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Abstract

Environmental sensors are crucial for monitoring weather conditions and the impacts of climate change. However, it
is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in
remote regions like Antarctica. Probabilistic machine learning models can suggest informative sensor placements by
finding sites that maximally reduce prediction uncertainty. Gaussian process (GP) models are widely used for this
purpose, but they struggle with capturing complex non-stationary behaviour and scaling to large datasets. This paper
proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues. A ConvGNP uses neural
networks to parameterise a joint Gaussian distribution at arbitrary target locations, enabling flexibility and scalability.
Using simulated surface air temperature anomaly over Antarctica as training data, the ConvGNP learns spatial and
seasonal non-stationarities, outperforming a non-stationaryGP baseline. In a simulated sensor placement experiment,
the ConvGNP better predicts the performance boost obtained from new observations than GP baselines, leading to
more informative sensor placements. We contrast our approach with physics-based sensor placement methods and
propose future steps towards an operational sensor placement recommendation system.Ourwork could help to realise
environmental digital twins that actively direct measurement sampling to improve the digital representation of reality.

Impact Statement

This paper addresses the challenge of identifying intelligent sensor placements for monitoring environmental
phenomena, usingAntarctic air temperature anomaly as an example. The authors propose using a recent machine
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learning model—a convolutional Gaussian neural process (ConvGNP)—which can capture complex non-
stationary behaviour and scale to large datasets. The ConvGNP outperforms previous data-driven approaches
in simulated experiments, finding more informative and cost-effective sensor placements. This could lead to
improved decision-making for monitoring weather conditions and climate change impacts.

1. Introduction

Selecting optimal locations for placing environmental sensors is an important scientific challenge. For
example, improved environmental monitoring can lead tomore accurate weather forecasting (Weissmann
et al., 2011; Jung et al., 2016). Further, better observation coverage can improve the representation of
extreme events, climate variability, and long-term trends in reanalysis models (Bromwich and Fogt, 2004)
and aid their validation (Bracegirdle andMarshall, 2012). This is particularly important in remote regions
like Antarctica, where observations are sparse (Jung et al., 2016) and the cost of deploying weather
stations is high (Lazzara et al., 2012), motivating an objective model-based approach that provides an
accurate notion of the informativeness of new observation locations. This informativeness can then guide
decision-making so that scientific goals are achieved with as few sensors as possible.

The above sensor placement problem has been studied extensively from a physics-based numerical
modelling perspective (Majumdar, 2016). Multiple approaches exist for estimating the value of current or
new observation locations for a numerical model. Examples include observing system simulation
experiments (Hoffman and Atlas, 2016), adjoint methods (Langland and Baker, 2004), and ensemble
sensitivity analysis (ESA; Torn and Hakim, 2008). Using a numerical model for sensor placement comes
with benefits and limitations. One drawback is that numerical models can be biased, and this can degrade
sensor placements. This suggests that physics-based approaches could be supplemented by data-driven
methods that learn statistical relationships directly from the data.

Machine learning (ML) methods also have a long history of use for experimental design and sensor
placement (MacKay, 1992; Cohn, 1993; Seo et al., 2000; Krause et al., 2008). First, a probabilistic model
is fit to noisy observations of an unknown function f xð Þ. Then, active learning is used to identify new
x-locations that are expected to maximally reduce the model’s uncertainty about some aspect of f xð Þ.
The Gaussian process (GP; Rasmussen, 2004) has so far been the go-to class of probabilistic model for
sensor placement and the related task of Bayesian optimisation1 (Singh et al., 2007; Krause et al., 2008;
Marchant and Ramos, 2012; Shahriari et al., 2016). Setting up a GP requires the user to specify a mean
function (describing the expected value of the function) and a covariance function (describing how
correlated the f xð Þ values are at different x-locations). Once a GP has been initialised, conditioning it on
observed data and evaluating at target locations produces a multivariate Gaussian distribution, which can
be queried to search for informative sensor placements.

GPs have several compelling strengths which make them particularly amenable to small-data regimes
and simple target functions. However, modelling a climate variable with a GP is challenging due to
spatiotemporal non-stationarity and large volumes of data corresponding to multiple predictor variables.
While non-stationary GP covariance functions are available (and improve sensor placement in Krause
et al., 2008 and Singh et al., 2010), this still comes with the task of choosing the right functional form and
introduces a risk of overfitting (Fortuin et al., 2020). Further, conditioning GPs on supplementary
predictor variables (such as satellite data) is non-trivial and their computational cost scales cubically
with dataset size, which becomes prohibitive with large environmental datasets. Approximations allow
GPs to scale to large data (Titsias, 2009; Hensman et al., 2013), but these also harm prediction quality. The
above model misspecifications can lead to uninformative or degraded sensor placements, motivating a
new approach which can more faithfully capture the behaviour of complex environmental data.

1 Bayesian optimisation differs slightly from sensor placement in that the task is to find the maximum (of minimum) a black-box
function f rather than reduce overall uncertainty about f .
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Convolutional neural processes (ConvNPs) are a recent class of ML models that have shown promise
inmodelling environmental variables. For example, ConvNPs can outperform a large ensemble of climate
downscaling approaches (Vaughan et al., 2021; Markou et al., 2022) and integrate data of gridded and
point-based modalities (Bruinsma et al., 2023). One variant, the convolutional Gaussian neural process
(ConvGNP; Bruinsma et al., 2021; Markou et al., 2022), uses neural networks to parameterise a joint
Gaussian distribution at target locations, allowing them to scale linearly with dataset size while learning
mean and covariance functions directly from the data.

In this paper, simulated atmospheric data is used to assess the ability of the ConvGNP to model a
complex environmental variable and find informative sensor placements. The paper is laid out as follows.
Section 2 introduces the data and describes the ConvGNPmodel. Section 3 compares the ConvGNP with
GP baselines with three experiments: predicting unseen data, predicting the benefit of new observations,
and a sensor placement toy experiment. It is then shown how placement informativeness can be traded-off
with cost using multi-objective optimisation to enable a human-in-the-loop decision-support tool.
Section 4 discusses limitations and possible extensions to our approach, contrasting ML-based and
physics-based sensor placements. Concluding remarks are provided in Section 5.

2. Methods

In this section, we define the goal and data, formalise the problem tackled, and introduce the ConvGNP.

2.1. Goal and source data

We use reanalysis data to analyse sensor placement abilities. Reanalysis data are produced by fitting a
numerical climate model to observations using data assimilation (Gettelman et al., 2022), capturing the
complex dynamics of the Earth system on a regular grid. The simulated target variable used in this study is
25 km-resolution ERA5 daily-averaged 2 m temperature anomaly over Antarctica (Figure 2a; Hersbach
et al., 2020). For a given day of year, temperature anomalies are computed by subtracting maps of the
mean daily temperature (averaged over 1950–2013) from the absolute temperature, removing the
seasonal cycle. We train a ConvGNP and a set of GP baselines to produce probabilistic spatial
interpolation predictions for ERA5 temperature anomalies, assessing performance on a range of metrics.
We then perform simulated sensor placement experiments to quantitatively compare the ConvGNP’s
estimates of observation informativeness with that of the GP baselines and simple heuristic placement
methods. The locations of 79 Antarctic stations that recorded temperature on February 15, 2009 are used
as the starting point for the sensor placement experiment (black crosses in Figure 1), simulating a realistic
sensor network design scenario. Alongside inputs of ERA5 temperature anomaly observations, we also
provide the ConvGNP with a second data stream on a 25 km grid, containing surface elevation and a land
mask (obtained from the BedMachine dataset; Morlighem, 2020), as well as space/time coordinate
variables. For further details on the data sources and preprocessing see Supplementary Appendix A.

2.2. Formal problem set-up

We now formalise the problem set-up tackled in this study. First, we make some simplifying assumptions
about the data to bemodelled.We assume that data from different time steps, τ, are independent, and sowe
will not model temporal dependencies in the data. Further, we only consider variables that live in a 2D
input space, as opposed to variables with a third input spatial dimension (e.g., altitude or depth). This
simplifies the 3D or 4D modelling problem into a 2D one. Models built with these assumptions can learn
correlations across 2D space, but not across time and/or height, which could be important in forecasting or
oceanographic applications.

At each τ, therewill be particular target locationsX tð Þ
τ ∈ℝNt ×2 wherewewish to predict an environmental

variable y tð Þ
τ ∈ℝNt (we assume that the target variable is a 1D scalar for simplicity, but this need not be the

case). Our target may be surface temperature anomaly along a line of points overAntarctica (blue dotted line
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in left-most panel of Figure 1). We call this a target set T τ ¼ X tð Þ
τ ,y tð Þ

τ

� �
. The target set predictions will be

made using several data streams, containing N-D observations Y cð Þ
τ ∈ℝNc×N at particular locations

X cð Þ
τ ∈ℝNc×2. We call these data streams context sets X cð Þ

τ ,Y cð Þ
τ

� �
, and write the collection of all NC context

sets as Cτ ¼ X cð Þ
τ ,Y cð Þ

τ

� �
i

n oNC

i¼1
: Context sets may lie on scattered, off-grid locations (e.g., temperature

anomaly observations at black crosses in left-most panel in Figure 1) or on a regular grid (e.g., elevation
and other auxiliary fields in the second panel of Figure 1). We call the collection of context sets and the
target set a taskDτ ¼ Cτ ,T τð Þ: The goal is to build an ML model that takes the context sets as input and
maps to probabilistic predictions for the target values y tð Þ

τ given the target locations X tð Þ
τ . Following

Foong et al., 2020, we refer to this model as a prediction map, π. Once π is set up, a sensor placement
algorithm S will use π to propose K new placement locations X∗∈ℝK×2 based on query locations

X sð Þ∈ℝS×2 and a set of tasks Dτj

� �J
j¼1. Section 3.2 provides details on howwe implement S in practice.

Physics-based numerical models could be framed as hard-coded prediction maps, ingesting context
sets through data assimilation schemes and using physical laws to predict targets on a regular grid over
space and time. These model outputs are deterministic by default, but applying stochastic perturbations to

Figure 2. (a) ERA5 2 m temperature anomaly on January 1, 2018; (b–d) ConvGNP samples with ERA5
temperature anomaly context points at Antarctic station locations (black circles). Comparing colours
within the black circles across plots shows that the ConvGNP interpolates context observations.

Figure 1. We have two context sets: ERA5 temperature anomaly observations and 6 gridded auxiliary
fields, andwewish tomake probabilistic predictions for temperature anomaly over a vertical line of target
points (blue dotted line in left-most panel). In the ConvGNP, a SetConv layer fuses the context sets into a
single gridded encoding (Supplementary Figure B1; Gordon et al., 2020). A U-Net (Ronneberger et al.,
2015) takes this encoded tensor as input and outputs a gridded representation, which is interpolated at
target points X tð Þ and used to parameterise the mean and covariance of a multivariate Gaussian
distribution over y tð Þ. The output mean vector μ is shown as a black line, with 10 Gaussian samples
overlaid in grey. The heatmap of the covariance matrix K shows the magnitude of spatial covariances,
with covariance decreasing close to temperature anomaly context points.
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initial conditions or model parameters induces an intractable distribution over model outputs, p y tð Þ� �
,

which can be sampled from to generate an ensemble of reanalyses or forecasts. However, current
numerical models do not learn directly from data. In contrast, ML-based prediction maps will be trained
from scratch to directly output a distribution over targets based on the context data.

2.3. ConvGNP model

Most ML methods are ill-suited to the problem described in Section 2.2. Typical deep learning
approaches used in environmental applications, such as convolutional neural networks, require the
data to lie on a regular grid, and thus cannot handle non-gridded data (e.g., Andersson et al., 2021;
Ravuri et al., 2021). Recent emerging architectures such as transformers can handle off-the-grid data
in principle, but in practice have used gridded data in environmental applications (e.g., Bi et al.,
2022). Moreover, they also need architectural changes to make predictions at previously unseen input
locations. On the other hand, Bayesian probabilistic models based on stochastic processes (such as
GPs) can ingest data at arbitrary locations, but it is difficult to integrate more than one input data
stream, especially when those streams are high dimensional (e.g., supplementary satellite data which
aids the prediction task). Neural processes (NPs; Garnelo et al., 2018a, 2018b) are prediction
maps that address these problems by combining the modelling flexibility and scalability of
neural networks with the uncertainty quantification benefits of GPs. The ConvGNP is a particular
prediction map π whose output distribution is a correlated (joint) Gaussian with mean μ and
covariance matrix K :

π y tð Þ;C,X tð Þ
� �

¼N y tð Þ;μ C,X tð Þ
� �

,K C,X tð Þ
� �� �

: (1)

TheConvGNP takes in the context setsC and outputs amean and non-stationary covariance function of aGP
predictive, which can be queried at arbitrary target locations (Figure 1). It does this by first fusing the context
sets into a gridded encoding using a SetConv layer (Gordon et al., 2020). The SetConv encoder interpolates
context observations onto an internal grid with the density of observations captured by a “density channel”
for each context set (example encoding shown in Supplementary Figure B1). This endows the model with
the ability to ingest multiple predictors of various modalities (gridded and point-based) and handle missing
data (Supplementary Appendix B.5). The gridded encoding is passed to a U-Net (Ronneberger et al., 2015),
which produces a representation of the context sets with R¼UNetðSetConvðCÞÞ. The tensor R is then
spatially interpolated at each target location x tð Þ

i , yielding a vector ri and enabling the model to predict at
arbitrary locations. Finally, ri is passed to multilayer perceptrons f and g, parameterising the mean and
covariance respectively with μi ¼ f rið Þ and kij ¼ g rið ÞTg rj

� �
. This architecture results in a mean vector μ

and covariance matrix K that are functions of C and X tð Þ (Equation 1).
Constructing the covariances via a dot product leads to a low-rank covariance matrix structure, which

is exploited to reduce the computational cost of predictions from cubic to linear in the number of targets.
Furthermore, the use of a SetConv to encode the context sets results in linear scaling with the number of
context points. This out-of-the-box scalability allows the ConvGNP to process 100,000 context points
and predict over 100,000 target points in less than a second on a single GPU.2

NPs can be considered meta-learning models (Foong et al., 2020) which learn how to learn,
mapping directly from context sets to predictions without requiring retraining when presented with
new tasks. This is useful in environmental sciences because it enables learning statistical relationships
(such as correlations) that depend on the context observations. In contrast, conventional supervised
learning models, such as GPs, instead learn fixed statistical relationships which do not depend on the
context observations.

2Our ConvGNP (with 4.16Mparameters) takes 0.88 s to process a total of 100,000 context points (21,600 temperature points and
78,400 gridded auxiliary points) and predict over 100,000 target points on a 16 GB NVIDIA A4 GPU using TensorFlow’s
eager mode.
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2.4. Training the ConvGNP

Training tasks Dτ are generated by first sampling the day τ randomly from the training period, 1950–
2013. Then, ERA5 grid cells are sampled uniformly at random across the entire 280 × 280 input space,
with the number of ERA5 temperature anomaly context and target points drawn uniformly at random
from Nc∈ 5,6,…,500f g and Nt∈f3000,3001,…,4000g. The ConvGNP is trained to minimise
the negative log-likelihood (NLL) of target values y tð Þ

τ under its output Gaussian distribution using
the Adam optimiser. After each training epoch, the model is checkpointed if an improvement is made to
the mean NLL on validation tasks from 2014 to 2017. For further model and training details see
Supplementary Appendix B.

Once trained in this manner, the ConvGNP outputs expressive, non-stationary mean and covariance
functions. When conditioning the ConvGNP on ERA5 temperature anomaly observations and drawing
Gaussian samples on a regular grid, the samples interpolate observations at the context points and
extrapolate plausible scenarios away from them (Figure 2). Running the ConvGNP on a regular grid
with no temperature anomaly observations reveals the prior covariance structure learned by the model
(Figure 3). The ConvGNP leverages the gridded auxiliary fields and day of year inputs from the second
context set to output highly non-stationary spatial dependencies in surface temperature, such as sharp
drops in covariance over the coastline (Figure 3a–c), anticorrelation (Figure 3a), and decorrelation over
the Transantarctic Mountains (Figure 3b). In Supplementary Appendix D, we contrast this with GP
prior covariances and further show that the ConvGNP learns seasonally varying spatial correlation
(Supplementary Figures D1–D3).

3. Results

We evaluate the ConvGNP’s ability to model ERA5 2 m daily-average surface temperature anomaly
through a range of experiments, using GP baselines with both non-stationary and stationary covariance
functions. We use three GP baselines with different non-isotropic covariance functions: the exponen-
tiated quadratic (EQ), the rational quadratic (RQ), and the Gibbs kernel. The EQ and RQ are stationary
because the covariance depends only on the difference between two input points, k x,x0ð Þ ¼ k x�x0ð Þ.
The Gibbs covariance function is a more sophisticated, non-stationary baseline, where the correlation
length scale is allowed to vary over space (Supplementary Figure C1). As noted in Section 2.3, there is
no simple way to condition vanilla GPmodels onmultiple context sets; the GP baselines can only ingest
the context set containing the ERA5 observations and not the second, auxiliary context set. For more
details on the GPs, including their covariance functions and training procedure, see Supplementary
Appendix C.

Figure 3.Prior covariance function, k x1,x2ð Þ, with x1 fixed at the white plus location and x2 varying over
the grid. Plots are shown for three different x1-locations (the Ross Ice Shelf, the South Pole, and East
Antarctica) for the 1st of June. The most prominent section of the Transantarctic Mountains is indicated
by the red dashed line in (b).
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3.1. Performance on unseen data

To assess the models’ abilities to predict unseen data, 30,618 tasks are generated from unseen test years
2018–2019 by sampling ERA5 grid cells uniformly at random with number of targets Nt ¼ 2,000 and a
range of context set sizes Nc∈ 0,25,50,…,500f g (Supplementary Appendix B.1). For each task, we
compute three performancemetrics of increasing complexity. The first metric, the root mean squared error
(RMSE), simply measures the difference between the model’s mean prediction and the true values. The
second metric, the mean marginal NLL, includes the variances of the model’s point-wise Gaussian
distributions, measuring how confident and well-calibrated the marginal distributions are. The third
metric, the joint NLL, uses the model’s full joint Gaussian distribution, measuring how likely the true y tð Þ

vector is under the model. This quantifies the reliability of the model’s off-diagonal spatial correlations as
well as its marginal variances.

In general, the ConvGNP performs best, followed by the Gibbs GP, the RQ GP, and finally the EQ GP
(Figure 4). There are some exceptions to this trend. For example, the models produce similar RMSEs for
Nc<100. This is likely because for small Nc the models revert to zero-mean predictions away from context
points (matching the zero-mean of temperature anomaly over the training period). Another exception is that
the Gibbs GP outperforms the ConvGNP on joint NLL for small Nc. This may be because the ConvGNP’s
training process biases learning towards “easier” tasks (where Nc is larger). Alternatively, the ConvGNP’s
low-rank covariance parameterisation could be poorly suited to smallNc. However, with increasingNc, the
ConvGNP significantly outperforms all three GP baselines across all three metrics, with its performance
improving at a faster ratewith added data.When averaging the results acrossNc, theConvGNP significantly
outperforms all three GP baselines for each metric (Supplementary Table E1). We further find that the
ConvGNP’s marginal distributions are substantially sharper and better calibrated than the GP baselines
(Supplementary Figures E1 and E2), which is an important goal for probabilistic models (Gneiting et al.,
2007).Well-calibrated uncertainties are also key for active learning, which is explored below in Section 3.2.

3.2. Sensor placement

Following previous works (Krause et al., 2008), we pose sensor placement as a discrete optimisation
problem. The task is to propose a subset of K sensor placement locations, X∗, from a set of S search
locations, X sð Þ. In practice, to avoid the infeasible combinatorial cost of searching over multiple
placements jointly, a greedy approximation is made by selecting one sensor placement at a time. Within

a greedy iteration, a value is assigned to each query location x sð Þ
i using an acquisition function, α x sð Þ

i ,τ
� �

,

specifying the utility of a new observation at x sð Þ
i for time τ, which we average over J dates:

α x sð Þ
i

� �
¼ 1
J

XJ
j¼1

α x sð Þ
i ,τj

� �
: (2)

Figure 4. Mean metric values versus number of context points on the test set. The joint negative log-
likelihood (NLL) is normalised by the number of targets. Error bars are standard errors.
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We use five acquisition functions which are to be maximised, defining a set of placement criteria
(mathematical definitions are provided in Supplementary Appendix F):

JointMI: mutual information (MI) between the model’s prediction and the query sensor observation,

imputing the missing value with the model’s mean at the query location, y sð Þ
τ,i .

3 This criterion attempts to
minimise the model’s joint entropy by minimising the log-determinant of the output covariance matrix,
balancing minimising marginal variances with maximising correlation magnitude, which can be viewed
as minimising uncertainty about the spatial patterns (MacKay, 1992). The joint MI has been used
frequently in past work (Lindley, 1956; Krause et al., 2008; Schmidt et al., 2019).

MarginalMI: as above, but ignoring the off-diagonal elements in the models’ Gaussian distributions
and considering only the diagonal (marginal) entries. This criterion attempts to minimise the model’s
marginal entropy by minimising the log variances in the output distribution.

DeltaVar: decrease in average marginal variance in the output distribution (similar to MarginalMI but
using absolute variances rather than log-variances). Previous works have used this criterion for active
learning both with neural networks (Cohn, 1993) and GPs (Seo et al., 2000).

ContextDist: distance to the closest sensor. This is a simple heuristic which proposes placements as far
away as possible from the current observations. While this is a strong baseline, non-stationarities in the
data will mean that it is sub-optimal. For example, a high density of sensors will be needed in areas where
correlation length scales are short, and a low density where they are large. Therefore, the optimal sensor
placement strategy should differ from and outperform this approach.

Random: uniform white noise function (i.e., placing sensors randomly). The performance of this
criterion reflects the average benefit of adding new observations for a given model and context set.

The target locations X tð Þ
τ and search locations X sð Þ are both defined on a 100 km grid over Antarctica,

resulting in Nt ¼ S¼ 1,365 targets and possible placement locations. The context set locations X cð Þ
τ are

fixed at Antarctic temperature station locations (black circles in Figure 5) to simulate a realistic network
design scenario. We use J¼ 105 dates from the validation period (2014–2017), sampled at a 14-day
interval, to compute the acquisition functions. Heatmaps showing the above five acquisition functions on
the X sð Þ grid, using the ConvGNP for the model underlying the three uncertainty-reduction acquisition

Figure 5. Maps of acquisition function values α x sð Þ
i

� �
for the initial k¼ 1 greedy iteration. The initial

context set X cð Þ is derived from real Antarctic station locations (black circles). Running the sensor
placement algorithm for K¼ 10 sensor placements results in the proposed sensor placements X∗ (white
pluses). Each pixel is 100×100 km.

3 A better approach would be to draw Monte Carlo samples over y sð Þ
τ,i , although this would be more costly—see Supplementary

Appendix F.
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functions, are shown in Figure 5. There are interesting differences between the model-based acquisition
functions of the ConvGNP, the Gibbs GP, and the EQ GP (Supplementary Figure F1).

3.2.1. Oracle acquisition function experiment
By using sensor placement criteria that reduce uncertainty in the model’s predictions, one hopes that
predictions also become more accurate in some way. For example, the entropy of the model’s predictive
distribution is the expected NLL of the data under the model, so the decrease in entropy from a new
observation (i.e., the MI) should relate to the NLL improvement—assuming the model is well-specified
for the data. Further, if the model’s marginal distributions are well-calibrated, marginal variance relates to
expected squared error. Therefore, the JointMI, MarginalMI, and DeltaVar acquisition functions
should relate to improvements in joint NLL, marginal NLL, and RMSE, respectively. However, in
general, the strength of these relationships are unknown. In the toy setting of this study, where ERA5 is
treated as ground truth and is known everywhere, these relationships can be examined empirically.

We compare the ability of theConvGNP,GibbsGP, andEQGP to predict the benefit of newobservations
based on the JointMI, MarginalMI, and DeltaVar acquisition functions, using ContextDist as a
naïve baseline. The true benefit of observations is determined using oracle acquisition functions, αoracle,
where the true ERA5 value is revealed at x sð Þ

i and the average performance gain on the target set is measured
for each metric: joint NLL, marginal NLL, and RMSE (Supplementary Appendix F.3). Computing
non-oracle and oracle acquisition functions at all S query locations produces vectors, α X sð Þ� �

and

αoracle X sð Þ� �
. The Pearson correlation r¼ corrðαðX ðsÞÞ,αoracleðX ðsÞÞÞ between these vectors quantifies

how strong the relationship is for a given model, acquisition function, and metric. With the context set
initialised at Antarctic station locations (Section 3.2), the ConvGNP’s joint MI achieves the best correlation
with its joint NLL improvement (r¼ 0:90), as for its marginal MI with its marginal NLL improvement
(r¼ 0:93) and its change in variance with its RMSE improvement (r¼ 0:93) (Figure 6a), substantially
outperforming the ContextDist baseline in each case. The Gibbs GP’s acquisition functions are less
robust at predicting performance gain, with the joint MI being particularly poor at predicting joint NLL
improvement (Figure 6b). The EQ GP’s model-based acquisition functions all perform similarly to
ContextDist for eachmetric (Figure 6c), which is likely an artefact of its stationary covariance function.

We repeat the above analysis using the Kendall rank correlation coefficient, κ, which measures the
similarity between the rankings of α and αoracle by computing the fraction of all pairs of search points

x sð Þ
i ,x sð Þ

j

� �
that are ordered the sameway in the two rankings and normalising this fraction to lie in �1,1ð Þ

(Supplementary equationG.3). The findings are very similar to the Pearson correlation results above: only
the ConvGNP has good alignment between acquisition functions andmetrics, withJointMI,Margin-
alMI, and DeltaVar obtaining the best κ-values for joint NLL (κ¼ 0:74), marginal NLL (κ¼ 0:82),
and RMSE (κ¼ 0:84), respectively (Supplementary Figure G1).

Figure 6. Correlation between model-based and oracle acquisition functions, α X sð Þ� �
and αoracle X sð Þ� �

.
Error bars indicate the 2.5–97.5% quantiles from 5,000 bootstrapped correlation values, computed by
resampling the 1,365 pairs of points with replacement, measuring how spatially consistent the correlation
is across the search space X sð Þ.
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These results indicate that the ConvGNP can robustly predict performance gain, unlike the GP
baselines. Supplementary Appendix G provides more detailed plots from this experiment, including
the acquisition function heatmaps (Supplementary Figures G2–G4) and scatter plots for all the oracle/
non-oracle pairs underlying Figure 6 (Supplementary Figures G5–G7).

3.2.2. Sensor placement experiment

Wenow run a simulated greedy sensor placement experiment. After α x sð Þ
i

� �
is computed for i¼ 1,…,Sð Þ,

the i∗ corresponding to themaximumvalue is selected. The corresponding input x sð Þ
i∗ is then appended to its

context set,X cð Þ
τ ! X cð Þ

τ ,x sð Þ
i∗

n o
. If α depends on the context y-values, we fill the missing observation with

the model mean, y cð Þ
τ ! y cð Þ

τ ,y sð Þ
τ,i∗

n o
, where y sð Þ

τ,i is the model’s mean at x sð Þ
i for time τ. This process is

repeated untilK ¼ 10 placements have beenmade. To evaluate placement quality, we reveal ERA5 values
to the models at the proposed sites and compute performance metrics over test dates 2018–2019 with a
100 km target grid. See Supplementary Appendix H for full experiment details.

The ConvGNP’s JointMI, MarginalMI, and DeltaVar placements substantially outperform Con-
textDist for the metrics they target by the 5th placement onwards (Figure 7a–c and Supplementary Figure
H1a,d,g), and lead to greater performance improvements by the K¼ 10th placement than both of the GP
baselines (Supplementary Figure H2).4 This is despite the ConvGNP starting off with better performance than
both of the GP baselines for each metric. Furthermore, the proposed locations from the ConvGNP model-
based criteria differ greatly fromContextDist (Figure 5a–d),with theJointMIplacements being notably
clustered together (Figure 5a). In contrast, the EQ GP’s model-based criteria propose diffuse placements
(Supplementary Figure F1g–i) which are strikingly similar to those of ContextDist. With the EQ GP’s
naïve stationary covariance, minimising uncertainty simply maximises distance from current observations,
which is not a cost-effective placement strategy. Future work should repeat these experiments with different
initial sensor network configurations to assess the robustness of these results.

Figure 7.Performancemetrics on the sensor placement test data versus numberof stations revealed to the
models. Results are averaged over 243 dates in 2018–2019, with targets defined on a 100 km grid over
Antarctica. For simplicity, we only plot the model-based criterion that targets the plotted metric. The GP
baselines are shown on the marginal negative log-likelihood (NLL) and RMSE panels. For the joint NLL,
the GP baselines perform far worse than the ConvGNP and are not shown. The confidence interval of
Random is the standard error from 5 random placements.

4 The only exception to this is the Gibbs GP’s DeltaVar, which improves its RMSE by 0.79°C compared with 0.77°C for the
ConvGNP. However, the Gibbs GP starts off with an RMSE that is 0.60°C worse than the ConvGNP (Supplementary Figure H2).
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3.2.3. Multi-objective optimisation for finding cost-effective sensor placements
In practice, the scientific goals of sensor placement must be reconciled with cost and safety consider-
ations, which are key concerns in Antarctic fieldwork (Lazzara et al., 2012) and will likely override the
model’s optimal siting recommendations X∗. In this case, it is crucial that the model can faithfully predict
observation informativeness across the entire search space X sð Þ, not just at the optimal sites X∗, so that
informativeness can be traded-off with cost. Leveraging our findings from Section 3.2.1 that the
ConvGNP’s DeltaVar is a robust indicator of RMSE and marginal NLL improvement (Figure 6a),
we demonstrate a toy example of multi-objective optimisation with DeltaVar as a proxy for inform-
ativeness and ContextDist as a proxy for cost. One way of integrating cost in the optimisation is to
constrain the search such that the total cost is within a pre-defined budget (Sviridenko, 2004; Krause et al.,
2006). Alternatively, cost can be traded off with informativeness in the objective, allowing for uncon-
strained optimisation. We use Pareto optimisation for this purpose, which identifies a set of “Pareto
optimal” sites corresponding to points where the informativeness cannot be improved without an increase
to the cost. These rank-1 points can then be removed, the Pareto optimal set computed again, and so on
until all sites have been assigned a Pareto rank (Figure 8). This procedure trivially generalises to multiple
objectives and could underlie a future operational, human-in-the-loop sensor placement recommendation
system that leverages an accurate cost model to guide expert decision-making.

4. Discussion

In this study, we trained a ConvGNP regression model to spatially interpolate ERA5 Antarctic 2 m
temperature anomaly. The ConvGNP learned seasonally varying non-stationary spatial covariance by
leveraging a second data stream (“context set” in meta-learning language) containing auxiliary predictor
variables, such as the day of year and surface elevation. The more flexible architecture and second data
stream allow the ConvGNP tomake substantially better probabilistic predictions on test data than those of
GP baselines, including a GP with a non-stationary covariance function. A simulated sensor placement
experiment was devised with context ERA5 observations initialised at real Antarctic station locations.
New sensor placements were evaluated via the reduction in model prediction uncertainty over the
Antarctic continent, with different measures of uncertainty targeting different performance metrics. For
each of these uncertainty-based acquisition functions, the ConvGNP predicts its true performance metric
gain from new observations substantially more accurately than GP baselines. This leads to informative
new sensor placements that improve the ConvGNP’s performance metrics on test data by a wider margin
than the GP baselines, despite the ConvGNP starting off with more performant predictions and thus
having less room for improvement. These findings are notable given that GPs have a long history of use in

Figure 8. Accounting for sensor placement cost using multi-objective Pareto optimisation, maximising
the ConvGNP’s DeltaVar (a proxy for informativeness) and minimising ContextDist (a proxy for
cost). (a) Scatter plot showing all pairs of informativeness and cost values. (b) Heatmap of Pareto rank.
The rank-1 Pareto set is highlighted in red for both plots.

Environmental Data Science e32-11

https://doi.org/10.1017/eds.2023.22 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2023.22


geostatistics under the term “kriging” (Cressie, 1993) and are frequently used for sensor placement.
Equippedwith a robust measure of placement informativeness from the ConvGNP,multi-objective Pareto
optimisation could be used to account for sensor placement cost, pruning a large search space of possible
locations into a smaller set of cost-effective sites which can be considered by human experts. Our
approach can readily be applied to other geographies and climate variables by fitting a ConvGNP to
existing reanalysis data and running a greedy sensor placement algorithm, such as the ones outlined in this
work. However, there are some limitations to this approach, which we highlight below alongside
recommendations for future work.

4.1. Limitations

4.1.1. Not accounting for real-world observations
Themain limitation of the current approach is that by training theConvGNP to spatially interpolate noise-free
reanalysis output instead of real-world observations, the model measures the informativeness of reanalysis
data and not of real-world observations. Two consequences arise from this shortcoming. First, themodel does
not account for real-world sensor noise. A simpleway to alleviate this issuewould be to simulate sensor noise
by training the ConvGNP with varying levels of i.i.d. Gaussian noise added to the ERA5 context points,
which could be explored in future work. The second consequence is that bias and coarse spatial resolution in
the reanalysis data are reflected in the ConvGNP’s predictions. One way to deal with this would be to train
with observational data. However, real in situ environmental sensor observations can be sparse in space or
time, which brings a risk of spatial overfitting when used as training data for highly flexible models like the
ConvGNP.An interesting potential solution is to pre-train theConvGNPon simulated data and fine-tune it on
observational data. Provided sufficient observational data for training, the fine-tuning phase would correct
some of the simulator biases and lead to a better representation of the target variable.

4.1.2. The ConvGNP must learn how to condition on observations
TheConvGNP is directly trained to output aGPpredictive, which is different fromspecifying aGPprior and
then conditioning that prior on context observations usingBayes’ rule. TheConvGNP’s neural networks can
learn non-Bayesian conditioning mechanics from the data, which brings greater flexibility at the cost of
increased training requirements. Nevertheless, provided sufficient training data and an appropriate training
scheme, the ConvGNP’s conditioning flexibility is better suited to complex environmental data than similar
approaches like deep kernel learning (Wilson et al., 2015), where neural networks learn non-stationary prior
GP covariance functions from data and then use standard Bayes’ rule conditioning to compute posterior
predictives (Supplementary Appendix I). However, if insufficient data is available to train a flexible model
like the ConvGNP, a more appropriate choice would be a less data-hungry model with stronger inductive
biases and better-quantified epistemic uncertainty, such as a latent GP (Patel et al., 2022).

4.2. Future work

4.2.1. Possible extensions
Going forwards, there are several possible extensions to this work with simple modifications to our
approach. For example, the ConvGNP can be used to rank the value of current stations (Tardif et al.,
2022), which could identify redundant stations that can be moved to more valuable locations. Alterna-
tively, the model could be set up in forecastingmode, with the target data being some number of discrete
time steps ahead of the context data. The same greedy sensor placement algorithms can then be used to
find station sites that minimise forecast uncertainty, which is important for supporting safety-critical
operations in remote regions like Antarctica that depend on reliable weather forecasts (Lazzara et al.,
2012; Hakim et al., 2020). Another exciting avenue is to build a ConvGNP that can propose optimal
trajectories for a fleet of moving robots (e.g., autonomous underwater vehicles) (Singh et al., 2007;
Marchant and Ramos, 2012). One way to do this is to have two context sets of the target variable: one for
the current time step (τ¼ 0) and another for the next time step (τ¼þ1). This model can propose
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perturbations to the robot locations from τ¼ 0 to τ¼þ1 (within speed limits) that minimise prediction
uncertainty at τ¼þ1. Trajectories can then be formed by running this model autoregressively. To extend
our approach to non-Gaussian variables, our analysis could be repeated with models that output non-
Gaussian distributions, such as convolutional latent neural processes (Foong et al., 2020), normalising
flows (Durkan et al., 2019), or autoregressive ConvCNPs (Bruinsma et al., 2023). In general, future work
should explore training and architecture schemes that enable learning from multiple heterogeneous data
sources, such as simulated data, satellite observations, and in situ stations. Foundation modelling
approaches have recently shown substantial promise in this area (Nguyen et al., 2023) and could be
explored with ConvNPs.

4.2.2. Comparison and integration with physics-based sensor placement methods
As with any model-based sensor placement approach, the ConvGNP’s measure of informativeness
depends on the model itself. In general, an observation with high impact on the uncertainty of one model
may have little impact on the uncertainty of another model. This raises interesting questions about which
model should be trusted, particularly formodels based on very different principles such as data-driven and
numerical models. It would be insightful to examine the level of agreement or disagreement between the
informativeness estimates of ML and physics-based models. Agreement would suggest that the inform-
ativeness predicted by the causal dynamics of the numerical model is also statistically evident in the
training data of theMLmodel. However, a blocker to such intercomparison studies is the minimal overlap
between the physics-based and ML sensor placement literatures. Future work should trace explicit links
between these distinct research worlds to translate differing terminologies and facilitate the cross-
pollination of ideas. For example, we identified potential ML analogues for several physics-based
observing system design approaches: ablation-based variable importance methods (Fisher et al., 2019)
for observing system experiments (OSEs; Boullot et al., 2016); gradient-based saliency methods (Bach
et al., 2015) for adjoint modelling (Langland and Baker, 2004); and uncertainty-based active learning
(Krause et al., 2008) for ESA (Torn and Hakim, 2008). Here we remark only on the latter, where we note a
striking similarity. In ESA, sensor placement informativeness is measured by assimilating query obser-
vations into a numerical model and computing the reduction in ensemble member variance for a target
quantity. This approach has been used for Antarctic temperature sensor placement in previous studies
(Hakim et al., 2020; Tardif et al., 2022) with a goal of minimising the total marginal variance of Antarctic
surface temperature in ensemble member samples from a numerical model, which can be seen as aMonte
Carlo estimate of theDeltaVar acquisition function used in this study. This similarity makes ESA a ripe
starting point for comparing the sensor informativeness estimates of numerical and ML models in future
work. Other than simply comparingML-based and physics-based sensor placement methods, future work
could also integrate the two. For example, although the ConvGNP lacks the causal grounding of
dynamical models, it can run orders of magnitude faster. Thus, the ConvGNP could nominate a few
observation locations from a large search space to be analysed by more expensive physics-based
techniques such as adjoint sensitivity (Loose et al., 2020; Loose and Heimbach, 2021).

5. Conclusion

In current numerical weather prediction and reanalysis systems, observations improvemodels but not vice
versa (Gettelman et al., 2022). Recent calls for environmental “digital twins” have highlighted the
potential to improve model predictions by using the model to actively drive data capture, thus coupling
the physical world with the digital twin (Blair, 2021; Gettelman et al., 2022). This coupling could be
achieved through active learningwith scalable and flexibleMLmodels. TheConvGNP is one suchmodel,
with a range of capabilities that aidmodelling complex spatiotemporal climate variables. These include an
ability to ingest multiple predictors of various modalities (gridded and off-grid) and learn arbitrary mean
and covariance functions from raw data. This study found that the ConvGNP can robustly evaluate the
informativeness of new observation sites, unlike GP baselines, using simulated Antarctic air temperature
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anomaly as a proof-of-concept. By providing a faithful notion of observation informativeness, the
ConvGNP could underlie an operational, human-in-the-loop sensor placement recommendation tool
which can find cost-effective locations for newmeasurements that substantially reduce model uncertainty
and increase model accuracy.We see our approach as complementary to existing physics-based methods,
with interesting avenues for comparison and integration in future.
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