GRADED $\boldsymbol{\pi}$-RINGS

D. D. ANDERSON AND J. MATIJEVIC

1. Introduction. All rings considered will be commutative with identity. By a graded ring we will mean a ring graded by the non-negative integers.
A ring R is called a π-ring if every principal ideal of R is a product of prime ideals. A π-ring without divisors of zero is called a π-domain. A graded ring (domain) is called a graded π-ring (-domain) if every homogeneous principal ideal is a product of homogenous prime ideals. A ring R is called a general ZPI-ring if every ideal is a product of primes. A graded ring is called a graded general ZPI-ring if every homogenous ideal is a product of homogeneous prime ideals.

In Section 2 we review the known results about (ungraded) π-rings and general ZPI-rings. Eight characterizations of π-domains are given, several of which are new. The characterization to be used in Section 3 is that a domain D is a π-domain if and only if D is locally a UFD (D_{M} is a UFD for every maximal ideal M of D) and D is a Krull domain.

In Section 3 we investigate graded π-rings. We show that a graded π-ring is a finite direct product of special principal ideal rings, graded π-domains and a special type of graded π-ring which is not a π-ring. We show that a graded π-domain is actually a π-domain. We also show that a graded general ZPI-ring is a general ZPI-ring.

The authors wish to thank the referee for several helpful suggestions.
Section 2. The ungraded case. Mori has completely characterized the structure of π-rings in a series of four papers [12]-[15]. We state this characterization as Theorem 1, the proof of which may also be found in [7].

Theorem 1. A ring R is a π-ring if and only if R is a finite direct product of π-domains and special principal ideal rings.

Thus the study of π-rings is essentially reduced to the study of π-domains. Next we give eight characterizations of π-domains.

Theorem 2. For a domain D the following conditions are equivalent:
(1) D is a π-domain, (2) every principal ideal is a product of invertible prime ideals, (3) every invertible ideal is a product of invertible prime ideals, (4) every nonzero prime ideal contains an invertible prime ideal, (5) D is locally a UFD and the minimal primes are finitely generated, (6) D is locally a UFD and a Krull domain, (7) D is a Krull domain with the minimal primes being invertible, (8) $D(X)$ is a UFD.

Proof. (1) $\Rightarrow(2)$: Any factor of a principal ideal is invertible. (2) $\Rightarrow(4)$: Let P be a nonzero prime ideal and let $0 \neq x \in P$. Then $(x)=P_{1} \ldots P_{n}$ a product of invertible prime ideals. Since P is prime, some $P_{i} \subset P$ and P_{i} is invertible. (4) $\Rightarrow(3)$: The proof then is similar to the proof of Theorem $5 \quad[8]$ but using "generalized" multiplicatively closed sets. (Also see Theorem 4.6 [2]). As $(3) \Rightarrow(1)$ is trivial, we see that $(1)-(4)$ are equivalent. $(1) \Rightarrow(5)$: A localization of a π-domain is a π-domain and in a quasi-local domain, invertible ideals are principal. $(5) \Rightarrow(1)$: Since D is locally a UFD, every nonzero prime contains a minimal prime P, which is by hypothesis finitely generated. Since P is finitely generated and locally principal, P is invertible. That (1) implies (6) is clear. $(6) \Rightarrow(1)$: Let $0 \neq x \in D$ be a nonunit. We show that $x D$ is a product of prime ideals. Since D is a Krull domain, $x D=P_{1}{ }^{\left(n_{1}\right)} \cap \ldots \cap P_{s}{ }^{\left(n_{s}\right)}$ where P_{1}, \ldots, P_{s} are the rank one primes containing x. We show that $x D=$ $P_{1}{ }^{n_{1}} \ldots P_{s}^{n_{s}}$ locally. Let M be a fixed maximal ideal of D. If $P_{i} \not \subset M$, then $P_{i_{M}}{ }^{\left(n_{i}\right)}=D_{M}=P_{i_{M}}{ }^{n_{i}}$. If $P_{i} \subseteq M$, then $P_{i_{M}}$ is a rank one prime in the UFD D_{M} and hence is principal. Thus $P_{i_{M}}{ }^{n_{i}}$ is primary and hence $P_{i_{M}}{ }^{n_{i}}=$ $P_{i_{M}}{ }^{\left(n_{i}\right)}$. Since the $P_{i_{M}}$'s are principal,

$$
\begin{aligned}
x D_{M}=P_{1_{M}}{ }^{\left(n_{1}\right)} \cap \ldots \cap P_{s_{M}}^{\left(n_{s}\right)}= & P_{1_{M}}^{n_{1}} \cap \ldots \cap P_{s_{M}}{ }^{n_{s}} \\
& =P_{1_{M}}{ }^{n_{1}} \ldots P_{s_{M}}{ }^{n_{s}}=\left(P_{1}^{n_{1}} \ldots P_{s}^{n_{s}}\right)_{M} .
\end{aligned}
$$

Thus $(6) \Rightarrow(1)$. It is clear that $(1)-(6) \Rightarrow(7)$ and that $(7) \Rightarrow(6)$. If D is a π-domain, then $D[X]$ is also a π-domain as is easily seen from the equivalence of (1) and (6). Thus $D(X)=D[X]_{S}$ is a π-domain where $S=\{f \in D[X] \mid$ $\left.A_{f}=D\right\}$ and A_{f} is the content of f. Since every invertible ideal in $D(X)$ is principal (Theorem $2[4]$), $D(X)$ is a UFD. Hence (1) $\Rightarrow(8)$. Conversely, suppose that $D(X)$ is a UFD. By Proposition $6.10[6], D$ is a Krull domain and every rank one prime ideal of D is invertible. Hence D is a π-domain.

Theorem 2 supports our philosophy that a π-domain is just a UFD where invertible ideals have taken the place of principal ideals. Thus π-domains are related to UFD's in a manner similar to the way that Dedekind domains are related to PID'S. One question of interest is: Given a π-domain D, does there exist a UFD D^{\prime} such that D and D^{\prime} have isomorphic lattices of ideals? (See [1] and [3] for a discussion of this question.)

The equivalence of (1), (5), and (7) appears as Theorem 46.7 [7, page 573].
The following theorem characterizes general ZPI-rings. The equivalence of (1) and (2) is due to Mori [16] and the equivalence of (1) and (3) to Levitz [9], [10]. Also see [7].

Theorem 3. For a ring R the following statements are equivalent:
(1) R is a general ZPI-ring, (2) every ideal of R generated by two elements is a product of prime ideals, (3) R is a finite direct product of Dedekind domains and special principal ideal rings.

Section 3. The graded case. In this section we consider graded π-rings and graded \rightarrow general ZPI-rings of the form $R=R_{0} \oplus R_{1} \oplus R_{2} \oplus \ldots$ Our characterization of graded π-rings will be given by a number of lemmas. Our first lemma follows directly from Theorem 1.

Lemma 1. Suppose that $R=R_{0} \oplus R_{1} \oplus \ldots$ is a graded π-ring. Then R_{0} is a π-ring. Moreover, R is a finite direct product of graded π-rings each of which has for its zero component a π-domain or a special principal ideal ring.

The case where R_{0} is a special principal ideal ring is easily handled.
Lemma 2. Suppose that $R=R_{0} \oplus R_{1} \oplus \ldots$ is a graded π-ring where R_{0} is a special principal ideal ring. Then $0=R_{1} \oplus R_{2} \oplus \ldots$.

Proof. Let $0 \neq p R_{0}$ be the unique prime ideal of R_{0} and suppose that $p^{n}=0$. Let $a \in R_{1}$, then $a R$ is a product of homogeneous prime ideals. Since the zero degree part of any homogeneous prime ideal must be $p R_{0}$, we see that $R_{1}=p R_{1}$. Hence $R_{1}=p^{n} R_{1}=0$. By induction $R_{m}=0$ for $m>0$.

Thus we are reduced to the case where R_{0} is a π-domain.
Lemma 3. Let $R=R_{0} \oplus R_{1}$. . be a graded π-ring. Then any rank zero prime P in R is a "homogeneous" multiplication ideal (i.e., $A \subseteq P$ with A homogeneous implies $A=B P$ for some homogeneous ideal B of R.) Furthermore, $P \cap R_{0}$ is a multiplication ideal of R_{0}.

Proof. It is well-known that a rank zero prime in a graded ring is homogeneous. Let $A \subseteq P$ be a homogeneous ideal and let $A=\left(x_{\alpha}\right)$ where x_{α} is homogeneous. Then $x_{\alpha} R=P_{\alpha_{1}} \ldots P_{\alpha_{t}}$ is a product of homogeneous prime ideals. Now rank $P=0$ implies some $P_{\alpha i}=P$ so that $x_{\alpha} R=P B_{\alpha}$ for some homogeneous ideal B_{α}. Hence $A=\left(x_{\alpha}\right)=\sum P B_{\alpha}=P\left(\sum B_{\alpha}\right)$. It is easily seen that $P \cap R_{0}$ is a multiplication ideal in R_{0}.

Lemma 4. Let $R=R_{0} \oplus R_{1} \oplus \ldots$. be a graded π-ring where R_{0} is a field. Then R is a domain or $R \approx R_{0}[X] /\left(X^{n}\right)$ for some $n>1$ where X ix an indeterminate over R_{0} assigned positive degree.

Proof. Suppose that R is not a domain. Now $M=R_{1} \oplus R_{2} \oplus \ldots$ is the unique maximal homogeneous ideal of R . We show that rank $M=0$. Now since (0) is a finite product of (homogeneous) primes, R has only a finite number of minimal primes P_{1}, \ldots, P_{n}, each of which is homogeneous. Assume that $P_{i} \subsetneq M$ for $i=1, \ldots, n$. We set $A=P_{1} \cap \ldots \cap P_{n}$ and $\bar{R}=R / A$. It is easy to see that $Z(\bar{R})=P_{1} / A \cup \ldots \cup P_{n} / A$ (here $Z(\bar{R})$ denotes the zero-divisors of \bar{R}.) By Prop. 8 [5, p. 161] there exists a homogeneous element $m \in M-\left(P_{1} \cup \ldots \cup P_{n}\right)$ and $\bar{m}=m+A$ is a regular element of \bar{R}. Let $(m)=Q_{1} \ldots Q_{t}$ be a prime factorization of (m) into a product of homogeneous prime ideals. Then $(\bar{m})=\bar{Q}_{1} \ldots \bar{Q}_{t}$ is a prime factorization of (\bar{m}) in
\bar{R}. Since \bar{m} is regular, the ideal \bar{Q}_{1} is invertible and \bar{Q}_{1} properly contains some \bar{P}_{i}. Therefore $\bar{P}_{i}=\bar{P}_{i} \bar{Q}_{1}$ and hence $\bar{P}_{i}=\bar{P}_{i} \bar{M}$. Suppose that $\bar{P}_{i} \neq 0$. Then there exists a nonzero homogeneous element $y \in \bar{P}_{i}$. By Lemma 3, $(y)=B \bar{P}_{i}$ for some homogeneous ideal B. Hence $(y)=B \bar{P}_{i}=B\left(\bar{P}_{i} \bar{M}\right)=\left(B \bar{P}_{i}\right) \bar{M}=$ (y) \bar{M}. Thus $\bar{R}=\bar{M}+(\overline{0}: y)$. But since y is a nonzero homogeneous element, $(\overline{0}: y)$ is a proper homogeneous ideal and hence $(\overline{0}: y) \subseteq \bar{M}$, the unique maximal homogeneous ideal of \bar{R}. Thus $\bar{P}_{i}=\overline{0}$. Hence $P_{i}=A$ so R has a unique prime P of rank zero. Thus R / P is a graded π-domain, in fact since $(R / P)_{0}=R_{0}$ is a field, R / P is a graded UFD and hence a UFD (Theorem 5). Choose a homogeneous non-zero prime element $q+P$ of R / P. If $(q)=Q_{1} \ldots$ Q_{t} is a homogeneous prime factorization of (q) in R, then $(\bar{q})=\bar{Q}_{1} \ldots \bar{Q}_{t}$ is the prime factorization of (\bar{q}) in R / P. Consequently $t=1$ and (q) is a homogeneous prime ideal of R with $P \subsetneq(q) \subseteq M$. Hence $P=P(q)$ and so $P=P M$. As before, this implies that $P=0$. This contradiction shows that M is the unique minimal prime ideal of R and hence the unique homogeneous prime ideal of R. We show that M is principal. Let $M=\left(x_{\alpha}\right)$ where x_{α} is homogeneous. By Lemma 3, $\left(x_{\alpha}\right)=M B_{\alpha}$ where B_{α} is some homogeneous ideal. Hence $M=\sum\left(x_{\alpha}\right)=\sum M B_{\alpha}=M\left(\sum B_{\alpha}\right)$. If $\sum B_{\alpha}=R$, then some $B_{\alpha 0}=R$ so $M=\left(x_{\alpha_{0}}\right)$ is principal. Otherwise $M=M^{2}$ and the argument used above shows that $M=0$. Let X be an indeterminate over R_{0} assigned the degree of $x_{\alpha_{0}}$. Then the graded homomorphism $f: R_{0}[X] \rightarrow R$ given by $X \rightarrow x_{0}$ is clearly onto. Since M is the unique homogeneous prime of R, there exists an $n>0$ such that $M^{n}=0$, but $M^{n-1} \neq 0$. Thus ker $f=\left(X^{n}\right)$ so $R \approx R_{0}[X] /\left(X^{n}\right)$.

Lemma 5. Let $R=R_{0} \oplus R_{1} \oplus \ldots$ be a graded π-ring where $\left(R_{0}, M_{0}\right)$ is a quasi-local domain but not a field. Then R is either a domain or R_{0} is a DVR and $R \approx R_{0}[X] / A$ where A is a homogeneous ideal with $\sqrt{ } A=X M_{0}[X]$.

Proof. First suppose that $\operatorname{dim} R_{0}>1$. Then R_{0} is a quasi-local UFD with an infinite number of principal primes. Assume that R is not a domain, so that R has a finite number of minimal primes P_{1}, \ldots, P_{n}. By Lemma $3, P_{i} \cap R_{0}$ is a multiplication ideal, so each $P_{i} \cap R_{0}$ is either 0 or a principal prime. Thus we can choose a homogeneous element in $M_{0} \oplus R_{1} \oplus R_{2} \oplus \ldots$, but not in P_{1}, \ldots, P_{n}. Proceeding as in Lemma 4, we get that R must be a domain. Thus we may suppose that $\operatorname{dim} R_{0}=1$, so that R_{0} must be a DVR. Since R_{0} is a domain, $Q=R_{1} \oplus R_{2} \oplus \ldots$ is a prime ideal. We show that rank $Q=0$. Let $S=R_{0}-\{0\}$, then $R_{S}=R_{0_{S}} \oplus R_{1_{S}} \oplus \ldots$ is a graded π-ring with $R_{0_{S}}$ a field. Hence by Lemma 4, R_{S} contains a unique minimal prime, and hence R must contain a unique minimal prime P with $P \cap R_{0}=0$. Let $M_{0}=p R_{0}$. Now $p R$ is a product of homogeneous primes and hence itself must be prime. Now $p R$ must be minimal. For if $P^{\prime} \subsetneq p R$ is a prime, then either $P^{\prime} \cap R_{0}=0$ so $p R \supseteq P^{\prime} \supseteq P$ or $P^{\prime} \cap R_{0}=p R_{0}$ so $P^{\prime} \supseteq p R$. If $p R \supset P$, then P would be the unique minimal prime of R. Passing to R / P we see that this would imply that $P=(0)$ and thus R would be a domain. Thus R has exactly two minimal primes: $p R$ and P. As in Lemma 4, we see that P is principal. Suppose that
$Q \supsetneq P$. Then by Proposition 8 [5, page 161], there exists a homogeneous element $m \in p R_{0} \oplus R_{1} \oplus \ldots$, but not in $p R$ or P. Proceeding as in Lemma 4, we see that $R / p R \cap P$ must have a unique minimal prime. This contradiction shows that $Q=P$. Thus $P=Q=R_{1} \oplus R_{2} \oplus \ldots$ is principal. The result now follows as in Lemma 4.

Lemma 6. Let $R=R_{0} \oplus R_{1} \oplus \ldots$ be a graded π-ring where R_{0} is a domain but not a field. Then either R is a domain or $R \approx R_{0}[X] / A$ where A is a homogeneous ideal of $R_{0}[X]$ with $\sqrt{ } A=X M_{1} \ldots M_{n}[X]$ where M_{1}, \ldots, M_{n} are invertible maximal ideals of R_{0}.

Proof. Assume that R is not a domain. Let $S=R_{0}-\{0\}$, then R_{S} is a graded π-ring with $R_{0_{S}}$ a field, so that R_{S} is a domain or is isomorphic to $R_{0}[X] /\left(X^{n}\right)$ and hence contains a unique minimal prime. Hence R contains a unique minimal (necessarily homogeneous) prime P with $P \cap R_{0}=0$. Let M_{0} be a maximal ideal of R_{0} and put $S\left(M_{0}\right)=R_{0}-M_{0}$. Then $R_{S\left(M_{0}\right)}$ is a graded π-ring so $R_{S\left(M_{0}\right)}$ is a domain or $P_{S\left(M_{0}\right)}=\left(R_{1} \oplus R_{2} \oplus \ldots\right)_{S\left(M_{0}\right)}$. In the latter case $P=R_{1} \oplus R_{2} \oplus \ldots$ (for both are prime ideals of R). Suppose that $P \neq R_{1} \oplus R_{2} \oplus \ldots$. Then we may assume that $R_{S\left(M_{0}\right)}$ is a domain for every maximal ideal M_{0} of R_{0}. Thus $P_{S\left(M_{0}\right)}=0_{S\left(M_{0}\right)}$ for every maximal ideal M_{0} of R_{0}, so that $P_{M}=0_{M}$ for every homogeneous maximal ideal of R. Hence $P=0$ and R is a domain. This contradiction shows that $P=R_{1} \oplus R_{2} \oplus \ldots$ is the unique minimal prime ideal of R contracting to 0 in R_{0}.

Suppose that P, P_{1}, \ldots, P_{n} are the minimal prime ideals of $R(n>0$ since R is not a domain). Then $P_{i}{ }^{\prime}=P_{i} \cap R_{0} \neq 0$ is a multiplication ideal in the domain R_{0}. Thus $P_{i}{ }^{\prime}$ is invertible [7, page 77]. Let M be a maximal ideal of R_{0} containing $P_{i}{ }^{\prime}$ and put $S=R_{0}-M$. Then $P_{i S}$ and P_{S} are distinct minimal primes in R_{S}. By Lemma $5, R_{0_{S}}$ must be a DVR and hence we see that each $P_{i}{ }^{\prime}$ is also a maximal ideal in R_{0}. Also, $P_{i}{ }^{\prime} R$ and P_{i} are homogeneous ideals that are equally locally at the maximal homogeneous ideals of R. Thus $P_{i}{ }^{\prime} R=$ P_{i}. We next show that $P=R_{1} \oplus R_{2} \oplus \ldots$ is principal. Let M be a maximal homogeneous ideal containing P. Let $M_{0}=M \cap R_{0}$ and $S=R_{0}-M_{0}$. If $P_{i} \subseteq M$ for some i, then R_{S} contains two minimal prime ideals. By Lemma 5 , $M=P_{i}{ }^{\prime} \oplus R_{1} \oplus R_{2} \oplus \ldots$ If $P_{i} \not \subset M$ for all $i=1, \ldots, n$, then P_{S} is the unique minimal prime ideal of R_{S} and hence R_{S} is a domain. Then $P_{M}=0_{M}$. Thus $P_{M}=0_{M}$ for almost all maximal homogeneous ideals M of R. An easy modification of Theorem $2[3]$ shows that P is principal. Thus $R \approx R_{0}[X] / A$ where A is a homogeneous ideal of $R_{0}[X]$. Since $\sqrt{ } 0=P \cap P_{1} \cap \ldots \cap P_{n}$ in R, we have $\sqrt{ } A=(X) \cap P_{1}{ }^{\prime}[X] \cap \ldots \cap P_{n}{ }^{\prime}[X]=X P_{1}{ }^{\prime} \ldots P_{n}{ }^{\prime}[X]$ in $R_{0}[X]$.

Lemma 7. Let R_{0} be a π-domain that is not a field. Suppose that A is a homogeneous ideal of $R_{0}[X]$ with $\sqrt{ } A=X M_{1} \ldots M_{n}[X]$ where $\left\{M_{1}, \ldots, M_{n}\right\}$ is a (possibly empty) set of invertible maximal ideals of R_{0}. Then $R=R_{0}[X] / A$ is a graded π-ring if and only if $A=X^{s} M_{1}^{s_{1}} \ldots M_{n}^{s_{n}}[X] B$ where s, s_{1}, \ldots, s_{n} are
positive integers, B is a (possibly vacuous) product of $M_{i}[X]+(X)$-primary ideals and $s=1$ unless $\left\{M_{1}, \ldots, M_{n}\right\}$ is the set of all maximal ideals of $R . R$ is a π-ring if and only if $A=(X)$.

Proof. Suppose that $A=X^{s^{s}} M^{s_{1}} \ldots M^{s_{n}}[X] B$. Then the ideals $\bar{X} R, \quad M_{1} R$, $\ldots, M_{n} R$ are prime ideals in R. If N is another invertible prime ideal in R_{0}, then $N[X]$ and $M_{1}{ }^{s_{1}} \ldots M_{n}{ }^{s_{n}}[X] B$ are comaximal. Thus

$$
\begin{aligned}
N[X]+M_{1}^{s_{1}} \ldots M_{n}^{s_{n}}[X] B=R[& X] \text { so } \\
& X N[X]+X M_{1}^{s_{1}} \ldots M_{n}^{s_{n}}[X] B=(X) .
\end{aligned}
$$

Since in this case $s=1, N[X]+A=N[X]+(X)$ so $N R$ is also a prime ideal in R. Since every homogeneous element of R has the form $r \bar{X}^{m}$ where $r \in R_{0}$ and $\bar{X}=X+A, R$ is a graded π-ring.

Conversely, suppose that R is a graded π-ring. Now A has a homogeneous primary decomposition with minimal primes $(X), M_{1}[X], \ldots, M_{n}[X]$. Since each of these primes is invertible, the primary ideals belonging to these minimal primes are prime powers. From Lemma 5 we see that $M_{i}[X]+(X), \quad i=1$, \ldots, n are the only possible embedded prime ideals. Thus

$$
A=(X)^{s} \cap M_{1}^{s_{1}}[X] \cap \ldots \cap M_{n}^{s_{n}}[X] \cap Q_{1} \cap \ldots \cap Q_{n}
$$

where Q_{i} is either $M_{i}[X]+(X)$-primary or $R_{0}[X]$. Since $(X)^{s}, \quad M_{1}{ }^{s_{1}}[X], \ldots$, $M_{n}{ }^{s_{n}}[X]$ are invertible primary ideals, we have

$$
(X)^{s} \cap M_{1}^{s_{1}}[X] \cap \ldots \cap M_{n}^{s_{n}}[X]=(X)^{s} M_{1}^{s_{1}}[X] \ldots M_{n}^{s_{n}}[X] .
$$

Hence

$$
\begin{aligned}
& A=(X)^{s} M_{1}^{s_{1}}[X] \ldots M_{n}^{s_{n}}[X] \cap Q_{1} \cap \ldots \cap Q_{n} \\
& \quad=(X)^{s} M_{1}^{s_{1}}[X] \ldots M_{n}^{s_{n}}[X]\left(Q_{1} \cap \ldots \cap Q_{n}:(X)^{s} M_{1}^{s_{1}}[X] \ldots M_{n}^{s_{n}}[X]\right) .
\end{aligned}
$$

But

$$
\begin{aligned}
& \left(Q_{1} \cap \ldots \cap Q_{n}:(X)^{s} M_{1}^{s_{1}}[X] \ldots M_{n}^{s_{n}}[X]\right) \\
& \quad=\bigcap_{i=1}^{n}\left(Q_{i}:(X)^{s} M_{1}^{s_{1}}[X] \ldots M_{n}^{s_{n}}[X]\right. \text { and } \\
& Q_{i}{ }^{\prime}=Q_{i}:(X)^{s} M_{1}^{s_{1}}[X] \ldots M_{n}^{s_{n}}[X]
\end{aligned}
$$

is either $M_{i}[X]+(X)$-primary or $R_{0}[X]$. Since $Q_{1}{ }^{\prime}, \ldots, Q_{n}{ }^{\prime}$ are comaximal, $Q_{1}{ }^{\prime} \cap \ldots \cap Q_{n}{ }^{\prime}=Q_{1}{ }^{\prime} \ldots Q_{n}{ }^{\prime}$. Suppose that M is a maximal ideal of R_{0} other than M_{1}, \ldots, M_{n}. Then $R_{\left(R_{0}-M\right)}=R_{0_{M}}[X] /(X)^{s} R_{0_{M}}$ is a graded π-ring. By Lemma 5 this is not possible unless $R_{\left(R_{0}-M\right)}$ is a domain, that is, $s=1$.

Clearly if $A=(X), \quad R=R_{0}[X] / A$ is a π-domain. If $A \neq(X)$, then R is not a domain. Since R is indecomposable, R cannot be a π-ring.

Thus we have established
Theorem 4. Let $R=R_{0} \oplus R_{1} \oplus \ldots$ be a graded π-ring. Then R is a finite direct product of graded π-domains and special graded π-rings of the following types:
(1) special principal ideal rings (ungraded), (2) $k[X] /\left(X^{n}\right), \quad k$ a field, X an indeterminate assigned positive degree, (3) $D[X] / A$ where D is a π-domain, X is an indeterminate over D assigned positive degree and A is a homogeneous ideal of $D[X]$ with

$$
A=X^{s} M_{1}^{s_{1}}[X] \ldots M_{n}^{s_{n}}[X] B
$$

where s, \ldots, s_{n} are positive integers, $\left\{M_{1}, \ldots, M_{n}\right\}$ is a (possibly empty) set of invertible maximal ideals of D and B is a (possibly vacuous) product of $M_{i}[X]$ $+(X)$-primary ideals. If M_{1}, \ldots, M_{n} are not all the invertible prime ideals of D, then $s=1$.

We are now reduced to the case where $R=R_{0} \oplus R_{1} \oplus \ldots$ is a graded π-domain.

Theorem 5. Let $R=R_{0} \oplus R_{1} \oplus \ldots$ If R is a graded UFD, then R is a UFD. If R is a graded π-domain where R_{0} is quasi-local, then R is a graded UFD and hence a UFD.

Proof. We may assume that $R \neq R_{0}$. Let S be the set of homogeneous non-zero elements of R. Now S is a multiplicatively closed set in R generated by the non-zero homogeneous principal primes. By Lemma $1.2[\mathbf{1 1}], R_{S}$ is isomorphic to $K\left[u, u^{-1}\right]$ where K is a field and u is transcendental over K. Thus R_{S} is a UFD. By Nagata's Lemma to show that R is a UFD it is sufficient to show that R satisfies ACC on principal ideals. Let $\left(f_{1}\right) \subseteq\left(f_{2}\right) \subseteq\left(f_{3}\right) \subseteq \ldots$ be an ascending chain of principal ideals in R. Surely R satisfies ACC on principal homogeneous ideals. It is easily verified that $R[X]$ satisfies ACC on homogeneous principal ideals when X is an indeterminate assigned degree 1 . We homogenize the chain of principal ideals to $R[X]$ and then de-homogenize them back into R (for the process of homogenization see [11] or [17, p. 179]). Thus $\left(f_{1}\right)^{h} \subseteq\left(f_{2}\right)^{h} \subseteq\left(f_{3}\right)^{h} \subseteq \ldots$ is an ascending chain of homogeneous principal ideals in $R[X]$. Hence the chain becomes stable, say $\left(f_{n}\right)^{h}=\left(f_{n+1}\right)^{h}$ $=\ldots$. De-homogenizing the chain we get that $\left(f_{n}\right)^{n a}=\left(f_{n+1}\right)^{h a}=\ldots$ in R. But since for any ideal I in $R, \quad I^{\text {ha }}=I$, we have $\left(f_{n}\right)=\left(f_{n+1}\right)=\ldots$ Thus R satisfies the ascending chain condition on principal ideals. We remark that this same proof also applies to Z-graded UFD's.

Suppose that R is a graded π-domain where R_{0} is quasi-local. Then every homogeneous invertible ideal of R is principal. Hence R is a graded UFD and hence a UFD.

Theorem 6. A graded π-domain $R=R_{0} \oplus R_{1} \oplus \ldots$ is a π-domain.
Proof. Let M be a maximal ideal of R and let $M_{0}=M \cap R_{0}$. Then $R_{\left(R_{0}-M_{0}\right)}$ is a π-domain with $R_{\left(R_{0}-M_{0}\right)}$ quasi-local. By Theorem $5, R_{\left(R_{0}-M_{0}\right)}$ is a UFD and hence R_{M} is a UFD. Thus R is locally a UFD. We show that R is a Krull domain. Since R is locally a UFD, R_{P} is a DVR for every rank one prime P in R and $R=\cap R_{P}$ where the intersection runs over all rank one primes of
R. Let $0 \neq x \in R$ be a nonunit. We must show that x is contained in only finitely many rank one primes of R. If x is homogeneous, the result is clear, so suppose that x is not homogeneous. Since a homogeneous component of x can be contained in only finitely many rank one homogeneous prime ideals, x can be contained in only finitely many rank one homogeneous prime ideals of R. Now any rank one non-homogeneous prime ideal Q containing x must satisfy $Q \cap R_{0}=0$ (since rank $Q=1, \quad Q^{*}$, the prime ideal generated by the homogeneous elements of Q, must be 0). Putting $S=R_{0}-\{0\}, \quad R_{S}=R_{0_{S}} \oplus$ $T_{1_{S}} \oplus \ldots$ is a graded π-domain with $R_{0_{S}}$ a field, so R_{S} is a graded UFD and hence a UFD. Thus $x R_{S}$ is contained in only finitely many rank one primes and hence the same is true of $x R$.

Theorem 7. Let $R=R_{0} \oplus R_{1} \oplus \ldots$ be a graded ring in which every ideal generated by two homogeneous elements is a product of homogeneous prime ideals. Then R is a general ZPI ring. Further, R is a finite direct product of the following types of (graded) general ZPI rings: (1) R_{0} a special principal ideal ring and $0=R_{1} \oplus R_{2} \oplus \ldots$, (2) R_{0} a Dedekind domain and $0=R_{1} \oplus R_{2} \oplus \ldots$, (3) R_{0} a field (a) $0=R_{1} \oplus R_{2} \oplus \ldots$, (b) $R \approx R_{0}[X],(c) R \approx R_{0}[X] /\left(X^{n}\right)$.

Proof. It is easily seen that in R_{0} every ideal generated by two elements is a product of prime ideals. Hence R_{0} is a general ZPI-ring and hence by Theorem 3 is a finite direct product of special principal ideal rings and Dedekind domains. Thus we see that R is a finite direct product of graded rings where the zero coordinate is either a special principal ideal ring or a Dedekind domain. If R_{0} is a special principal ideal ring, then $0=R_{1} \oplus R_{2} \oplus \ldots$ by Lemma 2 . Thus we may assume that R_{0} is a field or a Dedekind domain. If R_{0} is a field, but R is not a domain, then $R \approx R_{0}[X] /\left(X^{n}\right)$ by Lemma 4 . So suppose that R is a domain and $0 \neq R_{1} \oplus R_{2} \oplus \ldots$. By Lemma 4.8 [2], we see that $R_{1} \oplus$ $R_{2} \oplus \ldots$ is a principal prime ideal and hence $R \approx R_{0}[X]$. We are reduced to the case where R_{0} is a Dedekind domain. It is easily seen that the rings occurring in case (3) of Theorem 4 do not satisfy the hypothesis of the Theorem. Thus R must be a domain. By Theorem 4.9 [2] we see that every homogeneous non-zero prime ideal in R is maximal. Thus since $0 \subseteq R_{1} \oplus R_{2} \oplus \ldots \subsetneq M \oplus$ $R_{1} \oplus R_{2} \ldots$ for any maximal ideal M of R_{0}, we must have $0=R_{1} \oplus R_{2} \oplus \ldots$.

References

1. D. D. Anderson, A remark on the lattice of ideals of a Prüfer domain, Pacific J. Math. 57 (1975), 323-324.
2. - Abstract commutative ideal theory without chain condition, Algebra Universalis 6 (1976), 131-145.
3. - Multiplication ideals, multiplication rings, and the ring $R(X)$, Can. J. Math. 28 (1976), 760-768.
4. -_Some remarks on the ring $R(X)$, Comment. Math. Univ. St. Pauli 26 (1977), 137-140.
5. N. Bourbaki, Commutative algebra (Addison-Wesley, Reading, Mass., 1972).
6. R. Fossum, The divisor class group of a Krull domain (Springer-Verlag, New York, 1973).
7. R. Gilmer, Multiplicative ideal theory (Marcel Dekker, Inc., New York, 1972).
8. I. Kaplansky, Commutative rings (Allyn and Bacon, Boston, 1969).
9. K. Levitz, A characterization of general ZPI-rings, Proc. Amer. Math. Soc. 32 (1972), 376-380.
10. ——A characterization of general ZPI-rings II, Pacific J. Math. 42 (1972), 147-151.
11. J. Matijevic, Three local conditions on a graded ring, Trans. Amer. Math. Soc. 205 (1975), 275-284.
12. S. Mori, Über die produktzerlegung der hauptideale I, J. Sci. Hiroshima Univ. (A), 8 (1938), 7-13.
13. -Über die produktzerlegung der hauptideale II, J. Sci. Hiroshima Univ. (A), 9 (1939), 145-155.
14. - Über die produktzerlegung der hauptideale III, J. Sci. Hiroshima Univ. (A), 10 (1940), 85-94.
15. - Über die produktzerlegung der hauptideale IV, J. Sci. Hiroshima Univ. (A), 11 (1941), 7-14.
16. - Allegemeine Z.P.I.-ringe, J. Sci. Hiroshima Univ. (A), 10 (1941), 117-136.
17. O. Zariski and P. Samuel, Commutative algebra, Vol. II (Van Nostrand, New York, 1960).

The University of Iowa, Iowa City, Iowa;
University of Southern California,
Los Angeles, California

