NOTE ON A THEOREM OF MAGNUS

NORMAN BLACKBURN *

(Received 3rd March 1969)

To Bernhard Hermann Neumann on his 60th birthday
Communicated by G. E. Wall

Magnus [4] proved the following theorem. Suppose that F is a free group and that X is a basis of F. Let R be a normal subgroup of F and write $G=F / R$. Then there is a monomorphism of F / R^{\prime} in which

$$
x R^{\prime} \rightarrow\left(\begin{array}{ll}
x R & 0 \\
t_{x} & 1
\end{array}\right) \quad(x \in X) ;
$$

here the t_{x} are independent parameters permutable with all elements of G. Later investigations $[1,3]$ have shown what elements can appear in the south-west corner of these 2×2 matrices. In this form the theorem subsequently reappeared in proofs of the cup-product reduction theorem of Eilenberg and MacLane (cf. [7,8]). In this note a direct group-theoretical proof of the theorems will be given.

Let m be a non-negative integer distinct from 1. If T is a group, T^{m} denotes the group generated by the m-th powers of the elements of T; in particular if $m=0, T^{m}=1$. Let $\Lambda=\boldsymbol{Z} / m \boldsymbol{Z}$ and denote by ΛT the groupring of T with coefficients in A. As above let F be a free group with basis X and let R be a normal subgroup of F. Let $G=F / R$ and let μ be the epimorphism of ΛF onto ΛG induced by the natural epimorphism $a \rightarrow a R$ of F onto F / R. Let M be a free ΛG-module having a basis in $(1,1)$ correspondence $x \leftrightarrow t_{x}$ with X. The Abelian group $R / R^{\prime} R^{m}$ can be regarded as a ΛG-module by putting

$$
\left(a R^{\prime} R^{m}\right)^{b \mu}=b^{-1} a b R^{\prime} R^{m} \quad(a \in R, b \in F)
$$

It is well-known that the augmentation ideal of ΛF is a free ΛF-module with basis the set of all $x-1(x \in X)$. The differential notation of Fox [1] will be used, and we write

$$
\begin{equation*}
a=a \varepsilon+\sum_{x \in X}(x-1) \frac{\partial a}{\partial x} \quad(a \in \Lambda F), \tag{1}
\end{equation*}
$$

* This research was supported by NSF Grant GP-6539.
where ε is the augmentation of ΛF onto A. From (1) it follows easily that

$$
\begin{equation*}
\frac{\partial(a b)}{\partial x}=(a \varepsilon) \frac{\partial b}{\partial x}+\frac{\partial a}{\partial x} b \tag{2}
\end{equation*}
$$

A mapping α of F into M is defined by

$$
\begin{equation*}
a \alpha=\sum_{x \in X} t_{x}\left(\frac{\partial a}{\partial x}\right) \mu \tag{3}
\end{equation*}
$$

Using (2) it is seen that for $a \in F, b \in F$,

$$
\begin{equation*}
(a b) \alpha=(a \alpha)(b \mu)+b \alpha \tag{4}
\end{equation*}
$$

Hence the restriction of α to R is a homomorphism of the group R into the additive group M. The kernel of the restriction of α to R contains $R^{\prime} R^{m}$ since M is an Abelian group of exponent m. Hence α induces a homomorphism $\bar{\alpha}$ of $R / R^{\prime} R^{m}$ into M. In fact $\bar{\alpha}$ is a ΛG-homomorphism, for if $a \in R$ and $b \in F$,

$$
\begin{aligned}
\left\{\left(a R^{\prime} R^{m}\right)^{b \mu}\right\} \bar{\alpha} & =\left(b^{-1} a b\right) \alpha \\
& =\sum_{x \in X} t_{x}\left(-\frac{\partial b}{\partial x} b^{-1} a b+\frac{\partial a}{\partial x} b+\frac{\partial b}{\partial x}\right) \mu \\
& =(a \alpha)(b \mu)
\end{aligned}
$$

on account of (2). The above theorem of Magnus is a consequence of the following.

Theorem. If A is the augmentation ideal of ΛG and $\bar{\mu}$ is the ΛG-homomorphism of M into A for which $t_{x} \bar{\mu}=x \mu-1$,

$$
0 \rightarrow R / R^{\prime} R^{m} \xrightarrow{\bar{\alpha}} M \xrightarrow{\bar{\mu}} A \rightarrow 0
$$

is an exact sequence of ΛG-modules.
For each $g \in G$ choose a fixed element $s_{g} \in F$ such that $s_{g} \mu=g$ and $s_{1}=1$. If we write

$$
\begin{equation*}
s_{g} s_{h}=s_{g h} r_{g, h} \quad(g \in G, h \in G) \tag{5}
\end{equation*}
$$

then $r_{g, h} \in R$ and $r_{1, h}=r_{g, 1}=1$. For each $g \in G$ a Λ-homomorphism θ_{g} of A into $R / R^{\prime} R^{m}$ is defined by putting

$$
\begin{equation*}
(h-1) \theta_{g}=r_{h, g} R^{\prime} R^{m} \quad(h \in G) \tag{6}
\end{equation*}
$$

It is readily verified that $\theta_{1}=0$ and

$$
\begin{equation*}
u \theta_{o h}=\left(u \theta_{g}\right)^{h}(u g) \theta_{h} \quad(u \in A) \tag{7}
\end{equation*}
$$

indeed it suffices to verify this when $u+1 \in G$ on account of linearity, and
in this case it is an immediate consequence of the fact that $r_{g, h} R^{\prime} R^{m}$ is a cocycle.

Now let N be the set of ordered pairs ($a R^{\prime} R^{m}, u$) with $a \in R, u \in A$. We give N the additive group structure of the direct sum of $R / R^{\prime} R^{m}$ and A. However N will be given a $A G$-structure different from that of the direct sum. Namely, if $g \in G$, we put

$$
\begin{equation*}
\left(a R^{\prime} R^{m}, u\right) g=\left(\left(a R^{\prime} R^{m}\right)^{g}\left(u \theta_{g}\right), u g\right) \tag{8}
\end{equation*}
$$

The relation (7) ensures that N becomes a $A G$-module with this definition. It will next be shown that for $a \in F$,

$$
\begin{equation*}
\sum_{x \in X}\left(s_{x \mu}^{-1} x R^{\prime} R^{m},(x-1) \mu\right)\left(\frac{\partial a}{\partial x}\right) \mu=\left(s_{a \mu}^{-1} a R^{\prime} R^{m},(a-1) \mu\right) . \tag{9}
\end{equation*}
$$

(Note that this makes sense since $s_{a \mu}^{-1} a \in R$ and ($a-1$) $\mu \in A$). (9) will be proved by induction on the length of a relative to the basis X. If this is 1 , we observe that (9) is clear for $a \in X$; if $a^{-1} \in X$, the left-hand side of (9) is

$$
\begin{align*}
& -\left(s_{a^{-1} \mu_{\mu}}^{-1} a^{-1} R^{\prime} R^{m},\left(a^{-1}-1\right) \mu\right)(a \mu) \\
& =\left(a r_{a^{-1} \mu, a \mu} s_{a \mu}^{-1} R^{\prime} R^{m}, 1-a^{-1} \mu\right)(a \mu) \tag{5}\\
& =\left(\left(r_{a^{-1} \mu, a \mu} s_{a \mu}^{-1} a R^{\prime} R^{m}\right)\left\{\left(1-a^{-1} \mu\right) \theta_{a \mu}\right\}, a \mu-1\right) \tag{8}\\
& =\left(s_{a \mu}^{-1} a R^{\prime} R^{m}, a \mu-1\right), \tag{6}
\end{align*}
$$

which is the right-hand side. To complete the proof of (9) it suffices to deduce its validity for $a b$ from that for a and b. We have

$$
\begin{array}{rlr}
\sum_{x \in X}\left(s_{x \mu}^{-1} x R^{\prime} R^{m},(x-1) \mu\right)\left(\frac{\partial(a b)}{\partial x}\right) \mu & \\
=\sum_{x \in X}\left(s_{x \mu}^{-1} x R^{\prime} R^{m},(x-1) \mu\right)\left\{\left(\frac{\partial a}{\partial x}\right) \mu(b \mu)+\left(\frac{\partial b}{\partial x}\right) \mu\right\} & \text { by (2) } \\
=\left(s_{a \mu}^{-1} a R^{\prime} R^{m},(a-1) \mu\right)(b \mu)+\left(s_{b \mu}^{-1} b R^{\prime} R^{m},(b-1) \mu\right) & \text { by assumption } \\
=\left(\left(b^{-1} s_{a \mu}^{-1} a b R^{\prime} R^{m}\right)\left((a-1) \mu \theta_{b \mu}\right),(a b-b) \mu\right) & \\
& +\left(s_{b \mu}^{-1} b R^{\prime} R^{m},(b-1) \mu\right) & \text { by (8) } \\
=\left(r_{a \mu, b \mu}\left(s_{b \mu}^{-1} b\right)\left(b^{-1} s_{a \mu}^{-1} a b\right) R^{\prime} R^{m},(a b-1) \mu\right) & \text { by (6) } \\
=\left(s_{(a b) \mu}^{-1} a b R^{\prime} R^{m},(a b-1) \mu\right), & \text { by (5) } \tag{5}
\end{array}
$$

as required.
A ΛG-homomorphism γ of M into N is defined by putting

$$
t_{x} \gamma=\left(s_{x \mu}^{-1} x R^{\prime} R^{m},(x-1) \mu\right)
$$

Thus (3) and (9) show that

$$
a \alpha \gamma=\left\{\sum_{x \in X} t_{x}\left(\frac{\partial a}{\partial x}\right) \mu\right\} \gamma=\left(s_{a_{\mu}}^{-1} a R^{\prime} R^{m},(a-1) \mu\right) .
$$

Two special cases should be noted. Firstly, if $a=s_{g}$, then $a \mu=g$ and we obtain

$$
\begin{equation*}
s_{g} \alpha \gamma=(1, g-1) . \tag{10}
\end{equation*}
$$

Secondly, if $a \in R, a \mu=1$ and $s_{a \mu}=1$; hence

$$
a \times \gamma=\left(a R^{\prime} R^{m}, 0\right) \quad(a \in R)
$$

It follows at once that $\bar{\alpha}$ is a monomorphism.
Next we define a A-homomorphism φ of A into M for which $(g-1) \varphi=$ $s_{g} \alpha$. Then (10) gives

$$
u \varphi \gamma=(1, u) \quad(u \in A)
$$

Hence for $a \in R, u \in A$,

$$
\begin{equation*}
(a \alpha+u \varphi) \gamma=\left(a R^{\prime} R^{m}, u\right) \tag{11}
\end{equation*}
$$

We now define a mapping β of N into M by putting

$$
\left(a R^{\prime} R^{m}, u\right) \beta=\left(a R^{\prime} R^{m}\right) \bar{\alpha}+u \varphi .
$$

Thus (11) states that $\beta \gamma$ is the identity mapping.
Finally we prove that $\gamma \beta$ is the identity mapping. Note that β is a ΛG-homomorphism, for by (8)

$$
\left\{\left(a R^{\prime} R^{m}, u\right) g\right\} \beta-\left\{\left(a R^{\prime} R^{m}, u\right) \beta\right\} g=u \theta_{g} \bar{\alpha}+(u g) \varphi-(u \varphi) g
$$

and the vanishing of the right-hand side is easily verified in the case when $u+1 \in G$ by applying α to (5). Hence it suffices to prove that $t_{x} \gamma \beta=t_{x}$, and this readily follows from the definitions of γ, β and α.
β and γ are therefore $A G$-isomorphisms and so it suffices to prove that the sequence

$$
0 \rightarrow R / R^{\prime} R^{m} \xrightarrow{\bar{\alpha} \gamma} N \xrightarrow{\beta \overline{\bar{u}}} A \rightarrow 0
$$

is exact. But $\beta \bar{\mu}$ is the mapping of N into A which carries $\left(a R^{\prime} R^{m}, u\right)$ into u; to see this write $\left(a R^{\prime} R^{m}, u\right) v=u$ and observe that $\gamma \nu=\bar{\mu}$ since $t_{x} \gamma \nu=(x-1) \mu=t_{x} \bar{\mu}$. On account of (11) $\bar{\alpha} \gamma$ carries $a R^{\prime} R^{m}$ into ($\left.a R^{\prime} R^{m}, 0\right)$. Hence the above sequence is exact and the theorem is proved.

The theorem has numerous consequences. For example Theorem 2.5 of [5] can be deduced from it. We prove this in its local form; cf. [2].

Corollary 1. Suppose that F is a non-cyclic free group and that R is a non-trivial normal subgroup of F. Suppose that there exist a prime p, an integer $n \geqq 1$ and an element s of F such that $[a, s, \cdots, s] \in R^{\prime} R^{p}$ for all $a \in R$. Then the order of $s R$ is a power of p.

Suppose that this is false. Let \tilde{F} be the group generated by s and R. For each $i \geqq 0$ let S_{i} be the subgroup generated by $R^{\prime} R^{p}$ and all $[a, s, \cdots, s]$ $(a \in R)$. Thus

$$
R=S_{0} \geqq S_{1} \geqq \cdots \geqq S_{n}=R^{\prime} R^{p}
$$

Since s centralizes $S_{i-1} / S_{i}, \tilde{F} / R^{\prime} R^{p}$ is nilpotent. We define a subgroup F_{1} as follows. If $s R$ is of finite order, let F_{1} / R be a subgroup of the group generated by $s R$ of prime order not equal to p; thus $F_{1} / R^{\prime} R^{p}$ is Abelian. If $s R$ is of infinite order let F_{1} be the centralizer of $R / R^{\prime} R^{p}$ in \tilde{F}. It is easy to see that F_{1} is of finite index in \widetilde{F}, so that $F_{1} \neq R$. In either case $F_{1} \neq R$ and $F_{1} / R^{\prime} R^{p}$ is Abelian. On account of the hypotheses R is non-cyclic. Hence a basis X_{1} of F_{1} contains more than one element. We apply the theorem to the basis X_{1} of F_{1}. Thus if x and y are distinct elements of $X_{1},[x, y] \alpha=0$. If $z=[x, y]$, then $x y=y x z$, so by (4),

$$
(x \alpha)(y \mu)+y \alpha=(y \alpha)\{(x z) \mu\}+(x \alpha)(z \mu)+z \alpha .
$$

Since $x \alpha=t_{x}, y \alpha=t_{y}$ and $z \alpha=0$, this reduces to

$$
t_{x}(y \mu)+t_{y}=t_{y}(x \mu)+t_{x}
$$

whence $x \mu=\mathbf{l}$ and $x \in R$. Hence $X_{1} \subseteq R$ contrary to $R \neq F_{1}$.
The following consequence of the theorem was deduced from the exact homology sequence by Roquette [6] in his proof of a theorem of Golod and Šafarevič.

Corollary 2. Suppose that G is a finite p-group and that $\left(G: G^{\prime} G^{p}\right)=p^{d}$. Suppose that F is a free group of rank d and that G is isomorphic to F / R. Then the augmentation ideal of $(\boldsymbol{Z} \mid p \boldsymbol{Z}) G$ is isomorphic to $M \mid K$, where M is a free $(\boldsymbol{Z} / p \boldsymbol{Z}) G$-module of rank d and K is a submodule generated by r elements, where $p^{r}=\left|H_{2}(G, \boldsymbol{Z} \mid p \boldsymbol{Z})\right|$.

Since $\left(G: G^{\prime} G^{p}\right)=p^{d}$ and d is the rank of $F, R \leqq F^{\prime} F^{p}$. Hence $H_{2}(G, \boldsymbol{Z} / p \boldsymbol{Z})$ is isomorphic to $R /[R, F] R^{p}$. Hence $R /[R, F] R^{p}$ is generated by r elements, so $R / R^{\prime} R^{p}$ is generated as a $(\boldsymbol{Z} \mid p \boldsymbol{Z}) G$-module by r elements. The result then follows from the theorem at once.

References

[1] R. H. Fox, 'Free differential calculus, I', Ann. Math. 57 (1953) 547-560.
[2] W. Gaschütz, 'Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert werden', Math. Z. 60 (1954) $274-286$.
[3] R. C. Lyndon, 'Cohomology theory of groups with a single defining relation', Ann. Math. 52 (1950) 650—665.
[4] W. Magnus, 'On a theorem of Marshall Hall', Ann. Math. 40 (1939) 764-768.
[5] B. H. Neumann, 'On a theorem of Auslander and Lyndon', Arch. Math. 13 (1962) 4-9.
[6] P. Roquette, 'On class field towers', Proceedings of an Instructional Conference on algebraic number theory, Thompson, (1967).
[7] R. G. Swan, 'A simple proof of the cup product reduction theorem', Proc. Nat. Acad. Sci. 46 (1960) 114-117.
[8] J. Schmid, 'Zu den Reduktionssätzen in der homologischen Theorie der Gruppen', Arch. Math. 15 (1964) 28-32.

University of Illinois at Chicago Circle

