On Mathieu Functions of Higher Order.

By Professor Pierre Humbkrt.

(Received 18th April 1922. Read 10th June 1922.)

The definition and properties of Mathieu (or elliptic-cylinder) functions are well known to the members of this Society, owing to the appearance in its Proceedings from time to time of various papers by different authors, wherein these functions are discussed. The object of the present paper is to introduce a new kind of function which can be considered as a generalisation of Mathieu functions, and for which we propose the name of "Mathieu Functions of Higher Order."

1. Definition of the furctions by a differential equation. Let us consider the differential equation of the second order.

$$
\begin{equation*}
\frac{d^{2} y}{d z^{2}}+2 \nu \cot z \frac{d y}{d z}+\left(a+k^{2} \cos ^{2} z\right) y=0 \tag{1}
\end{equation*}
$$

where k and v are given constants, and a a constant of which the value is still unfixed. It is obvious, from the general theory of differential equations with periodic coefficients, that, when special values (depending on k and v) are given to x, equation (1) can be satisfied by periodic functions of z, with period 2π. These periodic solutions we propose to study.

When k is zero, the differential equation becomes

$$
\begin{equation*}
\frac{d^{2} y}{d z^{2}}+2 v \cot z \frac{d y}{d z}+a y=0 \tag{2}
\end{equation*}
$$

and it is readily seen that it admits of periodic solutions when a is equal to $n(n+2 v)$, where n is any positive integer. The differential equation is then identical to Gegenbauer's equation, and its periodic solutions are the polynomial $C_{n}^{\nu}(\cos z)$ of Gegenbauer, and its associated function of the second kind (which shall be
denoted by $H_{n}^{\nu}(\cos z)$). The periodic solutions of equation (2) are therefore, according to the value of a,

$$
\begin{aligned}
& C_{0}^{\nu}(\cos z), C_{1}^{\nu}(\cos z), C_{2}^{\nu}(\cos z), \ldots \ldots \\
& H_{0}^{\nu}(\cos z), H_{1}^{\nu}(\cos z), H_{2}^{\nu}(\cos z), \ldots \ldots
\end{aligned}
$$

Hence the following result: The differential equation (1) is satisfied, when suitable values are given to a, by a set of periodic functions, reducing, when k is zero, to a function C or a function H. We shall denote any of these functions by the symbol $M_{n}^{\nu}(z ; k)$, or, more briefly, $M_{n}^{\nu}(z)$; but they can be divided into two sets-even functions of z, which shall be denoted by $E_{n}^{\nu}(z)$, and which reduce to $C_{n}^{\nu}(\cos z)$ when k is zero; and odd functions, $O_{n}^{\nu}(z)$, reducing to $H_{n}^{\nu}(\cos z)$. Periodic solutions of equation (1), i.e. Mathieu functions of higher order, are therefore, according to the value of a,

$$
\begin{aligned}
& E_{0}^{\nu}(z), E_{1}^{\nu}(z), E_{2}^{\nu}(z), \ldots \ldots, \\
& O_{0}^{\nu}(z), O_{1}^{\nu}(z), O_{2}^{\nu}(z), \ldots \ldots,
\end{aligned}
$$

When v is zero, equation (1) reduces to Mathieu's equation, so that its solutions reduce to Mathieu functions, $E_{n}^{\nu}(z)$ to $c e_{n}(z)$, and $O_{n}^{\nu}(z)$ to $s e_{n}(z)$.
2. The integral-equation.-As may be expected, these functions satisfy an integral equation analogous to Whittaker's integralequation for Mathieu functions. When v is aiv integer, one readily obtains the equation

$$
\begin{equation*}
E_{n}^{\nu}(z)=\lambda \int_{-\pi}^{+\pi} e^{k \cos z \cos u} \sin ^{2} \nu u E_{n}^{\nu}(u) d u . \tag{3}
\end{equation*}
$$

If ν is not an integer, this integral equation must be written

$$
E_{n}^{\nu}(z)=\lambda \int_{-\pi}^{\pi} e^{k \cos 2 \cos u} \sin ^{2 \nu} u M_{n}^{\nu}(u) d u,
$$

the function M whicb occurs there having the property that the
product $\sin ^{2 \nu} u M_{n}^{\nu}(u)$ must not be an odd function of u. For instance, if $v=\frac{1}{2}$, we have

$$
E_{n}^{\frac{1}{n}}(z)=\lambda \int_{-\pi}^{\pi} e^{\cos ^{2} 2 \cos u} \sin u O_{n}^{\frac{1}{2}}(u) d u
$$

which is an integral equation of the first kind.
3. The functions $\mathfrak{M}, \mathcal{E}$ and \mathcal{O}.-Let us make a change of function by putting

$$
\mathcal{M}_{n}^{\nu}(z)=\sin ^{\nu} z \mathcal{M}_{n}^{\nu}(z) .
$$

Then this new function is a periodic solution of the differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d z^{2}}+\left[a+\nu^{2}-\frac{v(\nu-1)}{\sin ^{2} z}+k^{2} \cos ^{2} z\right] y=0 \tag{4}
\end{equation*}
$$

If we denote by \mathcal{E}_{n}^{ν} and \mathcal{O}_{n}^{ν} even and odd solutions of this equation, we have

$$
\begin{aligned}
& \mathcal{E}_{n}^{\nu}=\sin ^{\nu} z E_{n}^{\nu}, \text { if } v \text { is even; } \\
& \mathcal{E}_{n}^{\nu}=\sin ^{\nu} z O_{n}^{\nu}, \text { if } v \text { is odd, and so on, }
\end{aligned}
$$

and we can write the homogeneous integral equation of the second kind, with a symmetrical nucleus,

$$
\boldsymbol{\varepsilon}_{n}^{\nu}(z)=\lambda \int_{-\pi}^{\pi} e^{k \cos z \cos u} \sin ^{\nu} z \sin ^{\nu} u \boldsymbol{\mathcal { E }}_{n}^{\nu}(u) d u
$$

where v is supposed to be an even integer, the modifications when ν is odd or not integral being obvious.

When $k=0, \mathcal{E}_{n}^{\nu}$ reduces (v being even) to $\sin ^{\nu} z C_{n}^{\nu}(\cos z)$, and when v is zero, to $c e_{n}(z)$.

Now, when $\nu=1$, equation (4) reduces to

$$
\begin{equation*}
\frac{d^{2} y}{d z^{2}}+\left(a+1+k^{2} \cos ^{2} z\right) y=0 \tag{5}
\end{equation*}
$$

which is of Mathieu's type. But, when k is zero, we know that the only valid values of a are $n(n+2 v)$, i.e. $n(n+2)$; then $a+1=(n+1)^{2}$, and the solutions of (5) are $c e_{n+1}(z)$ and $s e_{n+1}(z)$; therefore

$$
\boldsymbol{\mathcal { E }}_{n}^{1}(z)=c e_{n+1}(z), \mathcal{O}_{n}^{1}(z)=s e_{n+1}(z),
$$

and

$$
E_{n}^{1}(z)=\frac{s e_{n+1}(z)}{\sin z}, O_{n}^{1}(z)=\frac{c e_{n+1}(z)}{\sin z}
$$

If we make $k=0 \quad s e_{n+1}$ reduces to $\sin (n+1) z$, so that $E_{n}^{n}(z)$ becomes $\frac{\sin (n+1) z}{\sin z}$, which is, as is well known, equal to $C_{n}^{1}(\cos z)$, thus confirming our new result.

The \mathcal{M} functions being solutions of a homogeneous integral equation with a symmetrical nucleus, there exist between two of them, with different lower indices, such relations as, if v is even,

$$
\int_{-\pi}^{\pi} \boldsymbol{E}_{n}^{\nu}(z) \mathcal{E}_{m}^{\nu}(z) d z=0
$$

which, when $k=0$, becomes

$$
\int_{-\pi}^{\pi} C_{n}^{\nu}(\cos z) C_{m}^{\nu}(\cos z) \sin ^{n \nu} z d z=0
$$

or

$$
\int_{-1}^{+1} C_{n}^{\nu}(x) C_{m}^{\nu}(x)\left(1-x^{2}\right)^{\nu-\frac{1}{2}} d x=0
$$

a well-known formula for Gegenbauer's polynomials.
Various Properties of the M-functions.-When $2 v$ is integral if we make the change of function

$$
M_{n}^{\nu}(z)=\sin ^{1-2 \nu} z F(z),
$$

we obtain for $F(z)$ the differential equation

$$
\frac{d^{2} F}{d z^{2}}+2(1-v) \cot z \frac{d F}{d z}+F\left(a+2 v-1+k^{2} \cos ^{2} z\right)=0
$$

which can be written

$$
\frac{d^{2} F}{d z^{2}}+2 v^{\prime} \cot z \frac{d F}{d z}+\left(a^{\prime}+k^{2} \cos ^{2} z\right) F^{\prime}=0
$$

where $v^{\prime}=1-v$, and where a^{\prime}, when $k=0$, becomes equal to $(n+2 v-1)\left(n+2 v-1+2 v^{\prime}\right)$. This equation for F, therefore, is a Mathieu equation of higher order, and its periodic solutions are of the form $M_{n+2 \mu-1}^{n-\nu}$. Hence the remarkable formula

$$
M_{n}^{\nu}(z)=\sin ^{1-2 \nu} z M_{n+2 p-1}^{1-\nu}(z),
$$

where M, in each member, must be replaced by E or O according to the value of v. For instance, if $v=0$, we obtain

$$
E_{n}^{0}=\sin z O_{n-1}^{1},
$$

and, if $\nu=\frac{1}{2}$, the identity,

$$
E_{n}^{z}=E_{n}^{2} .
$$

It is readily seen that, when k tends to zero, the function $M_{n}^{\nu}\left(\cos ^{-1} \frac{x}{k}\right)$ becomes equal (a constant factor being omitted) to the product $x^{-\nu} J_{n+\nu}(i x)$, where J is a Bessel function. When $k=0$, the integral equation (3) reduces to the known form

$$
C_{n}^{\nu}(\cos z)=\lambda_{1} \int_{0}^{\infty} e^{i t \cos z} t^{\nu-1} J_{n+\nu}(t) d t .
$$

5. The functions of the elliptic-hypercylinder.-Let us consider a four-dimensional space, where the Cartesian coordinates are x, y, z, t, and make the change of variables

$$
\begin{aligned}
& x=\sin \rho \sin \sigma \cos \phi \\
& y=\sin \rho \sin \sigma \sin \phi \\
& z=i \cos \rho \cos \sigma \\
& t=t .
\end{aligned}
$$

The hypersurfaces $t=$ const. and $\phi=$ const. are hyperplanes, and the hypersurfaces $\rho=$ const. (or $\sigma=$ const.) are hypercylinders parallel to the t-axis. In three-dimensional space these are the hyperboloids of revolution

$$
\frac{x^{2}+y^{2}}{\sin ^{2} \rho}-\frac{z^{2}}{\cos ^{2} \rho}=1 .
$$

We shall term these hypersurfaces, hyperbolic-hypercylinders, which by a slight change of notations become elliptic-hypercylinders.

Laplace's equation $\Delta U=0$ with four variables is readily found to be in this new system

$$
\begin{aligned}
0=\frac{\partial}{\partial \rho}\left(\sin \rho \sin \sigma \frac{\partial U}{\partial \rho}\right)-\frac{\partial}{\partial \sigma}\left(\sin \rho \sin \sigma \frac{\partial U}{\hat{\partial} \sigma}\right) & +\frac{\cos ^{2} \rho-\cos ^{2} \sigma}{\sin \rho \sin \sigma} \frac{\partial^{2} U}{\partial \phi^{2}} \\
& +\sin \rho \sin \sigma\left(\cos ^{2} \rho-\cos ^{2} \sigma\right) \frac{\partial^{2} U}{\partial t^{2}} .
\end{aligned}
$$

We can try to solve it by taking

$$
U(\rho, \sigma, \phi, t)=\cos m \phi e^{h t} \sin ^{m} \rho \sin ^{m} \sigma V_{m, \mathrm{~h}}(\rho, \sigma)
$$

where the function $V_{m, n}(\rho, \sigma)$, which can be called a function of the hyperbolic (or elliptic) hypercylinder, satisfies the partial differential equation

$$
\begin{array}{r}
\frac{\partial^{2} V}{\partial \rho^{2}}-\frac{\partial^{2} V}{\partial \sigma^{2}}+(2 m+1) \cot \rho \frac{\partial V}{\partial \rho}-(2 m+1) \cot \sigma \frac{\partial V}{\partial \rho} \\
+h^{2}\left(\cos ^{2} \rho-\cos ^{2} \sigma\right) V=0 . \tag{6}
\end{array}
$$

It is obvious that we can take, as a solution of this equation (of which I made a general study in Comptes Rendus Académie des Sciences, January 1922), a product of a function of ρ alone, $y_{1}(\rho)$, and of a function of σ alone, $y_{2}(\sigma)$, which functions shall satisfy ordinary differential equations. That for $y_{1}(\rho)$ is

$$
\frac{d^{2} y_{1}}{d \rho^{2}}+(2 m+1) \cot \rho \frac{d y_{1}}{d \rho}+\left(h^{2} \cos ^{2} \rho+\lambda\right) y_{1}=0,
$$

whose λ is an arbitrary constant, the equation for $y_{2}(\sigma)$ being exactly similar. Now this is exactly the differential equation for Mathieu functions of higher order, so that we obtain the following interesting result : a solution of equation (6) is

$$
M_{n}^{m+\frac{1}{2}}(\rho ; h) M_{n}^{m+\frac{1}{1}}(\sigma ; h),
$$

or, in other words, the product of two Mathieu functions of higher order is an elliptic-hypercylinder function. It is analogous to the fact that the product of two Gegenbauer's polynomials is a harmonic hyperspherical function.

If m is zero, the corresponding function will be a zonal one; we have then to consider a function $M_{n}^{\frac{t}{n}}$, which reduces, when k is zero, to the Legendre polynomial P. $(\cos z)$. itself a zonal soherical function.
6. The general integral-equation.-It is easy to verify that our functions are solutions of other integral equations, analogous to (3), but with new nuclei. For instance, generalising a result of the theory of Mathieu functions, we can write
$E_{n}^{\nu}(z)=\lambda \int_{-\pi}^{\pi}(\cos z+\cos u)^{-\nu} J_{\nu}[i k(\cos z+\cos u)] \sin ^{2 \nu} u E_{n}^{\nu}(u) d u$.

But it is a matter of greater interest to extend this result, and to consider the following problem: to find the general function $G(z, u)$ such that

$$
E_{n}^{\nu}(z)=\lambda \int_{-\pi}^{\pi} G(z, u) \sin ^{2 \nu} u E_{n}^{\nu}(u) d u .
$$

It is obvious, first of all, that G must be periodic and even in z and u; afterwards, by a very simple method, using the differential equation for E and integrating by parts, we can show that G must satisfy the partial differential equation

$$
\frac{\partial^{2} G}{\partial z^{2}}-\frac{\partial^{2} G}{\partial u^{2}}+2 \nu \cot z \frac{\partial G}{\partial z}-2 \nu \cot u \frac{\partial G}{\partial u}+k^{2}\left(\cos ^{2} z-\cos ^{2} u\right) G=0 .
$$

But this is equation (6) for elliptic-hypercylinder functions, where $2 m+1=2 v$, or $m=v-\frac{1}{2}$, and $h=k$. Hence the very curious result: even Mathieu functions of higher order are solutions of the homogeneous integral equation

$$
y(z)=\lambda \int_{-\pi}^{\pi} V_{\nu-\frac{1}{2}, k}(z, u) \sin ^{2} v y(u) d u,
$$

where V is an elliptic-hypercylinder function, even and periodic in z and u.

