NOTE ON A THEOREM OF MAGNUS

NORMAN BLACKBURN *

(Received 3rd March 1969)

To Bernhard Hermann Neumann on his 60th birthday

Communicated by G. E. Wall

Magnus [4] proved the following theorem. Suppose that F is a free group and that X is a basis of F. Let R be a normal subgroup of F and write G = F/R. Then there is a monomorphism of F/R' in which

$$xR' \rightarrow \begin{pmatrix} xR & 0 \\ t_x & 1 \end{pmatrix}$$
 $(x \in X);$

here the t_x are independent parameters permutable with all elements of G. Later investigations [1, 3] have shown what elements can appear in the south-west corner of these 2×2 matrices. In this form the theorem subsequently reappeared in proofs of the cup-product reduction theorem of Eilenberg and MacLane (cf. [7,8]). In this note a direct group-theoretical proof of the theorems will be given.

Let *m* be a non-negative integer distinct from 1. If *T* is a group, T^m denotes the group generated by the *m*-th powers of the elements of *T*; in particular if m = 0, $T^m = 1$. Let $\Lambda = \mathbb{Z}/m\mathbb{Z}$ and denote by ΛT the groupring of *T* with coefficients in Λ . As above let *F* be a free group with basis *X* and let *R* be a normal subgroup of *F*. Let G = F/R and let μ be the epimorphism of ΛF onto ΛG induced by the natural epimorphism $a \to aR$ of *F* onto *F/R*. Let *M* be a free ΛG -module having a basis in (1,1) correspondence $x \leftrightarrow t_x$ with *X*. The Abelian group $R/R'R^m$ can be regarded as a ΛG -module by putting

$$(aR'R^m)^{b\mu} = b^{-1}abR'R^m \qquad (a \in R, b \in F).$$

It is well-known that the augmentation ideal of ΛF is a free ΛF -module with basis the set of all x-1 ($x \in X$). The differential notation of Fox [1] will be used, and we write

(1)
$$a = a\varepsilon + \sum_{x \in X} (x-1) \frac{\partial a}{\partial x} \qquad (a \in \Lambda F),$$

* This research was supported by NSF Grant GP-6539.

469

Norman Blackburn

where ε is the augmentation of ΛF onto Λ . From (1) it follows easily that

(2)
$$\frac{\partial (ab)}{\partial x} = (a\varepsilon) \frac{\partial b}{\partial x} + \frac{\partial a}{\partial x} b.$$

A mapping α of F into M is defined by

(3)
$$a\alpha = \sum_{x \in \mathcal{X}} t_x \left(\frac{\partial a}{\partial x}\right) \mu.$$

Using (2) it is seen that for $a \in F$, $b \in F$,

(4)
$$(ab)\alpha = (a\alpha)(b\mu) + b\alpha$$

Hence the restriction of α to R is a homomorphism of the group R into the additive group M. The kernel of the restriction of α to R contains $R'R^m$ since M is an Abelian group of exponent m. Hence α induces a homomorphism $\tilde{\alpha}$ of $R/R'R^m$ into M. In fact $\tilde{\alpha}$ is a AG-homomorphism, for if $a \in R$ and $b \in F$,

$$\begin{aligned} \{(aR'R^m)^{b\mu}\}\bar{\alpha} &= (b^{-1}ab)\alpha \\ &= \sum_{x \in X} t_x \left(-\frac{\partial b}{\partial x} b^{-1}ab + \frac{\partial a}{\partial x} b + \frac{\partial b}{\partial x} \right) \mu \\ &= (a\alpha)(b\mu), \end{aligned}$$

on account of (2). The above theorem of Magnus is a consequence of the following.

THEOREM. If A is the augmentation ideal of ΛG and $\bar{\mu}$ is the ΛG -homomorphism of M into A for which $t_x\bar{\mu} = x\mu - 1$,

$$0 \to R/R'R^m \stackrel{\tilde{a}}{\to} M \stackrel{\tilde{\mu}}{\to} A \to 0$$

is an exact sequence of AG-modules.

For each $g \in G$ choose a fixed element $s_g \in F$ such that $s_g \mu = g$ and $s_1 = 1$. If we write

(5)
$$s_{g}s_{h} = s_{gh}r_{g,h} \qquad (g \in G, h \in G),$$

then $r_{g,h} \in R$ and $r_{1,h} = r_{g,1} = 1$. For each $g \in G$ a Λ -homomorphism θ_g of A into $R/R'R^m$ is defined by putting

(6)
$$(h-1)\theta_g = r_{h,g} R' R^m \qquad (h \in G).$$

It is readily verified that $\theta_1 = 0$ and

(7)
$$u\theta_{gh} = (u\theta_g)^h (ug)\theta_h$$
 $(u \in A);$

indeed it suffices to verify this when $u+1 \in G$ on account of linearity, and

in this case it is an immediate consequence of the fact that $r_{g,h}R'R^m$ is a cocycle.

Now let N be the set of ordered pairs $(aR'R^m, u)$ with $a \in R, u \in A$. We give N the additive group structure of the direct sum of $R/R'R^m$ and A. However N will be given a ΛG -structure different from that of the direct sum. Namely, if $g \in G$, we put

(8)
$$(aR'R^m, u)g = ((aR'R^m)^g(u \theta_g), ug).$$

The relation (7) ensures that N becomes a AG-module with this definition.

It will next be shown that for $a \in F$,

(9)
$$\sum_{x \in \mathcal{X}} \left(s_{x\mu}^{-1} x R' R^m, (x-1)\mu \right) \left(\frac{\partial a}{\partial x} \right) \mu = \left(s_{a\mu}^{-1} a R' R^m, (a-1)\mu \right)$$

(Note that this makes sense since $s_{a\mu}^{-1}a \in R$ and $(a-1)\mu \in A$). (9) will be proved by induction on the length of *a* relative to the basis *X*. If this is 1, we observe that (9) is clear for $a \in X$; if $a^{-1} \in X$, the left-hand side of (9) is

$$-(s_{a^{-1}\mu}^{-1}a^{-1}R'R^{m}, (a^{-1}-1)\mu)(a\mu) = (ar_{a^{-1}\mu, a\mu}s_{a\mu}^{-1}R'R^{m}, 1-a^{-1}\mu)(a\mu)$$
by (5)

$$= ((r_{a^{-1}\mu, a\mu}s_{a\mu}^{-1}aR'R^m)\{(1-a^{-1}\mu)\theta_{a\mu}\}, a\mu-1)$$
 by (8)

$$= (s_{a\mu}^{-1}aR'R^{m}, a\mu - 1), \qquad by (6)$$

which is the right-hand side. To complete the proof of (9) it suffices to deduce its validity for ab from that for a and b. We have

$$\sum_{x \in \mathcal{X}} (s_{x\mu}^{-1} x R' R^m, (x-1)\mu) \left(\frac{\partial (ab)}{\partial x}\right) \mu$$
$$= \sum_{x \in \mathcal{X}} (s_{x\mu}^{-1} x R' R^m, (x-1)\mu) \left\{ \left(\frac{\partial a}{\partial x}\right) \mu (b\mu) + \left(\frac{\partial b}{\partial x}\right) \mu \right\}$$
by (2)

$$= (s_{a\mu}^{-1}aR'R^{m}, (a-1)\mu)(b\mu) + (s_{b\mu}^{-1}bR'R^{m}, (b-1)\mu)$$
 by assumption
= $((b^{-1}s_{a\mu}^{-1}abR'R^{m})((a-1)\mu\theta_{b\mu}), (ab-b)\mu)$

$$+ \left(s_{b\mu}^{-1}bR'R^{m}, (b-1)\mu\right)$$
 by (8)

$$= (r_{a\mu, b\mu}(s_{b\mu}^{-1}b)(b^{-1}s_{a\mu}^{-1}ab)R'R^{m}, (ab-1)\mu)$$
 by (6)

$$= (s_{(ab)\mu}^{-1} abR'R^{m}, (ab-1)\mu), \qquad by (5)$$

as required.

A ΛG -homomorphism γ of M into N is defined by putting

$$t_x \gamma = (s_{x\mu}^{-1} x R' R^m, (x-1)\mu).$$

Thus (3) and (9) show that

Norman Blackburn

$$alpha\gamma = \left\{\sum_{x \in X} t_x\left(\frac{\partial a}{\partial x}\right)\mu\right\}\gamma = \left(s_{a\mu}^{-1}aR'R^m, (a-1)\mu\right).$$

Two special cases should be noted. Firstly, if $a = s_g$, then $a\mu = g$ and we obtain

(10)
$$s_{a}\alpha\gamma = (1, g-1).$$

Secondly, if $a \in R$, $a\mu = 1$ and $s_{a\mu} = 1$; hence

$$a\alpha\gamma = (aR'R^m, 0) \qquad (a \in R).$$

It follows at once that $\bar{\alpha}$ is a monomorphism.

Next we define a Λ -homomorphism φ of A into M for which $(g-1)\varphi = s_g \alpha$. Then (10) gives

$$u\varphi\gamma = (1, u) \qquad (u \in A).$$

Hence for $a \in R$, $u \in A$,

(11)
$$(a\alpha + u\varphi)\gamma = (aR'R^m, u).$$

We now define a mapping β of N into M by putting

$$(aR'R^m, u)\beta = (aR'R^m)\bar{\alpha} + u\varphi.$$

Thus (11) states that $\beta \gamma$ is the identity mapping.

Finally we prove that $\gamma\beta$ is the identity mapping. Note that β is a ΛG -homomorphism, for by (8)

$$\{(aR'R^m, u)g\}\beta - \{(aR'R^m, u)\beta\}g = u\theta_g\bar{\alpha} + (ug)\varphi - (u\varphi)g,$$

and the vanishing of the right-hand side is easily verified in the case when $u+1 \in G$ by applying α to (5). Hence it suffices to prove that $t_x \gamma \beta = t_x$, and this readily follows from the definitions of γ , β and α .

 β and γ are therefore $\varDelta G$ -isomorphisms and so it suffices to prove that the sequence

$$0 \to R/R'R^m \xrightarrow{\bar{a}\gamma} N \xrightarrow{\beta\bar{\mu}} A \to 0$$

is exact. But $\beta \bar{\mu}$ is the mapping of N into A which carries $(aR'R^m, u)$ into u; to see this write $(aR'R^m, u)\nu = u$ and observe that $\gamma \nu = \bar{\mu}$ since $t_x \gamma \nu = (x-1)\mu = t_x \bar{\mu}$. On account of (11) $\bar{\alpha}\gamma$ carries $aR'R^m$ into $(aR'R^m, 0)$. Hence the above sequence is exact and the theorem is proved.

The theorem has numerous consequences. For example Theorem 2.5 of [5] can be deduced from it. We prove this in its local form; cf. [2].

COROLLARY 1. Suppose that F is a non-cyclic free group and that R is a non-trivial normal subgroup of F. Suppose that there exist a prime p, an integer $n \ge 1$ and an element s of F such that $[a, s, \dots, s] \in R'R^p$ for all $a \in R$. Then the order of sR is a power of p.

472

Suppose that this is false. Let \tilde{F} be the group generated by s and R. For each $i \ge 0$ let S_i be the subgroup generated by $R'R^p$ and all $[a, s, \dots, s]$ $(a \in R)$. Thus

$$R = S_0 \ge S_1 \ge \cdots \ge S_n = R'R^p$$

Since s centralizes S_{i-1}/S_i , $\tilde{F}/R'R^p$ is nilpotent. We define a subgroup F_1 as follows. If sR is of finite order, let F_1/R be a subgroup of the group generated by sR of prime order not equal to p; thus $F_1/R'R^p$ is Abelian. If sR is of infinite order let F_1 be the centralizer of $R/R'R^p$ in \tilde{F} . It is easy to see that F_1 is of finite index in \tilde{F} , so that $F_1 \neq R$. In either case $F_1 \neq R$ and $F_1/R'R^p$ is Abelian. On account of the hypotheses R is non-cyclic. Hence a basis X_1 of F_1 contains more than one element. We apply the theorem to the basis X_1 of F_1 . Thus if x and y are distinct elements of X_1 , $[x, y]\alpha = 0$. If z = [x, y], then xy = yxz, so by (4),

$$(x\alpha)(y\mu)+y\alpha = (y\alpha)\{(xz)\mu\}+(x\alpha)(z\mu)+z\alpha.$$

Since $x\alpha = t_x$, $y\alpha = t_y$ and $z\alpha = 0$, this reduces to

$$t_x(y\mu) + t_y = t_y(x\mu) + t_x,$$

whence $x\mu = 1$ and $x \in R$. Hence $X_1 \subseteq R$ contrary to $R \neq F_1$.

The following consequence of the theorem was deduced from the exact homology sequence by Roquette [6] in his proof of a theorem of Golod and Šafarevič.

COROLLARY 2. Suppose that G is a finite p-group and that $(G : G'G^p) = p^d$. Suppose that F is a free group of rank d and that G is isomorphic to F/R. Then the augmentation ideal of (Z|pZ)G is isomorphic to M|K, where M is a free (Z|pZ) G-module of rank d and K is a submodule generated by r elements, where $p^r = |H_2(G, Z|pZ)|$.

Since $(G: G'G^p) = p^d$ and d is the rank of F, $R \leq F'F^p$. Hence $H_2(G, \mathbb{Z}/p\mathbb{Z})$ is isomorphic to $R/[R, F]R^p$. Hence $R/[R, F]R^p$ is generated by r elements, so $R/R'R^p$ is generated as a $(\mathbb{Z}/p\mathbb{Z})G$ -module by r elements. The result then follows from the theorem at once.

References

- [1] R. H. Fox, 'Free differential calculus, I', Ann. Math. 57 (1953) 547-560.
- [2] W. Gaschütz, 'Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert werden', Math. Z. 60 (1954) 274-286.
- [3] R. C. Lyndon, 'Cohomology theory of groups with a single defining relation', Ann. Math. 52 (1950) 650-665.
- [4] W. Magnus, 'On a theorem of Marshall Hall', Ann. Math. 40 (1939) 764-768.
- [5] B. H. Neumann, 'On a theorem of Auslander and Lyndon', Arch. Math. 13 (1962) 4-9.
- [6] P. Roquette, 'On class field towers', Proceedings of an Instructional Conference on algebraic number theory, Thompson, (1967).

Norman Blackburn

- [7] R. G. Swan, 'A simple proof of the cup product reduction theorem', Proc. Nat. Acad. Sci. 46 (1960) 114-117.
- [8] J. Schmid, 'Zu den Reduktionssätzen in der homologischen Theorie der Gruppen', Arch. Math. 15 (1964) 28-32.

University of Illinois at Chicago Circle