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Magnus [4] proved the following theorem. Suppose that F is a free
group and that X is a basis of F. Let R be a normal subgroup of F and
write G = F/R. Then there is a monomorphism of FIR' in which

xR'^ (X °\ (xeX);

here the tx are independent parameters permutable with all elements of G.
Later investigations [1, 3] have shown what elements can appear in the
south-west corner of these 2x2 matrices. In this form the theorem sub-
sequently reappeared in proofs of the cup-product reduction theorem of
Eilenberg and MacLane (cf. [7,8]). In this note a direct group-theoretical
proof of the theorems will be given.

Let m be a non-negative integer distinct from 1. If T is a group, Tm

denotes the group generated by the w-th powers of the elements of T; in
particular if m = 0, Tm = 1. Let A = ZlmZ and denote by AT the group-
ring of T with coefficients in A. As above let F b e a free group with basis X
and let R be a normal subgroup of F. Let G = F/R and let fi be the epimor-
phism of AF onto AG induced by the natural epimorphism a -> aR of F
onto F/R. Let M be a free AG-modu\e having a basis in (1,1) correspondence
z<-> tx with X. The Abelian group R/R'Rm can be regarded as a /lG-module
by putting

(aR'Rm)b'i = b-labR'Rm (a e R, b e F).

It is well-known that the augmentation ideal of A F is a free ylF-module
with basis the set of all a;—1 (x e X). The differential notation of Fox [1]
will be used, and we write

(1) a = ae-\- 2 (x~l)— (aeAF),
xeX OX
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where e is the augmentation of AF onto A. From (1) it follows easily that

8(ab) , 8b 8a
2 - F ^ = <*e T + IT b-

8x 8x 8x
A mapping a of F into M is defined by

(3) ""=,?> (£)"•
Using (2) it is seen that for a e F, b e F,

(4) («&)a = (

Hence the restriction of a to R is a homomorphism of the group R into the
additive group M. The kernel of the restriction of a to 7? contains R'Rm

since M is an Abelian group of exponent m. Hence <x induces a homomor-
phism 5 of R/R'Rm into M. In fact a is a /IG-homomorphism, for if a e R
and b e F,

{(aR'Rm)b»}a= (b-iab)<t

on account of (2). The above theorem of Magnus is a consequence of the
following.

THEOREM. / / A is the augmentation ideal of AG and p, is the AG-homo-
morphism of M into A for which txp = Xfi~\,

0 -> R/R'Rm 4 M - i ^ ^ 0

is an exact sequence of AG-modules.
For each g e G choose a fixed element sg e F such that sg/x = g and

sx = 1. If we write

(5) V>> = W».» {geG.he G),

then rg he R and rlf ft = rg_ x = 1. For each g eG a. /l-homomorphism Bg

of A into RjR'R™ is defined by putting

(6) (A-1)0, = r ^ J ? ' / ? - (heG).

It is readily verified that dt = 0 and

(7) « 0 , » = ( « 0 , ) * ( * K ) 0 » («e^);

indeed it suffices to verify this when u-\-\ eG on account of linearity, and
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in this case it is an immediate consequence of the fact that rg hR'Rm is a
cocycle.

Now let N be the set of ordered pairs (aR'Rm, u) with a e R, u e A. We
give N the additive group structure of the direct sum of R/R'Rm and A.
However N will be given a ylG-structure different from that of the direct
sum. Namely, if g e G, we put

(8) (aR'Rm, u)g = ((aR'RmY(u Bg), ug).

The relation (7) ensures that N becomes a AG-modu\e with this definition.
It will next be shown that for a e F,

(9) 2 (sJxR'K*, ( a - %
xeX

(Note that this makes sense since s~*a e R and (a—l)/u e A). (9) will be
proved by induction on the length of a relative to the basis X. If this is 1,
we observe that (9) is clear for a e X; if a"1 e X, the left-hand side of (9) is

by (5)

^ > l > } . «/«-!) by (8)
= {szlaR'R",ap-l), by (6)

which is the right-hand side. To complete the proof of (9) it suffices to de-
duce its validity for ab from that for a and b. We have

xeX

by (2)

^bR'Rm, {b-l)/x) by assumption

(s$bR'R<*,{b-l)r) by (8)

s-lab)R'R">, (ab-1)?) by (6)

by (5)

as required.
A ylG-homomorphism y of M into N is defined by putting

Thus (3) and (9) show that

https://doi.org/10.1017/S1446788700007734 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007734


472 Norman Blackburn [4]

Two special cases should be noted. Firstly, if a = sg, then a/j, = g and we
obtain

(10) stxy={l,g-l).

Secondly, if a e R, a/u = 1 and sa/l = 1; hence

= (aR'Rm, 0) («eif).

It follows at once that a is a monomorphism.
Next we define a /1-homomorphism q> of A into M for which (g—l)q> =

s9a. Then (10) gives

ucpy = (1, u) (u e A).

Hence for a e R, u e A,

(11) {au.+u<p)y = (aR'Rm, u).

We now define a mapping /S of 2V into Af by putting

(aR'Rm, u)P = {aR'Rm)a+ucp.

Thus (11) states that fly is the identity mapping.

Finally we prove that y/S is the identity mapping. Note that /? is a
/lG-homomorphism, for by (8)

{(aR'R™, u)g)P -{(aR'Rm, u)P}g = uOt«+{ug)y-{u<p)g,

and the vanishing of the right-hand side is easily verified in the case when
u-\-l e G by applying a to (5). Hence it suffices to prove that txyfi = tx, and
this readily follows from the definitions of y, /S and a.

|S and y are therefore /lG-isomorphisms and so it suffices to prove that
the sequence

0 -> R/R'Rm % N % A -> 0

is exact. But fiji is the mapping of N into A which carries (aR'Rm, u) into
u; to see this write (aR'Rm,u)v = u and observe that yv = p, since
txyv = (x~\)fj. = ^/t. On account of (11) ay carries ai?'i?m into (aR'Rm, 0).
Hence the above sequence is exact and the theorem is proved.

The theorem has numerous consequences. For example Theorem 2.5 of
[5] can be deduced from it. We prove this in its local form; cf. [2],

COROLLARY 1. Suppose that F is a non-cyclic free group and that R is a
non-trivial normal subgroup of F. Suppose that there exist a prime p, an in-
teger n ^ l and an element s of F suck that [a, s, • • •, s] e R'RV for all ae R.
Then the order of sR is a power of p. " « '
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Suppose that this is false. Let F be the group generated by s and R.
For each i ^ 0 let St- be the subgroup generated by R'RP and all [a, s, • • •, s]
{aeR).Thus ' T"

R = So ^ S1 ^ • • • ^ Sn = R'RP.

Since s centralizes Si_1ISi, FjR'R" is nilpotent. We define a subgroup Ft

as follows. If sR is of finite order, let FJR be a subgroup of the group
generated by sR of prime order not equal to p; thus F1IR'RP is Abelian.
If si? is of infinite order let Ft be the centralizei of R/R'RP in F. It is easy
to see that F± is of finite index in F, so that F1 ^ R. In either case Fx^ R
a.ndF1jR'Rpis Abelian. On account of the hypotheses R is non-cyclic. Hence
a basis Xt of Ft contains more than one element. We apply the theorem to
the basis Xl of Fx. Thus if x and y are distinct elements of Xlt [x, y]x = 0.
If z = [x, y], then xy = yxz, so by (4),

(xcx.)(yfi)+y!x. = (ya.){(

Since xa = tx, ya. = ty and za. = 0, this reduces to

whence x/.i = 1 and x e R. Hence Xt Q R contrary to R ^ Fx.
The following consequence of the theorem was deduced from the

exact homology sequence by Roquette [6] in his proof of a theorem of
Golod and Safarevic.

COROLLARY 2. Suppose that G is a finite p-group and that (G : G'GP) = pd.
Suppose that F is a free group of rank d and that G is isomorphic to FjR.
Then the augmentation ideal of [ZjpZ)G is isomorphic to MjK, where M is a
free {Z\pZ) G-module of rank d and K is a submodule generated by r elements,
where pr = \H2(G, Z\pZ)\.

Since (G : G'GP) = pa and d is the rank of F, R ^ F'F*. Hence
H2(G, ZjpZ) is isomorphic to R/[R, F]RP. Hence Rj[R, F]RP is generated
by r elements, so R/R'RP is generated as a (Z/pZ)G-module by r elements.
The result then follows from the theorem at once.
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