A CLASS OF COMPACT RIGID
0-DIMENSIONAL SPACES

F. W. LOZIER

A topological space is called ‘‘rigid” if its autohomeomorphism group is
trivial. In (1), de Groot and McDowell showed that there are rigid, 0-
dimensional spaces of arbitrarily high cardinality but left open the question
of whether or not there are compact, rigid, 0-dimensional spaces of arbitrarily
high cardinality, pointing out that an affirmative answer implies the existence
of arbitrarily large Boolean rings with trivial automorphism groups. In this
paper we construct a class of rigid, 0-dimensional spaces X¢ of arbitrary
infinite cardinality and show that their Stone-Cech compactifications 8X= are
also rigid, thus answering the above question afhrmatively.
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For every ordinal number B, let X5 = {8} X [0, wf[. For the least ordinal
number a of any given infinite cardinality, let &, be the set of all non-limit ordi-
nal numbers less than e and let X* = \J{Xj: 8 € &7,}. We claim that there is an
injection ¢: X* — .7, such that ¢((8, v)) > B for all (8, v) € X=. To see this,
observe that since card .7, = card @ = card « - card o, ., = U{%;s: 8 < af,
where the & are disjoint sets of cardinality card a. Furthermore, since « is the
first ordinal number of cardinality card &, we have card (%5 — [0, 8]) = card «
for all B < a. However, card(wf) < cardw < carda for B8 < w and
card (wf) = card 8 < carda for w =< 8 < «. Hence, the desired ¢ can be
obtained by letting ¢| X4, 8 < a, be any injection into 5 — [0, 8]. Note that
since card X* = card.%/, = card a, the existence of such a ¢ shows that
card X* = card a. Now, given such a ¢, we partially order X* by requiring
x =< y if and only if there is a finite sequence x1, %3, . . . , X, € X* such that

(1) %1 = x,

(2) x, and y belong to the same X with x, < y in the natural order on X,

B)l1 <k =n=x_16€ Xoup-

As an immediate consequence of the fact that the sequence xi, xs, . . . , x, is
uniquely determined except for length by x, we note for future reference that
any two elements of X* with a common predecessor must be comparable.

In all that follows we write X for X whenever it seems convenient to do so.
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Let £« denote the set of all ¥ € X such that no distinct x,y € ¥ are com-
parable. For x € X and Y € g, let

(x, V)={zcX:s5x A (y€V=25%9y)]

Then%x = {{x, Y): x € X, Y € F4} isa base for a topology on X. For, given
any <x1, Y1>, <x2, Y2> € gx and z € <x1, Y1> N <x2, Yg), let

Vi={xeYeye YVo=x £y}
and YV, = {x € Ys:y € V3=« £ y}. Then one readily verifies that
V;UY,€ Iy

and 2z € (g, Y;\U V) C (x1, Y1) N {x3, V2). Moreover, with the topology
generated by $x, X is T1. For, given distinct x, y € X, either x £ y in which
casex ¢ (y,0) € /(y),ory £ xin which casex ¢ (y, {x}) € A4 (y). Further-
more, any two disjoint closed subsets F; and F, of X are separated by a
partition (i.e., X is the disjoint union of two open-closed sets E; and E, with
F; € E; and F; C E,). To see this, choose for each x € Fya {x, ¥,) € A (x)
such that (x, ¥,) M F; = @. Then to show that E; = U{(x, V,): x € Fy},
E, = X — E; is the desired partition, it clearly suffices to show that E; is
closed. However, for any x’ ¢ E; there is a (x’, ¥’) € 4/ (x’) such that
&, Y )N Fr=0. Nowif 2 € (', Y) N\ Ey, then 2 € (&', V') N (x, V) for
some x € Fy. Therefore, since x and x’ have the common predecessor z, they
must be comparable. However, if x < x/, then, since x ¢ (x/, ¥’), there is a
y € Y’ such that ¥ =y, and hence 2z <y, which contradicts z € {x', ¥”).
Similarly, " < x leads to a contradiction. Hence, (x’, ¥') M\ E; = @ so that E,
is closed, as asserted. Now it follows immediately from the above observations
that X is completely regular and (2, Theorem 16.17) 0-dimensional in the
sense of (2). As a consequence (2, Theorem 16.11), dim X = 0.

LeMmA 1. Every well-ordered set A has a cofinal subset B such that

(1) mo C C B with card C < card B is cofinal,

(2) if b € B, then card{c € B: ¢ < b} < card B.

Proof. Let B’ be a cofinal subset of 4 of least cardinality. Let 8 be the first
ordinal number with card 8 = card B’ and let f: [0, B[ — B’ be any bijection.
We define g: [0, B[ — B’ by induction. Suppose that ¥y < 8 and g(8) has been
defined for all 6§ < v. If 4 is a limit ordinal number, let

g(y) = sups{g(®): 6 < v},

which exists since card{g(6): § < v} = card v < card 8 = card B’ and B’ con-
tains no cofinal subset of lower cardinality. If v = § 4 1, let g(y) = f(8) if
F(8) > g(6) and let g(y) = inf{b € B’: g(8) < b} if f(5) = g(8). Then g is an
isomorphism and g([0, 8[) is cofinal in B’ so that B = g([0, 8[) works.

Notation. We write “f: (4, a) ~ (B,b)” for “f is a homeomorphism of 4
onto B with f(a) = b".
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Definition. We say that ¥ C X “borders’” x € X provided
=xeY,

@)ye VY Ay<z<x=z€ Y, and

B)z<x=>2z=y <xforsomey € V.

LeMMA 2. Suppose that f: ([0, B], B) ~ (T, x), where 8 is a non-zero ordinal
number and T C X. Suppose that ¥ & X borders x. Then there is a 8’ < B such

that f(18, B]) S Y.

Proof. Suppose the contrary. Then, since f(8) = x € Y, [0, 8] must contain
a cofinal subset B such that f(B) N\ ¥ = @. Since {(x, @) € A (x) implies that
7y, 8]) € (x, @) for some v < B, we can assume that f(B) C (x, #). More-
over, by Lemma 1, we can assume that B has properties (1) and (2) of
Lemma 1. Now suppose that there is a 8¢ € B such that for every v € B there
isa g(y) € BN [0, Bo[ such that f(y) and f(g(y)) are comparable. Then for
some 89 < Bo, g71(8o) is cofinal in B; for otherwise, supzg—1(8) would exist for
all 6 € BN [0, Bo[, in which case C = {suppg=(8): § € B M [0, Bo[} would be
a cofinal subset of B with card C < card B. Now, since Y borders x and
f(80) < x, thereisay € Y such that f(8o) = v < x. Consider any v € g=1(5,).
Then f(6p) and f(y) are comparable. If f(y) = f(80), then f(y) < y. If
f(80) < f(v), then v and f(y) must be comparable since they have the common
predecessor f(8,). However, if y < f(y), then y < f(y) < x so that f(y) € ¥,
which contradicts f(B) M ¥ = @. Hence, f(y) < y for all v € g=1(5,). Then

F(g1(8)) M (x, {¥}) =0

which is impossible since (x, {y}) € 4/ (x) and g~1(8,) is cofinal in [0, B].
Therefore, no such By exists. Hence, B contains a cofinal subset C with
f(C) € Fx. Since x ¢ f(B) C (x, @), it follows that (x, f(C)) € A '(x) and
F1({x, f(C))) does not meet the cofinal subset C of [0, B[, which is impossible.

Now for any topological space Y, let 8 be the first ordinal number with
card ¥ < card B, and, for any v € [0, 8], let Y” be the subspace of ¥ defined
inductively as follows: let Y° = V; if v is a non-zero limit ordinal number, let
Y= N{Y% 6 < v};if v = 6§ + 1, let ¥ be the set of all non-isolated points
of the space Y?. Define ky: ¥ — [0, 8] by setting

hy(x) = sup{y = B: x € 1"},
and define ky: ¥ — [0, 8] by setting
ky(x) =infly S g: T S YV A 6> v= ([0, 0®], 0®) ~ (T, x)}.

Clearly, both hy(x) and ky(x) are invariant under homeomorphism. Moreover,
if U¢cAN(x), then ky(x) = ky(x), since ([0, w?], w?) ~ (]§', w?], ®®) for all
8 < w® 6 > 0. Hence, ky(x) 5 ky(y) implies that (U, x) ~ (V,y) for any
UecH(x), VeNy).

THEOREM 1. Suppose that « is the first ordinal number of any given infinite
cardinality and X = X* is the 0-dimensional space of cardinality card a described
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above. Then for any x € X we have kx(x) = ¢(x). Consequently, for any distinct
x,y€X, UcHEx) ANV EN(y)= (Ux) =~ (V,y). In particular, X 1is
rigid.

Proof. Suppose that f: ([0, »?], w®) ~ (T, x) for some T" C X. If x € X,, let
4 = [(y,0),x]and B = [(¢(x),0), x]. Then ¥ = 4 \U B borders x. Hence, by
Lemma 2 there is a 8/ < w® such that f(]8’, w®]) € V. Since we merely wish to
show that § < ¢(x), we can assume that § # 0. Then

(10, @°], %) ~ (8, 0], @%);

thus we can assume that 77 C Y. Now since y < ¢(x), we have hy(x) = ¢(x).
Moreover, since 7' C Y, it follows that z(x) = hy(x). Therefore,

8 = hpouh(e®) = hr(x) = o(x).

Hence, kx(x) £ ¢(x). But clearly ([0, w¢®], 0#®) ~ (X, U {x}, x). Hence,
kx(x) = o(x).

LemMA 3. Suppose that YV is a completely regular space such that Y — {x} is not
C*-embedded in Y for any x € V. Then Y and BY have isomorphic autohomeo-
morphism groups.

Proof. Clearly, it suffices to show that any autohomeomorphism f of gV
carries Y onto Y. Thus, suppose that ¥’ = f(¥) # V. Then we can assume
that there is an x € ¥ — ¥’ (otherwise, replace ¥ and f by ¥’ and f!,
respectively). Now (2, problem 9N.1), ¥ — {x} is C*-embedded in Y — {x}.
However, ¥/ C 8Y — {x} and BY’ = BY so that BY — {x} is C*-embedded in
BY. Therefore, ¥ — {x} is C*-embedded in Y, and hence in Y, contrary to
hypothesis.

Remark. The essence of the above proof is given in (2) as a hint for
(2, problem 9N.3).

THEOREM 2. Suppose that a is the first ordinal number of any given infinite
cardinality and X = X* 1is the space described above. Then BX = BX* is a
compact, rigid, 0-dimensional space of cardinality 22°*™ °.

Proof. The rigidity of X will follow from Theorem 1 and Lemma 3 provided
we show that X — {x} is not C*-embedded in X for any x € X. Thus, consider
any x € X. Then ¢(x) = 8-+ 1 for some ordinal number B, and hence
w?@ = of - w. Now define f: X — {x} — R by setting f(y) = (—1)*, where n
is the least integer such that y £ (¢(x), «f - %), if such an integer exists, and
f(y) = 0 otherwise. Then f € C*(X — {x}) but f cannot be extended to x.

To verify the cardinality of 8X* we require a D € #x such that card D =
card a. Clearly, we may take D = {(¢((1,7)),0): 2 < o} ifa = w. If & > o,
then we assert that 9 = .7, — ¢(X%) has card 2 = card «. Suppose the
contrary; let 8 be the first infinite ordinal number with card 8 = card & and
let v be the first ordinal number with card v > card 8. Then v =< « so that
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card ([0, y[ NF,) = card v. However, Z, = [0, y[ N\ D hascard D, £ card 8
so that, defining &, inductively by setting &, = [0, y[ N\ o(U{X5: 6 € D,_1}),
we have card &, < card 9,_; - card 8 < card B inductively for # < w. There-

fore, since [0, y[ Ny = U{D,: n < w}, we have
card v = card ([0, y[ N&,) = X {card D,: n < w} = card w-card 8 = card 8,

which is a contradiction. Hence, we may take D = {(8,0): 8 € D} if a > w.
Now since D € Sy and any two elements of X with a common predecessor
must be comparable, we have (x, @) N (y, @) = @ for distinct x, y € D. Then
(x,8) N\ D = {x} forany x € D so that D isdiscrete. Moreover, for any x ¢ D,
either (x, D) or (x, #) must be a neighbourhood of x disjoint from D, so that D
is closed. Now if we inspect the argument that F; = D and F. = @ are
separated by a partition, we see that U {(x, #): x € D} isclosed in X. Thus, any
f € C*(D) can be extended to g € C*(X) by setting g(y) = f(x) ify € (x, @) for
some x € D, and g(y) = 0 otherwise. Hence, D is C*-embedded in X so that
BD C BX. Therefore, since D is discrete and card D = card X* = card «, we
have 22°" ¢ = card 8D < card BX« < 2% ¢,

CoROLLARY. The Boolean ring of open-closed subsets of BX* has trivial auto-
morphism group and cardinality 2°%7=,

Proof. By the arguments used in the proof of the above theorem we see that
the U{(x, #): x € D'}, D’ C D, are 2°** * distinct open-closed subsets of X,
Therefore, since X« cannot have more than 2°® * open-closed subsets, and
since Y —clgxY is a one-to-one correspondence between the open-closed
subsets of X and the open-closed subsets of X, it follows that 8X* has exactly
2¢arde gpnen-closed subsets.
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