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ABSTRACT. Statistical analysis of 1754 normal and surge-type glaciers of the 
Yukon Territory, Canada, reveals that the two glacier types have significantly dif­
ferent average geometries. Surge-type glaciers tend to be longer, wider and to have 
lower overall slope than normal glaciers. Because there are strong intercorrelations 
involving length, width and slope, it is not immediately clear which relationships 
are fundamental and which are secondary. Multiple correlation analysis allows 
these confusions to be resolved and reveals that the correlation between length and 
surge tendency is the fundamental one. The direct correlation between surge ten­
dency and width and the inverse correlation between surge tendency and slope are 
entirely a result of the length- width and length- slope correlations. This conclusion 
may have implications for the glacier-surge mechanism because one prediction of 
the Kamb theory of surging is that small slopes (as opposed to great lengths) favour 
surging. Fowler's theory of surging predicts that glaciers for which the product ()w2 

(where () is slope and w is width) is small are more likely to be surge-type than 
those for which the product is large, but analysis of the correlation between this 
parameter and surge tendency lends no support to this claim. 

INTR ODUC TION 

The Kamb (1987) and the Fowler (HJ87, 1989) theo­
ries of glacier surging lead to predictions that certain 
glacier geometries are conducive to surging. In outline, 
the Kamb theory proposes that surges are triggered by 
the transition from a localized subglacial water system 
to a distributed network of linked cavities and that this 
transition can occur when a dimensionless stability para­
meter:::: falls below some critical value ::::*. For a step 
cavity:::: takes the form 

( 
1) )~ I -- h6 

7rVp' 
(1) 

where () is the longitudinal hydraulic gradient (assumed 
to equal surface slope), A is the "head gradient concen­
tration factor", T is the average tortuosity, Do = 31 km 
is a natural length scale, M is the Manning roughness, 1) 

is the ice viscosity, v is the ice sliding velocity, pi is the 
effective pressure and h is the cavity step height. Of par­
ticular interest is the appearance of the surface slope () 
in the numerator of the stability parameter; assuming all 
other influences are held constant, this implies that low 
slope is conducive to surging. The Fowler theory mod­
els a surge-type glacier as a spatially varying relaxation 
oscillator and is more abstract than the Kamb theory in 
its description of physical processes. Fowler (1989) in-
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troduced a surging criterion which may be expressed as 
w < wo, where 

w=(}w(3 (2) 

and w* is some critical value of w that distinguishes surg­
ing from non-surging glaciers . In the above expression () 
is the mean bedrock slope, w is glacier width and fJ ~ 2. 
Since the mean surface slope and mean bed slope are 
approximately equal, I shall regard () in Equation (2) as 
the surface slope. 

Predictions of the Kamb and Fowler theories can be 
subjected to statistical testing by examining a large 
population of glaciers and determining whether surge­
type (S-type) glaciers and normal (N-type) glaciers have 
significant geometric differences . The Canadian Glacier 
Inventory (CGI) of the Yukon Territory provides a suit­
able data set for testing this idea. A previous publication 
(Clarke and others, 1986) examined the length , elevat­
ion and slope influences on surging as well as the non­
random geographical distribution of surge-type glaciers. 
One of the major conclusions claimed in Clarke and oth­
ers (1986) is that long glaciers have a high probability of 
being surge-type and short glaciers have a high probabil­
ity of being normal. Because length and slope for both 
N- and S-type glaciers have a strong inverse correlation, 
there is some confusion about whether length and slope 
correlations with surging are independent or whether the 
primary correlation with length (or slope) and the sec-
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ondary correlation with slope (or length) are entirely a 
consequence of the length- slope correlation. A similar 
concern arises if width and ice thickness are added to the 
scheme. Large glaciers tend to be thick, wide and long, 
having low surface slope; small glaciers tend to be thin, 
narrow and short having high surface slope. Thus the 
problem of correlations between observational variables 
such as length I, width w, surface slope () and thickness 
d are inescapable. 

Kamb (Hl87, p. 9099) has used this ambiguity to claim 
that our CGr analysis supports the prediction of his 
theory that slope influences surging: 

"Despite these difficulties, a test of the ability of the 
linked cavity model to distinguish predictively in a 
statistical way between surge-type and nonsurge-type 
glaciers is provided by the observed correlation bet­
ween glacier length and probability of surging in a 
large sample of Yukon glaciers [Clarke et at., 1986, 
Figure 2b]. Glacier length does not directly enter as 
a parameter of the model, but since there is a strong 
inverse correlation between length and surface slope 
in the sample studied [Clurke et at., 1986, Figure 
4a], the observed correlation can be considered an in­
verse correlation between surge probability and slope 
(), which is a parameter in the model. Clarke et at. 
[1986] concluded that the correlation was really with 
length alone and the slope had no effect, but a com­
pelling statistical argument that required this conclu­
sion was not given." 

Fowler (1989, p.261) echoed this concern and called for 
a statistical test of the w stability parameter defined in 
Equation (2): 

"Their conclusion was that surging behavior correl­
ated with length but not (independently) with surface 
slope. However, since long glaciers are also less steep, 
this could equally well be interpreted as meaning that 
gently-sloping glaciers tend to surge .... Clarke et al. 
did not report the widths of the glaciers in their data 
set. It would be interesting to test for the validity of 
a criterion such as (4.8) [equation (2) above], which 
involves purely geometrical criteria." 

The aims of this paper are to seek correlations bet­
ween surge tendency, length, width and slope and to 
test whether the observed correlations lend support to 
the predictions of the Kamb and Fowler theories. 

DATA 

The objective of the CGr is to complete an inventory of 
all glaciers in Canada as well as an inventory of glacier­
related features such as glacierets, remnant glaciers, 
nevcs, snow patches, rock glaciers and pro-talus ram­
parts. Each glacier entry includes geographical coordi­
nates, assorted geometrical data, and qualitative inform­
ation on special features of the glacier. A complete 
description of formats and procedures is presented in 
Ommanney and others (1973), and further information 
is given in Ommanney (1980). The Yukon Territory 
component of the CGr was accomplished by a single 
investigator, Mr S. G . Collins, working for a period of 
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5 years. Research materials used by Collins include 
all available Canadian Government aerial photographs 
taken prior to 1965, a limited quantity of post-1965 ver­
tical photographs, oblique aerial photographs from pri­
vate sources, together with published and unpublished 
maps, scientific reports and mountaineering accounts. 
The Yukon Territory inventory contains a total of 4675 
glaciers and glacier-related features. A purge of 2207 
non-glacier features and 112 other unacceptable entries 
reduces the data set to 2356 glaciers. Not all glaciers 
are suitable for the present analysis. Several entries lack 
complete length or elevation information and when these 
have been removed the data set is reduced to 1984 en­
tries. Clarke and others (1986) showed that tributary 
glaciers had a higher probability of being S-type than 
trunk glaciers. The likely explanation is that a surge 
occurring in a trunk glacier can induce surges of its trib­
utary glaciers whereas the reverse situation is unusual. A 
further complication associated with tributary glaciers is 
that their lengths and slopes are measured as if they are 
themselves complete glaciers. For example, the length of 
a tributary glacier is taken as the distance from the far­
thest upflow point in the accumulation zone to the point 
at which the tributary joins the trunk glacier; unlike the 
trunk, the tributary has no proper terminus. Elimination 
of tributary glaciers further reduces the included data 
set. The final glaciers that are excluded from consider­
ation are those that, for whatever reason, were recorded 
in the CGr as having no accumulation zone or no ab­
lation zone. Culled in this way, the remaining glacier 
population is N = 1754. 

The CGr glacier data that form the basis of this 
paper are the maximum length I, the mean width w of 
the main stream, the highest glacier elevation ZII and 
the lowest glacier elevation ZL . Of these measurements, 
the least clearly defined, and presumably the most vul­
nerable to subjective influences, is the determination 
of glacier width. Mean glacier slope is not tabulated 
in the CGr but can be calculated using the relation 
() = arctan[(ZII - Zd/1] and is presented in degrees. 
Surge tendency is a qualitative attribute included in the 
CGr data set. The system adopted is to introduce an 
integer "surge index" i that varies from 0 (no features 
suggesting surging) to 5 (definite surge characteristics). 
Determination of i is largely based on examination of 
aerial photographs and, where possible, comparison of 
photographs taken in different years. Assignment of i 
to a particular glacier was entirely the responsibility of 
S. G. Collins; whatever misgivings one might have about 
quantifying the qualitative, there is good reason to ex­
pect that a uniform methodology was applied. Inclu­
sion of the surge index in the CGr makes it possible to 
seek correlations between surge tendency and glacier geo­
metry. Table 1 shows a small sample of data extracted 
from the Yukon Territory data set; slope has been calcul­
ated from elevation data not presented in Table 1. 

Figure 1 and Table 2 show the distribution of glaciers 
among the various i levels. Note the preponderance of 
glaciers in the i = 0 bin and the sparse distribution of 
glaciers in categories i = 4 and i = 5. At my request, 
S. G. Collins made post hoc estimates of the correspon­
dence between i levels and the conditional probabilities 
P(S = l[i), i.e. the probability that a glacier having 
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Table 1. Sample of glaciers from the eGI data set 

Glacier' eGI identifer Index Length Width Slope 

Lowell 
Maxwell 
Tsirku 
Unnamed 
Kaskawulsh 
Unnamed 
Trapridge 

4*8ABG 001 
4*8ABK 020 
4*8BEA 001 
4*9ACD 002 
4*9CAL 010 
4*9CAN 056 
4*9CAS 093 

surge-index value i is S-type. These conditional prob­
abilities are included in Table 2 and one can note that 
the probability a glacier in the i = 5 category is S-type 
is estimated at 97.5% whereas for a glacier in the i = 0 
category the probability is 0.5%. Examination of Table 2 
leads to the conclusion that i = 4 and i = 5 glaciers have 
a strong likelihood of being S-type and the remaining i 

1.0 

0.5 

0.0 o 

N=1754 

3 
SURGE INDEX 

Fig. 1. Histogram showing distribution of 
surge-index 'Values for 1754 glaciers in the 
Yukon Territory CGI data set. The 'Vertical 
axis has been normalized so that the sum of 
the bar heights is unity. 
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levels match to glaciers that are predominantly N-type. 
Examination of histograms for I and w reveals that the 

length and width distributions tend to be log-normal. 
I therefore introduce the logarithmic transformations 
L = 10glO I and W = 10glO W to obtain variables that 
are approximately Gaussian-distributed (Fig. 2a and b). 
The presence of "empty bins" in histograms of Figure 
2a and b is not a cause for concern. Visual smoothing 
shows that area missing from any of these bars is added 
to nearest neighbours and the overall result is approxi­
mately Gaussian. The explanation for these gaps is that 
length and width are recorded to the nearest 0.1 km; the 
logarithmic transformation produces empty bins unless 
the bar widths flL and 6... Ware taken to be large. Slope­
angle data require no transformation to yield a histogram 
that is approximately Gaussian (Fig. 2c). A histogram 
of n = 10glO w, the logarithm of Fowler's parameter, is 
included for later reference (Fig. 2d). All of the fore­
going histograms have been normalized to unit area and 
Gaussian curves of the form 

1 ( (x - f-L)2) f(x) = rn= exp - 2 
ay 27r 2a 

(3) 

have been overplotted to illustrate the match between 
the two. In Equation (3) the variable x is intended to 
represent anyone of L, W, () or n where f-L = E[x] is 
the mean value of x and a2 = E[(x - f-L)2] is the vari­
ance. (The notation E[·] indicates the expected value of 
the quantity within parentheses.) The mean and vari­
ance used in plotting the Gaussian curves in Figure 2a- c 
have been taken as the sample mean and sample variance 
calculated from the N = 1754 glaciers in the Yukon Ter-

Table 2. Distribution of surge index i within Yukon Territory CGI 
data set 

Index Number Surge probability Surge characteristics 

ni P(S = lli) 

0 1510 0.005 No special features 
1 85 0.020 Uncertain surge 
2 42 0.030 Possible surge characteristics 
3 42 0.200 Probable surge characteristics 
4 46 0.800 Very probable surge characteristics 
5 29 0.975 Certain surge characteristics 

Totals 1754 
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Fig. 2. Histograms co,lculated from the Yukon T erritoT'lJ CG I data set. Th ese ho.1Je been normal'ized 
to give unit a,rea. Glaciers likel'!J to be surge-type (those having surge index values of i 2: 4) CLre 
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(d) Logarithm of Fo w ler's parameter .12 = log 10 W. 

3 

ritory data set . Sample means are denoted by overlining 
and computed from 

In Equation (5), a denominator of N rather than N - 1 
leads to a biased estimate of t he variance (J"2 = E[(x -
J.lll; thus Equation (5) is the preferred definition of sam­
ple variance. (4) 

Sample variances are denoted by 8
2 and computed from 

N 

2 1 '""" - 2 
8 = N _ 1 L)xn - x) . (5) 

n=1 

In addition to the length, width and slope attributes 
it is necessary to incorporate the less precise attribute of 
"surge tendency". The simplest approach is to define a 
dichotomous variable S that takes the value S = 0 for 
normal glaciers and S = 1 for surge-type glaciers. Ex­
amination of Table 2 suggests that glaciers having surge 
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index 4 ~ i ~ 5 should be designated as type Sand 
glaciers having 0 ~ i ~ 3 should be designated type N. 
An alternative to this approach is to regard S as a mea­
sure of surge probability and adopt the definition 

S=p(S=ll i ) (6) 

where p(S = 11i) is the probability that a glacier is surge­
type given that its surge-index value is i . By performing 
the complete analysis presented in this paper using each 
of the two definitions, I have established that, although 
numbers differ, the results are insensitive to which ap­
proach is followed. Thus the probability-based definition 
of S defined in Equation (6) will be adopted. 

CORRELATION ANALYSIS 

The covariance between pairs of the attributes S, L, W 
and e can be expressed in the general form 

and these elements can be organi<led to form the covari­
ance matrix C. Note that diagonal elements of Care 
simply the sample variances sJ = Cjj. From the matrix 
elements Cjk the elements rjk of the sample correlation 
matrix R can be formed using the relation 

C;k ( 
r)k = 8) 

..jc)) Ckk 

These sample correlations are estimators of the correct 
(but unknown) population correlations Pjk. 

~ ,------------------------..,.. ~ 

Test of length, width and slope influences 

The covariances between S, L, Wand e can be visually 
represented by scatter diagrams (Fig. 3a- f). In these 
diagrams a distinction between S- and N-type glaciers is 
indicated by assigning an x symbol to glaciers having 
i = 4 or i = 5 and a solid dot to all others. In the 
CGI, land ware recorded to the nearest 0.1 km and 
the effects of this discretization are most apparent in 
Figure 3d. A problem with scatter diagrams involving 
discrete variables, and this is especially true of Figure 
3a- c, is that substantial overplotting can occur making 
it impossible to distinguish whether a single plotted point 
represents one or many samples, 

Information qualitatively expressed by scatter dia­
grams can be quantitatively summarized as a sample 
covariance or correlation matrix. Calculating these mat­
rices for the attributes S, L, Wand e gives for the co­
variance matrix C: 

S L W e 
S ( 0.03125 0.02956 0.01131 -0.38587 ) 
L 0.02956 0.12905 0.04088 -1.84820 
W 0.01131 0.04988 0.06620 -0.92601 
e -0.38587 -1.84820 -0.92601 59.45316 

(9) 
and for the correlation matrix R: 

S L W e 
S ( 1.00000 0.46548 0,24875 -0.28311 ) 
L 0.46548 1.00000 0.53967 -0.66724 
W 0.24875 0.53967 1.00000 -0.46678 . 
e -0.28311 -0.66724 -0.46678 1.00000 

(10) 
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The null hypothesis, that off-diagonal terms of R van­
ish, can be tested using standard procedures and confid­
ence intervals can be assigned to individual elements of 
the correlation matrix. To avoid burdening this section 
with technical discussion concerning significance testing, 
I shall simply state results and defer detailed discussion 
to a subsequent part of this paper. In matrix form, the 
95% confidence limits for the off-diagonal terms of Ex­
pression (10) can be expressed as 

S L W () 

S (0000 0.037 0.044 0043) 
~Ro.95 = 

L 0.037 0.000 0.033 0.026 
(11 ) 

W 0.044 0.033 0.000 0.037 . 
() 0.043 0.026 0.037 0.000 

From Expression (11) it is apparent that the expected 
magnitude of error in the correlation estimates of Expres­
sion (10) is not large and would not alter the ranking of 
length and slope influences on surging. Close scrutiny of 
Expression (10) leads to the following conclusions: 

1. Among L, Wand (), the attribute most strongly 
correlated with S is glacier length. Thus long glaciers 
tend to be surge-type. 

2. The correlations of Wand () with S are of comparable 
magnitude and significantly less than that between L 
and S. The S- W correlation is direct (wide glaciers 
tend to be S-type) and the S - (} correlation is inverse 
(glaciers having low slope tend to be S-type). 

3. The strongest correlation of all is the inverse correl­
ation between Land (). Long glaciers tend to have low 
slope. This raises the possibility that some compon­
ent of the observed S- L correlation arises because of 
linkage from L to B to S. 

4. The correlation between Land W indicates that long 
glaciers tend to be wide. 

5. The inverse correlation between Wand () indicates 
that wide glaciers tend to have low slope. 

Sorting out the tangle of intercorrelations is the main dif­
ficulty in settling whether it is length or low slope that 
favours surging. The technique that allows the various 
possibilities to be analyzed is a standard method of mul­
tivariate statistics known as multiple-correlation analysis 
(e .g. Mardia and others, 1979, p.170). 

Applying the basic approach of multiple-correlation 
analysis to the problem of surging, one postulates the 
existence of a linear relationship of the form 

M 

Y = '2: f3rnXm (12) 
m=l 

where f3m are constant coefficients and, for the present 
work, M = 3, Xl = L, X2 = Wand X3 = (). The covari­
ance between Sand Y can be computed using Equat­
ion (7) and will differ according to the values assigned 
to f3m . Using the method of Lagrange multipliers (e.g. 
Lanczos, 1970, p. 43- 48), values of f3m can be found that 
maximize the covariance CSy subject to appropriate con­
straints (Morrison, 1990, p.94- 95). From this, a max­
imized value of the correlation TSY can be calculated. 
This correlation is referred to as the multiple correlation 
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between S and the remaining variables L, Wand (), and 
is denoted TI.2 ... M in the general case and TS.LWO for the 
present application. For the M = 3 case, the multiple 
correlation TJ.234 is evaluated by partitioning the correl­
ation matrix into the following sub-matrices: 

(13) 

(14) 

(15) 

and evaluating 

(16) 

where Ri! denotes the matrix inverse ofR22 . Performing 
this evaluation for the matrix R gives TS.LWO = 0.46695 
as the multiple-correlation coefficient. It is interesting 
to compare this value to those of the simple correlations 
appearing in Expression (10): specifically, TSL = 0.46548 
and TSB = -0.2831l. Because 1'SUVO and TSL are essen­
tially equal, one can immediately conclude that the prim­
ary correlation is between Sand L and that virtually no 
part of the S- (} and S- W correlations is independent 
of the S- L correlation. The observed inverse correlation 
between Sand () therefore appears to have no fundamen­
tal importance. If the alternative possibility is tested, 
that the S - B correlation is the crucial one, the argument 
runs as follows: the magnitude of the S-B correlation is 
hol = 0.28311 whereas that of the multiple correlation 
1'SLWO = 0.46695. (The square root in Equation (16) 
removes all information concerning the algebraic sign.) 
Thus Land/or W must carry information concerning 
surge tendency. Two informative statistics are 

J 
TS·LWB - 1'SL 

SL = , 
TS·LWO 

(17) 

which represents the fraction of the multiple correlation 
1'S.LWO that is unexplained by the simple correlation 1'SL, 

and 

J . TS·LWO - 1'SO 
so = , 

1'S·LWO 
(18) 

which represents the fraction of the multiple correlation 
that is unexplained by the simple correlation 1'SO. For the 
CGI Yukon Territory data set, sample values of Equat­
ions (17) and (18) are J SL = 0.00315 and JSB = 0.3937l. 
If these sample values correctly represent the population 
statistics, then the following statements can be made: 
less than 0.32% of the multiple correlation between S 
and L, Wand () is unexplained by the correlation bet­
ween Sand L; less than 39.4% of the multiple correl­
ation is unexplained by the correlation between Sand (). 
Equivalently, more than 99.68% of the multiple correl­
ation is explained by the correlation between Sand L; 
more than 60.6% of the multiple correlation is explained 
by the correlation between Sand (). To summarize, vir­
tually all of the correlation between surge tendency and 
length, width and slope can be attributed to the correl-
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ation between surge tendency and length. In contrast, 
the Kamb theory would seem to predict that the (inverse) 
correlation between surge tendency and slope should be 
the predominant one. The statistical significance of these 
assertions is high, but this matter will be treated separ­
ately. 

Test of influence of Fowler's parameter 

My final task is to seek correlations between surge ten­
dency and the Fowler parameter. This could be intro­
duced as a fifth variable into the correlation matrix of 
Expression (10) but there is no reason to be interested 
in correlations between nand W or e since n itself in­
volves both of these quantities. Thus I simply consider 
the intercorrelations of S, Land n. For this analysis 

S 
S ( 0.03125 

C= L 0.02956 
n 0.00854 

and 

S 

R ~ H 
1.00000 
0.46548 
0.10882 

L 

0.02956 
0.12905 
0.04755 

L 

0.46548 
1.00000 
0.29811 

n 
0.00854) 
0.04755 
0.19713 

n 
0.10882) 
0.29811 . 
1.00000 

(19) 

(20) 

Multiple-correlation analysis of Equation (20) yields 
1'S·U1 = 0.46653 compared to 1'sn = 0.10882 and 1'SL = 
0.46548. It is apparent that the correlation between 
surge tendency and the Fowler parameter is low and that, 
like slope, the Fowler parameter contributes negligibly to 
the multiple-correlation coefficient. 

TESTS OF STATISTICAL SIGNIFICANCE 

Questions of statistical significance cannot be left un­
addressed, but the following section can be skipped by 
those who have no appetite for these matters. 

Correlation estimates 

Off-diagonal terms 1'jk of the sample correlation matrix 
can be tested one at time against the null hypothesis that 
the true population correlation is Pjk = O. (To reduce 
visual clutter, subscripts will henceforth be dropped from 
l' and P except when they are essential for clarity.) For 
the case P = 0, the sampling distribution of l' can be 
found from the statistic 

!r3-2 
t=1' --2' 

1- l' 
(21) 

which has a Student t distribution with N - 2 degrees of 
freedom. The criterion for rejecting the null hypothesis 
IS 

It I > ta j2;N-2 (22) 

where ta j2 ;N-2 is the upper 50a percentage point of the 
t distribution with N - 2 degrees of freedom (e.g. Mor­
rison, 1990, p. 102-03). For N = 1754, the order is es­
sentially infinite and the t distribution approaches the 
unit normal-distribution. (A unit-normal distribution is 
a special case of Equation (3) obtained by setting p, = 0 
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and (J = 1.) Assuming that a = 0.001, standard statis­
tical tables give to.0005 ;oo = 3.291. Using Equation (21) 
to evaluate the matrix elements that correspond to those 
of the correlation matrix in Expression (10) leads to the 
conclusion that the null hypothesis can be rejected for 
all the correlations to a confidence level that far exceeds 
99.9999%. 

Confidence limits can also be placed on the estimated 
correlation coefficients 1'jk of Expression (10). To ob­
tain these, I used the standard procedure developed by 
Fisher (1921) and described in Morrison (1990, p.101-
06) and elsewhere. For each off-diagonal element of the 
correlation matrix, the sample correlation l' has a non­
Gaussian distribution about the true correlation p. The 
transformed variable 

z = ~ In (1 + 1') , 
2 1- l' 

(23) 

known as Fisher's z statistic, can be shown for large N 
to be normally distributed with mean value 

and variance 

( = ~ In (1 + p) , 
2 1- P 

1 
var(z) = --. 

N-3 

(24) 

(25) 

It is therefore a simple matter to perform significance 
tests on z and then, by performing the reverse transfor­
mation 

l' = exp(2z) - 1 = tanhz 
exp(2z) + 1 ' 

(26) 

obtain corresponding values of 1'. Following this ap­
proach, the probability that the sample correlation l' lies 
within a given range can be evaluated using the relation 

where tanh is a hyperbolic tangent and Zaj2 is the upper 
100a percentage point of the unit-normal distribution 
(e .g. Morrison, 1990, p.8- 9). Applying Inequality (27) 
to off-diagonal elements, the correlation matrix of Ex­
pression (10) yields estimates of the error magnitudes for 
the individual matrix elements. This procedure has been 
followed to obtain the error estimates given in Expres­
sion (11). Because the statistic z as defined in Equation 
(23) is norml.'..lly distributed, it follows that the sampling 
distribution of any correlation coefficient 1'jk has the form 

1 [ [z(r) - (F] 
f(1') = (1 _ 1'2)J27r(N _ 3) exp - 2(N _ 3) , (28) 

a fact that will be used in subsequent Monte Carlo simul­
ations. 

M ultiple-correlation estimates 

Confidence limits can be placed on estimates of the 
multiple-correlation coefficient once the sampling distrib­
ution of 1'S.LWO has been determined. The sampling 
distribution for multiple-correlation coefficients was first 
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found by Fisher (1928) who showed that for r 2 the 
distribution was 

w here the correlation matrix R is p x p, r (.) is the 
gamma function (Press and others, 1986, p. 156- 57), and 
N is the sample size. This important result is widely 
quoted in the literature on multivariate analysis (e.g. 
Anderson, 1958, p.93- 96). The sampling distribution 
of Irl is found from Equation (29) using the fact that 

(30) 

Numerical evaluation of Equation (29) presents several 
minor difficulties. The arguments of the gamma function 
can be large and the actual function values can far ex­
ceed the overflow limits of digital computers. It is there­
fore essential to evaluate each term of Equation (29) by 
logarithmic additions and subtractions rather than by 
multiplications and divisions. Both the numerator and 
denominator of terms in Equation (29) can be huge but 
the net result is not. A second cautionary point is that 
the summation at first diverges then converges and terms 
near m = 0 as well as those for m -> 00 can be vanish­
ingly small . 

It might be asked if the error magnitude of indiv­
idual elements of the matrix R can be large enough to 
alter the conclusion that width and slope are not indep­
endently correlated with surge tendency. The answer is 
not immediately apparent from separate examination of 
the confidence limits on estimates of TSL (using Inequal­
ity (27)) and r SLWO (using evaluations of Equation (30)). 
The root of the difficulty is apparent from Figure 4. The 
sampling distributions for both rSL and 7·S.LWO appear 
roughly Gaussian. If both statistics were independent of 
each other, the difference b etween individua l pairs rS.LWO 

and TSL could be as large as 0.10. This would occur if 
7·S .LWO lay at the high end of its range and r SL at the 
low end. In fact, the two statistics are strongly con'el­
ated but it is not self-evident what the likely range of 
differences might be. I know of no statistical theory that 
treats this question and have therefore employed Monte 
Carlo methods to estimate the sampling d istributions of 
the statistics JSL and Jso. 

A naive and incorrect approach to this Monte Carlo 
simulation is to start with the assumption that the 
correlation matrix R as given in Expression (10) cor­
rectly describes the population correlations and then use 
Equation (28) to introduce random perturbations to off­
diagonal elements of Expression (10). The problem with 
this thinking is that it ignores the fact that off-diagonal 
elements of R are mutually correlated and a perturbat­
ion in anyone element should affect all others. A correct 
procedure that respects the influence of these intercorrel­
at ions is outlined below. 

I begin by assuming that the covariance matrix of 
Expression (9) correctly describes the population val­
ues of Cjk. Correlation matrices are necessarily sym-
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~ ~----------------------.----------------. 

o 
N 

o ..-

0.35 0.40 0.45 0.50 0.55 

CORRELATION r SL 

~ -r---------------------'--------------~ 

o 
N 

o ..-

0.35 0.40 0.45 0.50 0.55 

MULTIPLE CORRELATION (s.Lwe 

Fig. 4. R esuLts of Mont e CarLo si'muLation to 
estimate the samp Ling distr-ibution of simpLe­
and muLtipLe-cor-reLation coefficients. It is as­
sumed that the correLation ma.tr-ix for the infin­
ite popuLation is identicaL to that given by 
Expression (10) and that the size of indiv­
iduaL samp Les drawn from this popuLation is 
N = 1754. The number of Monte CarLo simuL­
ations used to estimate the sampLing distribut­
ions is 100 000. Popu Lation vaLues of the 
simpLe- and muLtipLe-correlation coefficients 
are indicat ed by a verticaL L'ine. The soLid 
cur'ues are theoreticaL sampLing distributions 
and confirm that the Mont e Car'Lo estimates 
closeLy approximate the conect distributions. 
(a) Comparison of theoreticaL and simuLated 
distr'ibutions of rSL about th,e assumed popuL­
ation'VaLue of PSL = 0.46548. (b) Com­
parison of theoreticaL and simuLated distribut­
ions of 7'S.LIVO about assumed popuLation vaLue 
PS.LIVO = 0 ·46695. 

metric and, by standard methods of linear a lgebra (e.g. 
Strang, 1980, p. 190- 95), such matrices can be diagonal­
ized by a rotational transformation VTCV = D, where 
V and VT are respectively the transformation matrix 
and its transpose. To determine V and D , I employed 
the Jacobi method described in Press and others (1986, 
p.342- 49). Once rotated to diagonal form, the diag­
onal elements correspond to sample variances of some 
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new set of variables Ul = VllS + Vj2L + Vn W + Vj48, 

U2 = V21S + V22L + V23 W + v248, etc. These are obviously 
not directly observed quantities but they can be treated 
as such. The diagonal elements dl1 , d22 , d33 and d44 of 
D are simply the respective sample variances si, s~, s~ 
and s~ of the derived variables Ul, U2, U3 and U4' These 
variances are evaluated with respect to the sample means 
Uj, U2, U3, U4 . Standard statistical theory predicts that, 
for random samples drawn from a normal population of 
size N having mean J.L and variance a 2 , the distribution 
of sample variance s2, about the true population value 
a 2 will have the form 

1 
f(x) - x(N-3)/2 ( /2) (31) - 2(N-I)/2r[(N _ 1)/2] exp -x 

where 

x = (N - 1)s2/a2 (32) 

and f(x) is a X2 distribution having v = N - 1 deg­
rees of freedom. For large values of v the variable q = 
ffx - ,ffv can be shown to have a unit-normal distrib­
ution. By using a random number generator (Press and 
others, 1986, p. 200- 03) to generate normally distributed 
random values for x, Equation (32) can be employed to 
produce correctly distributed random values for sand 
effect statistically correct perturbations to D to obtain 
the diagonal elements d{ I, d~2 and d~3 of the perturbed 
matrix D'. 

Off-diagonal elements of D vanish but off-diagonal 
elements of D ' do not. These off-diagonal perturbat­
ions can be found by noting that the correlation mat­
rix associated with the diagonalized covariance matrix 
is simply the identity matrix I . Off-diagonal perturbat­
ions to this correlation matrix are governed by the sam­
pling distribution described by Equation (28) with ( = 
O. The corresponding off-diagonal perturb at ions to D 
can be found using Equation (8) to obtain the relation 
djk = rjk (djjd£k) 1/2 where rjk represent perturb at ions to 
the off-diagonal elements of the diagonalized covariance 
matrix. Applying this approach to each of the diagonal 
elements of D , it is easy to generate a series of matrices 
D' that approximate D but include random error. The 
matrix transformation VD'V T = C ' yields a randomly 
perturbed covariance matrix from which a randomly per­
turbed correlation matrix R ' can be formed. The result­
ing correlation matrix R ' is then subjected to multiple 
correlation analysis and by repeating this procedure a 
large synthetic sample of r~L' r~o and r~-L\VO estimates 
can be generated. Using this Monte Carlo procedure, I 
generated 100000 random R ' matrices from which the 
sampling distributions for various correlation statistics 
could be calculated. Each of these matrices simulates 
the effect of drawing N = 1754 glaciers from an infinite 
population and computing the sample-correlation mat­
rix. As a computational check, I have compared the 
simulated distributions for rSL and rS.LWO with those pre­
dicted by statistical theory and obtained excellent agree­
ment (Fig. 4). 

The simulated sampling distribution and cumulative 
distribution function for the JSL and JSB statistics are 
given in Figure 5. The intention of Figure 5 is to show 
the sensitivity of sample values of the J statistic to cor-
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rectly distributed random error in the correlation mat­
rix. As mentioned, these sampling distributions have 
been calculated by making the a priori assumption t hat 
the population values of R are known and correspond to 
Expression (10), but in reality R in Expression (10) is 
a sample from some population having unknown correl­
ation attributes. For this reason, Figure 5 cannot be 
used as the starting point for significance testing of the 
J statistics for the CGI sample. Nevertheless, we can see 
that the sampling distribution of JSL about the assumed 
pop'ulation mean (Fig. 5a) suggests that sample values 
are likely to be within 1- 2% per cent of the population 
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0 
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T"" 

0 
T"" 
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JSL STATISTIC (%) 
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Pig. 5. Results of Monte Carlo simulation 
to estimate the sampling distr-ibution of the 
J statistics for the correlations S - L and S -
8. It is assumed that the correlation matrix 
for the infinite population is identical to that 
of Expression (10) and that the size of indiv­
idual samples drawn from this population is 
N = 1754. The number of Monte Carlo simul­
ations used to estimate the sampling distribut­
ions is 100000. The lefthand ordinate meas­
ures the amplitude of the probabilility density 
function for the J statistic. The righthand 
ordinate is the amplitude of the cumulative 
function (solid line) obtained by integrating 
the density function for the J statistic. The 
assumed population value for the J statistic 
is indicated by a vertical line . (a) Sampling 
distribution of J SL . (b) Sampling distribution 
of JS O• 
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0 

0 
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0 
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e 

Fig. 6. Venn diagrams iLt-ustmting scveml pos­
sible correlation relationshi.ps uetween surge 
tendency S, slope () and logarithmic length 
L. (a) Surge tendency, slope and length 
are uncorreLated. (b) Slope and length are 
uncOT'relat ed but both correlate with surge ten­
dency. (c) Slope and length are c01TeLated 
uut neither corrcl.ate witlL surge tendency. (d) 
Slope and length are mutually correlated and 
both correlate with S11.1'ge t endency. The correl­
ations between slope and surge t endency and 
length and surge tendency aTe not completely 
independent of each other uut both have sep­
arate explanatory value. (e) Slope and length 
are mutually correlated and both correlate with 
surge tendency. All of the correlation between 
surge tendency and length can be explained 
in t erms of the correlation betwcen slope and 
length . Length has no explanCLtory value not 
already accounted for by the cOTl'elation bet­
ween slope CLnd sUTge tendency. (f) Slope and 
length CLre mutuaLLy corrcl.ated and both con'e l­
ate with sUTge tendency . All of the COTTel­
ation between sUTge tendency and slope can be 
explained in terms of the correlation between 
slope and length. Slope lLas no explanatoTy 
value not alTeady accounted faT by the COT'Td­

ation between length. and surge tendency. This 
is the 1'Csult of the pTesent study. 

value (indicated by a vertical line). Thus the conclusion 
that virtually all the multiple correlation PS.Lwe is ex­
plained by the simple correlation PSL is not at risk. The 
sampling distribution for lso, on the other hand, is very 
broad (Fig. 5b) so the percentage discrepancy between 
sample values and the population value for this statistic 
is likely to be large. Fortunately, important conclusions 
do not hinge on this statistic. 

CONCLUSIONS 

Venn diagrams provide an efficient representation of the 
possible correlation relationships between length, slope 
and surge tendency. Several of these are summarized in 
Figure 6. Of particular interest are Figure 6d- f because 
they clarify the distinction I wish to make between the 
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results of this study and other possibilities. For each 
of these cases, slope and length are mutually correlated 
and each correlates with surge tendency. In Figure 6d, 
slope and length each have explanatory value whereas in 
the remaining diagrams slope (Fig. 6e) or length (Fig. 
6f) alone have explanatory value. The present analysis of 
the CGI Yukon Territory data set and that of Clarke and 
others (1986) points to the conclusion that the correl­
ation between slope and surge tendency is that depicted 
in Figure 6f and that slope has no explanatory value. 

How are we to regard Kamb's prediction that low 
slope favours surging? For insight, let us apply the Kamb 
theory to the following artificial situation: a sample of 
n glaciers is selected from a population having statistics 
identical to those of the CGI Yukon Territory data set. 
These glaciers are chosen to have identical length but to 
have slopes that are randomly distributed about the sam­
ple mean. The Kamb theory would predict that glaciers 
having lower than average slope have a greater tendency 
to be S-type than those having a greater than average 
slope. The CGI correlation analysis would predict that 
slope yields no information concerning surge tendency. 
From this perspective, the results of this paper contradict 
predictions of the Kamb theory. From a more generous 
perspective, the Kamb theory is a local theory of sub­
glacial hydrology and necessarily employs local physical 
variables such as slope, effective pressure and step-cavity 
height. In contrast, length is a global variable which 
could not appear in a local theory, so no purely local 
theory would be capable of predicting a length influence. 

With the Fowler prediction the situation is clearer. 
The prediction fails. None of the variables I have con­
sidered had a lower correlation with surge tendency than 
the parameter O. In fairness, the predicted correlation 
between Sand 0 seems incidental to the main structure 
of Fowler's theory. 
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