stable, say $(f_n)^h = (f_{n+1})^h$ = De-homogenizing the chain we get that $(f_n)^{ha} = (f_{n+1})^{ha} = ...$ in R. But since for any ideal I in R, $I^{ha} = I$, we have $(f_n) = (f_{n+1}) = \dots$ Thus R satisfies the ascending chain condition on principal ideals. We remark that this same proof also applies to Z-graded UFD's.

Suppose that R is a graded π -domain where R_0 is quasi-local. Then every homogeneous invertible ideal of R is principal. Hence R is a graded UFD and hence a UFD.

THEOREM 6. A graded π -domain $R = R_0 \oplus R_1 \oplus \ldots$ is a π -domain.

Proof. Let M be a maximal ideal of R and let $M_0 = M \cap R_0$. Then $R_{(R_0-M_0)}$ is a π -domain with $R_{(R_0-M_0)}$ quasi-local. By Theorem 5, $R_{(R_0-M_0)}$ is a UFD and hence R_M is a UFD. Thus R is locally a UFD. We show that R is a Krull domain. Since R is locally a UFD, R_P is a DVR for every rank one prime P in R and $R = \bigcap R_P$ where the intersection runs over all rank one primes of

R. Let $0 \neq x \in R$ be a nonunit. We must show that *x* is contained in only finitely many rank one primes of *R*. If *x* is homogeneous, the result is clear, so suppose that *x* is not homogeneous. Since a homogeneous component of *x* can be contained in only finitely many rank one homogeneous prime ideals, *x* can be contained in only finitely many rank one homogeneous prime ideals of *R*. Now any rank one non-homogeneous prime ideal *Q* containing *x* must satisfy $Q \cap R_0 = 0$ (since rank Q = 1, Q^* , the prime ideal generated by the homogeneous elements of *Q*, must be 0). Putting $S = R_0 - \{0\}$, $R_S = R_{0_S} \oplus T_{1_S} \oplus \ldots$ is a graded π -domain with R_{0_S} a field, so R_S is a graded UFD and hence a UFD. Thus xR_S is contained in only finitely many rank one primes and hence the same is true of xR.

THEOREM 7. Let $R = R_0 \oplus R_1 \oplus \ldots$ be a graded ring in which every ideal generated by two homogeneous elements is a product of homogeneous prime ideals. Then R is a general ZPI ring. Further, R is a finite direct product of the following types of (graded) general ZPI rings: (1) R_0 a special principal ideal ring and $0 = R_1 \oplus R_2 \oplus \ldots$, (2) R_0 a Dedekind domain and $0 = R_1 \oplus R_2 \oplus \ldots$, (3) R_0 a field (a) $0 = R_1 \oplus R_2 \oplus \ldots$, (b) $R \approx R_0[X]$, (c) $R \approx R_0[X]/(X^n)$.

Proof. It is easily seen that in R_0 every ideal generated by two elements is a product of prime ideals. Hence R_0 is a general ZPI-ring and hence by Theorem 3 is a finite direct product of special principal ideal rings and Dedekind domains. Thus we see that R is a finite direct product of graded rings where the zero coordinate is either a special principal ideal ring or a Dedekind domain. If R_0 is a special principal ideal ring, then $0 = R_1 \oplus R_2 \oplus \ldots$ by Lemma 2. Thus we may assume that R_0 is a field or a Dedekind domain. If R_0 is a field, but R is not a domain, then $R \approx R_0[X]/(X^n)$ by Lemma 4. So suppose that Ris a domain and $0 \neq R_1 \oplus R_2 \oplus \ldots$ By Lemma 4.8 [2], we see that $R_1 \oplus$ $R_2 \oplus \ldots$ is a principal prime ideal and hence $R \approx R_0[X]$. We are reduced to the case where R_0 is a Dedekind domain. It is easily seen that the rings occurring in case (3) of Theorem 4 do not satisfy the hypothesis of the Theorem. Thus R must be a domain. By Theorem 4.9 [2] we see that every homogeneous non-zero prime ideal in R is maximal. Thus since $0 \subseteq R_1 \oplus R_2 \oplus \ldots \subsetneq M \oplus$ $R_1 \oplus R_2 \ldots$ for any maximal ideal M of R_0 , we must have $0 = R_1 \oplus R_2 \oplus \ldots$

References

- 1. D. D. Anderson, A remark on the lattice of ideals of a Prüfer domain, Pacific J. Math. 57 (1975), 323-324.
- 2. Abstract commutative ideal theory without chain condition, Algebra Universalis 6 (1976), 131-145.
- **3.** Multiplication ideals, multiplication rings, and the ring R(X), Can. J. Math. 28 (1976), 760-768.
- 4. ——— Some remarks on the ring R(X), Comment. Math. Univ. St. Pauli 26 (1977), 137-140.
- 5. N. Bourbaki, Commutative algebra (Addison-Wesley, Reading, Mass., 1972).
- 6. R. Fossum, The divisor class group of a Krull domain (Springer-Verlag, New York, 1973).
- 7. R. Gilmer, Multiplicative ideal theory (Marcel Dekker, Inc., New York, 1972).

GRADED π -RINGS

- 8. I. Kaplansky, *Commutative rings* (Allyn and Bacon, Boston, 1969).
- 9. K. Levitz, A characterization of general ZPI-rings, Proc. Amer. Math. Soc. 32 (1972), 376-380.
- 10. A characterization of general ZPI-rings II, Pacific J. Math. 42 (1972), 147-151.
- 11. J. Matijevic, Three local conditions on a graded ring, Trans. Amer. Math. Soc. 205 (1975), 275-284.
- S. Mori, Über die produktzerlegung der hauptideale I, J. Sci. Hiroshima Univ. (A), 8 (1938), 7-13.
- Über die produktzerlegung der hauptideale II, J. Sci. Hiroshima Univ. (A), 9 (1939), 145–155.
- 14. Über die produktzerlegung der hauptideale III, J. Sci. Hiroshima Univ. (A), 10 (1940), 85–94.
- 15. Über die produktzerlegung der hauptideale IV, J. Sci. Hiroshima Univ. (A), 11 (1941), 7-14.
- 16. Allegemeine Z.P.I.-ringe, J. Sci. Hiroshima Univ. (A), 10 (1941), 117-136.
- 17. O. Zariski and P. Samuel, Commutative algebra, Vol. II (Van Nostrand, New York, 1960).

The University of Iowa, Iowa City, Iowa; University of Southern California, Los Angeles, California