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ON THE CENTER OF QUASI-CENTRAL BANACH 
ALGEBRAS WITH BOUNDED APPROXIMATE 

IDENTITY 

SIN-EI TAKAHASI 

1. I n t r o d u c t i o n . Let A be a quasi-central complex Banach algebra 
with a bounded approximate ident i ty and Pr im A the s t ructure space 
of A. In [15], we have shown t h a t every central double centralizer T on A 
can be represented as a bounded continuous complex-valued function $T 

on Prim A such t h a t Tx + P = $T(P)(x + P) for all x <S A and 
P £ P r i m a l when the center Z(A) of A is completely regular. Here 
x + P for P £ Pr im A denotes the canonical image of x in A /P. In 
particular, in the case of quasi-central C*-algebras, this result is equivalent 
to the Dixmier 's representat ion theorem of central double centralizers 
on C*-algebras (see [3, Section 2] and [9, Theorem 5]). 

In this paper, it is shown t h a t if Z(A) is completely regular then the 
space Prim A is locally quasi-compact and for each element z of Z(A)t 

$Lz vanishes a t infinity, where Lz for s Ç Z ( i ) is the central double 
centralizer on A defined by Lz(x) = zx for all x G A. Fur the rmore the 
following stronger result can be proved. If Z(A) is completely regular 
then for each central double centralizer T on A such t ha t \xT belongs to 
the kernel of Z(D(A))-hu\\ T(Z(A)), $T vanishes a t infinity. Here, as 
can be observed in Section 2, /x denotes the canonical isomorphism of the 
central double centralizer algebra onto the ideal center Z(D(A)) of A 
and r denotes the canonical isomorphism of A into the dual space of 
A* = {f-a:a Ç A, f G ^4*}. Also, Z(D(A))-hu\\ r{Z{A)) denotes the 
hull of T(Z(A)) in the s t ructure space of Z(D(A)). Conversely, it is 
proved t ha t if A is semi-simple and Z(D(A)) has a Hausdorff s t ructure 
space then for each central double centralizer T on A such t ha t $T 

vanishes a t infinity, nT belongs to the kernel of Z(D(A))-hull T(Z(A)). 

C. Delaroche [7] has established t ha t the center of an arb i t ra ry quasi-
central C*-algebra A is canonically *-isomorphic with the algebra of all 
continuous complex-valued functions on Prim A which vanish a t infinity. 
Moreover, R. J. Archbold [1] has given another proof of the above 
Delaroche's theorem. In his proof, the classical Dini 's theorem is used. 
Our main theorems imply immediately the Delaroche's theorem from 
[5]. However, our proof of Delaroche's theorem is qui te different from 
tha t given in [7] and [1]. 
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In order to get our main theorems, we need to obtain a compactifica-
tion if (Prim A) of Prim A such that there is a simple relation between 
the bounded continuous complex-valued functions on Prim A and that 
on if (Prim A). If A i is the Banach algebra obtained from A adjointing 
by an identity element in the standard manner, then there is no simple 
relation between the bounded continuous complex-valued functions on 
Prim A and that on if (Prim A) as was observed in [5] and [9]. However, 
we will show that this difficulty can be circumvented by consideiing an 
extension U(A) of A different from A\. In [9], this algebra U(A) can be 
seen as the algebraic sum of A and its ideal center in the enveloping 
von Neumann algebra of A when A is a C*-algebra. 

Finally, we consider a Banach algebra which has a quasi-compact 
structure space as an application of the main theorems. 

2. Notations and preliminaries. Let i be a complex Banach 
algebra with a bounded approximate identity {ea} and A* the dual space 
of A. We set 

A* = {feA*:\ima\\f.ea-f\\ = 0}. 

Here / • a for a £ A and / £ A* denotes an element of A* defined by 
f • a(x) = f(ax) for all x £ A. Actually, A* is a closed subspace of A* 
and A* = {/• a:f G A*, a G A}. Hence the dual space (A*)* of A* 
becomes a Banach algebra under the restriction to A# of the Arens 
product on the second dual space A** of A (cf. [4, 6, 15]). Therefore 
there exists a norm reducing isomorphism r of A into (A*)*. Set 

D(A) = {Fe (A#)*:F-r(A) + r(A) • F C T(A)}, 

where the operation • denotes the restriction to A* of the Arens product 
on ^4**. We then see that D(A) is a Banach subalgebra of {A*)* and r(A) 
is a closed two-sided ideal of D(A). The center Z(D(A)) of D(A) is 
called the ideal center of A (see [15, Definition 2.1]). In fact, Z(D(A)) 
becomes the ideal center of A in the sense of [9] when A is a C*-algebra. 

Now let M (A) be the double centralizer algebra of A and Z(M(A)) 
its center. An element T of Z(M(A)) is called the central double centra­
lizer on A and may be identified with a bounded linear operator T on A 
such that (Tx)y = x(Ty) for all x, y £ A. Let /x be the map of Z(M(A)) 
into(^4#)* defined by 

nT =weak*-lim r(Tea) 
a 

for all T € Z(M(A)). This map is called the Davenport's representation 
of Z(M(A)) and it is a continuous algebraic isomorphism of Z{M(A)) 
onto Z(D(A)) (see [6, Theorem 2.8] and [15, Lemma 2.2]). 

For every algebra A, we will denote by Z(A) the center of A and 
denote by Prim A the structure space of A, that is the set of all primitive 
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ideals of A, with the hull-kernel topology. Also when B is a subset of A 
we denote by A -hull B, let us say the hull of B in Prim A, the subspace 
of Prim A consisting of all primitive ideals of A which contain B. How­
ever we will frequently write hull B in place of A -hull B for the hull of B 
in Prim A without confusion. An algebra A is said to be quasi-central 
provided hull Z(A) = 0 (cf. [15, Definition 3.5]). Next for every topo­
logical space Q, we denote by Cb(iï) the Banach algebra of all bounded 
continuous complex-valued functions on 12, with the supremum norm 
and denote by C0(Œ) the Banach subalgebra of C&(12) consisting of all 
functions/of Cô(12) such that for arbitrary e > 0, the set {co Ç fi:|/(w)| 
^ e] is quasi-compact (i.e., it satisfies the Borel-Lebesque axiom 

without necessarily being Hausdorff). An arbitrary element of C0(Œ) is 
said to vanish at infinity. Let A be a complex Banach algebra with a 
bounded approximate identity. For every P £ Prim A, there exists a 
unique element P' of Prim D(A) such that Pf C\ T(A) = T(P) from [12, 
Theorem 2.6.6]. Furthermore for every T £ Z(M(A)) and P £ Prim A, 
there exists a unique complex number $T(P) such that \xT + P' — 
$T(P)(J + P'), where / is an identity element of (A*)* (and hence 
belongs to D(A)). Also $T is a bounded complex-valued function on 
Prim A for each T € Z (M(4 ) ) (cf. [15, Section 3]). Let R(A) be the 
radical of A, that is the intersection of all primitive ideals of A, and 
ZMR(A) the closed ideal of Z(M(A)) consisting of all T Ç Z(M(A)) 
such that T(A) C R(A). In [15], we have shown the following two 
theorems. 

THEOREM A. If A is a complex Banach algebra with a bounded approx­
imate identity such that Prim Z(D(A)) is Hausdorff, then the map T —> $T 

is a continuous homomorphism of Z(M(A)) into C&(Prim A) such that 
Tx + P = $ r ( P ) (x + p) for all x t A and P G Prim A, the kernel of 
the homomorphism being equal to ZMR(A). 

THEOREM B. If A is a quasi-central complex Banach algebra with a 
bounded approximate identity such that Z(A) is completely regular, then 
the map T —> $T is a continuous homomorphism of Z(M(A)) into 
C6(Prim A) such that Tx + P = $T(P)(x + P) for all x £ A and 
P G Prim ,4. 

In the next section, we first state that Prim A is locally quasi-compact 
under the conditions given in Theorem B. We will next give a charac­
terization of an element T of Z{M(A)) such that <£r G C0(Primyl) 
under some conditions. 

3. Main theorems. We assume throughout this section that A is a 
quasi-central complex Banach algebra with a bounded approximate 
identity. We will know from Lemma 4.4 part (i) that T(Z(A)) is a closed 

ideal oiZ(D(A)) and so denote by r(Z(A)) the kernel of Z(D(^))-hull 
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T(Z(A)), that is 

T(Z(A)) = r\{M G Prim Z(D(A)):r(Z(A)) C M}. 

Also for each element z of Z (A ), let Ls be an element of Z (ikf (A ) ) defined 
by Lz(x) = zx for all x G ^4. Our main theorems are the following. 

THEOREM 3.1. If the center Z(A) of A is completely regular, then the 
space Prim A is locally quasi-compact and $Lz belongs to C0(Prim A) for 
each element z of Z(A). 

THEOREM 3.2. If Z{A) is completely regular, then $T belongs to C0(Prim 
A) for each element T of ju-1

 (T(Z(A))). 

THEOREM 3.3. If A is semi-simple and if the ideal center Z(D(A)) of A 
has a Hausdorff structure space, then an arbitrary element T of Z(M(A)) 
such that $ r f Co (Prim A) belongs to yr1 (r(Z(A))). 

Theorem 3.2 and 3.3 imply immediately that an element T of Z (M(A ) ) 

belongs to M -1 (T(Z(A))) if and only if $T belongs to C0(Prim A) provided 
A is a semi-simple and the ideal center of A has a Hausdorff structure 
space. 

Now in order to prove these theorems, we have to prepare some 
lemmas. Those lemmas will be stated in the next section. In the remainder 
of this paper, we denote by XM the non-zero homomorphism of A onto 
the complex field induced by M G Prim A and denote by Horn A the 
carrier space of A, with A -topology whenever A is a complex commutative 
Banach algebra. 

4. Lemmas. The first lemma can be observed in the proof of [15, 
Theorem 3.6] and hence we will omit the proof. 

LEMMA 4.1. Let A be a quasi-central complex Banach algebra with a 
bounded approximate identity such that Z(A) is completely regular. Then 

(4.1.1) XP' n Z(DU))T\Z(A) = XPC\ZU) 

and 

(4.1.2) S r ( P ) = Xp>nz(nu))W 

for all P G Prim A and T G Z(M(A)). 

The following result is a basic lemma for Theorem 3.1 and 3.2, and it 
follows immediately from [12, Theorem 3.6.15]. 

LEMMA 4.2. Let A be a complex commutative Banach algebra and K a 
closed subset of Prim A. Let u be an element of A such that \\p(u)\ ^ ô > 0 
for all P G K. Then ker K is modular and there exists an element e of A 
such that xp(e) = 1 for all P G K. 
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The following lemma will be used only to show Theorem 3.2. 

LEMMA 4.3. (i) Let A be an algebra, I a two-sided ideal of A and I the 
kernel of hull I. Then I/I is a radical algebra. 

(ii) Let A be a commutative Banach algebra and I a closed ideal of A. If 
I is completely regular, then so is I. 

Proof. Suppose first that I/I is not radical. Then there exists a primitive 
ideal P of I/I from [12, Theorem 2.3.2 part (i)] and hence there exists a 
primitive ideal Qoil such that ICQ and Q/I = P. Furthermore, there 
exists a primitive ideal R of A such that R P\ I = Q. Then R belongs to 
hull / and so it contains I. It follows that I — R C\I = Q. But this is 
impossible since Q is a proper ideal of I and completes the proof of 
part (i). 

Suppose next that A is a commutative Banach algebra and I is a 
closed ideal of A which is completely regular. By part (i), we have I-hull 
1=0. Hence there is a homeomorphism (which we denote by #) of 
Prim I onto Prim / from [12, Theorem 2.6.6]. Then Prim I is Hausdorff 
from the complete regularity of / . Now let M be a fixed element of 
Prim I. Then 4>(M) has a neighbourhood V such that ker V is modular 
from the complete regularity of / . Therefore V is quasi-compact and 
hence so is <trl{V), where the bar denotes the hull-kernel closure. Thus 
ker <frl(V) is modular from [12, Theorem 3.6.7]. Note also that 

ker <t>-l(V) C ker 4rl(V). 

Then <jrl(V) is a neighbourhood of M such that ker 4>~1(V) is modular. 
Noting that since / and I are commutative Banach algebras their 
structure spaces and strong structure spaces coincide, part (ii) follows. 

We now define U(A) to be the set 

U{A) = T(A) + Z(D(A)). 

Then U{A) is a subalgebra of D(A) since r(A) is a two-sided ideal of 
D(A). If A is a C*-algebra, then U(A) is automatically complete. How­
ever, U(A) is not generally complete. This non-completeness puts us to 
trouble but it could be circumvented by showing that the center of the 
difference algebra U(A)/R modulo R G Prim U(A) reduces to the com­
plex field. We may further reduce Theorem 3.3 by considering the 
algebra U(A) and its structure space. 

LEMMA 4.4. Let A be a complex Banach algebra with a bounded approx­
imate identity. Then 

(i) r(Z(A)) = Z(D(A)) H T(A), 
(ii) Z(U(A)) = Z(D(A)). 

Proof. We first show (i). It is obvious that 

r{Z(A)) DZ(D{A))r\r{A). 
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Let z & Z(A) and F G D(A). Note that r{A) is weak*-dense in (A*)* 
as was seen in the proof of [15, Lemma 2.2]. Then choose a net {x\} in A 
such that 

F = weak*-lim T(X\). 
x 

By [6, Lemma 2.6], we have 

F • T(Z) = weak*-Km T(X\) • 7(2) 
x 

= weak*-lim r{z) • r(xx) 
x 

= r(s) • F. 

It follows that T(Z(A)) C Z(D(A)) and hence 

r (Z(4) ) = Z ( D ( i ) ) H r ( 4 ) . 

We next show (ii). It is clear that Z(D(A)) C Z(U(A)). To show the 
reverse inclusion relation, let F £ Z(U(A)). So we can write F = r(a) 
+ Z, where a f i and Z £ Z(Z) 04)). For each x Ç i , we have 

r(xa) = r{x) • T7 — r(x) • Z = F • r(x) — Z • T(X) = r(ax), 

so that xa = ax since r is one-to-one. Thus a Ç Z04) and hence 
r(a) G Z(D(A)) from (i). It follows that F £ Z(D(A)).ln other words, 
Z(C/(^)) C Z(D(A)) and (ii) is proved. 

Remark. The above lemma is an extension of [9, Theorem 8] and it 
also implies that r{Z(A)) is a closed two-sided ideal of Z(D(A)). Ii A 
has an identity element, then D(A) = U(A) = r(A). 

LEMMA 4.5. Let A be a complex Banach algebra with a bounded approx­
imate identity. Then there exists a homeomorphism ^f of U(A)-hull r (A) 
onto ZCD04))-hull T(Z(A)) such that 

(4.5.1) T(A) + *(R) = R, 

(4.5.2) *(R) = Rr\Z(D(A)) 

for all R G U(A)-hull r(A). 

Proof. By [12, Theorem 2.6.6], the map ^I'.R —» R/T(A) is a homeo­
morphism of U(A)-hull T(A) onto Prim £/04)/r04) and the map 
*2:<2 -> G/r(Z(i4)) is also a homeomorphism of Z(D(A))-hull T(Z(A)) 

onto Prim Z(D(A))/T(Z(A)) (since r(Z04)) is a two-sided ideal of 
Z(D{A)). Moreover, the map *:Z + T(Z(A))-+Z + T(A) is an 
algebraic isomorphism of Z(D(A))/r(Z(A)) onto U(A)/r{A) from 
Lemma 4.4 part (i). Therefore, the map ^z\M —>a(M) is a homeo­
morphism of Prim Z(D(A))/T(Z(A)) onto Prim U(A)/r(A). Set 

^ = ^ 2 ~ 1 * ^ 3 ~ 1 - ^ l . 
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We thus obtain thehomeomorphism ^ of U(A)-hull r(A) ontoZ(D(A))-
hull T(Z(A)). Let R be an arbitrary element of Z7(^)-hull T(A). We 
first show that ^ satisfies (4.5.1). In fact, if F £ R then 

Also, 

¥ 2 -¥ (#) = *(2?)/r(Z(,4)) 

and hence there exists an element Z of ^(R) such that 

F + r ( 4 ) = <x(Z + r (Z (4 ) ) ) . 

This shows that F - Z £ T(A). In other words, RCr(A) +V(R). 
Now let Z f ^ ® . Then 

Z + T(Z(A)) G ¥2.*CR) 

and so 

er(Z + r (Z (4 ) ) ) Ç *i(i?) 

since ^ i = ^ 3 ^ 2 ^ . Hence there exists an element F' of R such that 
Z - Ff e T(A). Since r(A) C i?, it follows that Z Ç 2? and hence 
*(R) C i?. Therefore r(A) + * ( R ) C R and so * satisfies (4.5.1). 

We next show that ^ satisfies (4.5.2). It follows immediately from 
(4.5.1) that 

*(R) CRr\Z(D(A)). 

To show RC\Z{D(A)) C*(R), let F <E ^ n Z ( D ( i ) ) . Then there 
exist a £ A andZ e *(R) such that F = r(a) + Z from (4.5.1). There­
fore, 7 » = F - Z e Z(D(A)) and hence 

r(a) G Z(Z)(,4)) H r ( 4 ) = r(Z(,4)) C ¥ ( £ ) 

from Lemma 4.4 part (i) and the construction of ^r. It follows that 

F G *(R) + *(R) = *(R) 

and so 

RC\Z(P(A)) C*(R). 

Thus it is shown that ^ satisfies (4.5.2). 

LEMMA 4.6. Let A be a complex norrned algebra and M a maximal 
modular left ideal of A. Let P be the quotient M:A of M in A, that is the 
two-sided ideal of A consisting of all a £ A such that aA C M. If P does 
not contain the center Z{A) of A, and if M is closed, then Z{A/P) reduces 
to the complex field and P C\ Z(A) belongs to Prim Z(A). 
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Proof. Note that the difference space A/M is a normed space under 
the infimum norm 

\\x + M\\ = inf {\\x + m\\:m G M] 

since ikf is closed. Moreover, by considering a homomorphism p of 4̂ into 
the algebra of all bounded linear operators on A/M defined by 
p(a)(x + M) = ax + M for all a,x Ç i , we can regard A/M as a left 
A -module. Denote by YiomA(A/M) the ^4-endomorphism ring on A/M. 
Now choose an element u of A such that u $ Af. Then p(^4) (w + M) = 
A/M since p is a strictly irreducible representation of A on A/M. We 
first show that Hom^(^4/M) is a complex division algebra. In fact, let 
T G HomA(^4/M), x £ A and X a complex number. Then there exists 
an element a of A such that p(a) (w + M) = x + M. We therefore have 

T{\{x + M)) = TP(\a)(u + M) 

= p{\a)T{u + M) 

= \Tp{a){u + M) 

= xr(x + M). 

Hence T is linear. In other words, HomA(A/M) is a complex algebra. 
Also, since p is strictly irreducible, A/M is an ^4-simple module, so that 
Horn A (A/M) is a division ring from Schur's lemma. 

We next show that Horn A {A/M) is normed. Actually, set 

\x + M\ = inf {\\p(a)\\:x + M = p(a)(u + M)) 

for each x £ A. Here ||p(a)|| denotes the operator norm of p(a). It is 
easy to see that \x + M\ is a norm of A/M. We now have 

(4.6.1) |p(a)(x + Af)| 
= inf \\\p(b)\\:p(b)(u + M) = p(a)(x + M)} 

^ inf \\\p(a)p(c)\\:p(c)(u + M) = x + M} 

^ | |p(a)|||x + M| 

for all a, x Ç A. We can show that 

\T(x + M)\ ^ \T(u + M)\ \x + M\ 

for each T Ç Horn A {A/M) and x £ A. In fact, if a is an element of A 
such that x + M = p(a)(u + M), then 

\T(x + M)\ = \Tp(a)(u + M)\ 

= \p(a)T(u + M)\ 

S \\p(a)\\ \T(u + M)\ (from 4.6.1). 

Taking the infimum over all such a, we get the desired inequality. We 
thus see that T is bounded with respect to |x + Af|, so that HomA {A/M) 
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can be normed. These observations imply that HomA(A/M) reduces to 
the complex field from the Mazur-Gelfand theorem on normed division 
algebras. Note that 

p(Z(A)) * {0} and p(Z(A)) C Z(p(A)) C HomA(A/M). 

Hence Z(p{A)) is isomorphic with the complex field. Since p(A) is iso­
morphic with A/P, if follows that Z(A/P) reduces to the complex field. 

Finally, we observe that P C\ Z(A) Ç Prim Z(A). The map 

z + P C\Z(A)^z + P 

is an algebraic isomorphism of Z(A)/PC\Z(A) into Z(A/P). Since 
Z(A)/P C\Z(A) ^ {0} and Z(A/P) is isomorphic with the complex 
field, it follows that P C\ Z(A) is a maximal modular ideal of Z(A). In 
other words, P H Z(A) 6 Prim Z(A). 

Remark. In the proof of the above lemma, we have referred to the 
proof of [12, Lemma 2.4.4]. Also, we can by the same method show that 
if A is a real algebra then Z(A/P) is isomorphic to the real or complex 
field. Moreover, these results contain [12, Corollary 2.4.5 and 3.1.2]. 

LEMMA 4.7. Let A be a normed algebra, R a right ideal of A and L a left 
ideal of A. If R has a bounded left approximate identity {ua\a G A}, then 
RC\ L = RC\L, where the bar denotes the norm-closure in A. 

Proof. It is trivial that R C\ L C ^ H L . To show the reverse inclusion 
let x Ç RC\L. Choose a sequence \an) in R such that limn \\an — x\\ = 0 
and a sequence [bn] in L such that limn \\bn — x\\ = 0. For any positive 
number e, there exists an integer n(e) and an element a(e) of A such that 

||an(6) - x|| < min }e/4, c/4d}, 

||6n(e) - x|| < e/4d 
and 

\\ua{€)an(€) — an(6)|| < e/4, 

where d denotes the bound on {ua\a Ç A}. We then have 

| | «a(«)&n(€) — X\\ 

^ ||Wa(€)&n(«) — Ua(e)x\\ + \\ua(€)X — Ua(e)an(e)\\ 

+ \\Ua(e)an(€) ~ a n ( e ) | | + | |a n ( e ) — X\\ 

<dX (e/4d) +dX (€/4d) + e/4 + /4 

= e. 

We thus obtain that 

limeio ||tt«(e)6»(«) - x\\ = 0. 
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Since each wa(€)&n(€) (e > 0) is an element of R C\ L, it follows t ha t 
x G R C\ L, so t ha t the reverse inclusion relation is proved. 

The following result covers the non-completeness of the algebra U(A). 

LEMMA 4.8. Let A be a complex Banach algebra with a bounded approx­
imate identity {ea\a £ A} and R an arbitrary element of Prim U(A). Then 
the center Z(U(A)/R) reduces to the complex field and R P\ Z(D(A)) 
belongs to Prim Z(D(A)). 

Proof. Case 1. R Ç U(A)-hu\\ r(A). By Lemma 4.5, RC\Z(D(A)) 
belongs to Prim Z(D(A)). Hence Z(D(A))/R C\ Z(D(A)) reduces to 
the complex field. Moreover, since r(A) C R, the map 

Z + RC\Z(D{A))-*Z + R 

is an algebraic isomorphism of Z{D(A))/R C\ Z{D(A)) onto U(A)/R. 
In other words, Z(U(A))/R = U{A)/R reduces to the complex field. 

Case 2. R g U{A)-hull r(^4). Choose a maximal modular left ideal M 
of f/(^4) such t ha t R = Af:f/(^4). Since i? does not contain T(A)} 

M C\ T {A ) is a proper left ideal of r (/I ) . Fur thermore the ideal M C\ T (A ) 
is modular. In fact, the maximali ty of M and M C\ T(A) ?± r(A) imply 
t h a t 

(4.8.1) T(A) + M = 1/(4) . 

Choose a £ A and m £ M such tha t / = r ( a ) + m (J is the identi ty 
element of Z)(^4) and hence £7(4)) . Then 

T(A)-(1 - r{a)) = r( i4)-w G T ( 4 ) P I M, 

so t ha t M C\ T(A) is modular. We now assert t h a t M C\ r{A) is maximal. 
T o see this, let L be any proper left ideal of r{A) which contains 
M C\ T{A). Since T(A) is a Banach algebra and L is modular, the norm-
closure L of L is also a proper left ideal of T(A). Fur thermore M-L C L. 
Indeed, let m £ M and a G 4 with r ( a ) G L. Choose a sequence {r(a„)} 
in L such t ha t 

limn \\r(an) - r(a)\\ = 0. 

For any positive number e, there are an integer n(e) and an element 
a(e) Ç A such tha t 

l k ( a n ( 0 ) ~ r(a)\\ < e/2\\m\\ 

and 

||r(e«<o) ' r (a n ( e ) ) - r (a n ( € ) ) | | < e/2||w||. 
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We then have 

\\m • r(ea(€)) • T(an(€)) - m • r{a)\\ 

^ \\m • T(ea(0) • r(a t t (o) - w • r (a n ( 0 ) | | 

+ \\m • r(an(6)) - m • r(a) | | 

^ ||w||(e/2||w|| + e/2||w||) 

= e. 

Hence 

limeio \\m - r(ea(€)) • r{an{t)) - m • r(a)\\ = 0. 

Since each m • r(ea(€)) • r(an(6)) (e > 0) is an element of L, it follows that 
m - r{a) Ç L. In other words, ikf • L C_L. Now set 

M' = M + L. 

We then have 

U(A) • M' C £/(^4) • M + U(A) -L 
C M + r(A) >L + M -L (from 4.8.1) 

C M + L+L 

= M'. 

Thus M' is a left ideal of U(A) which contains M and so M must be 
either equal to U(A) or M. Assume that M' = U(A). Choose rn0 £ M 
and r(ao) G Z such that J = m0 + r(ao). Then 

T(A) Cr(A) -rno + T(A) • r(a0) 
C rC4) H M + Z 
C L + L = L , 

so that r(A) = L. This contradicts that L is proper. We thus obtain 
that M' = M. This implies the following: 

L C M 7 nr ( i4 ) = MC\T(A) CLCL, 

so that M n T(A) = L. Therefore the left ideal M C\r{A) is maximal. 
We now next show that M is closed. Suppose, on the contrary, that 
M 9^ M (the norm-closure of M). The maximality of M implies that 
M = U(A). Notice that the maximality and the modularity of MC\ r(A) 
imply that M C\ T(A) is closed since r(A) is a Banach algebra. We then 
have, from Lemma 4.7, that 

T(A) = r(A) r\ M = T ( i 4 ) H M = r(i4) H M. 

However this is impossible since M does not contain T(A), and hence M 
is closed. It follows from Lemma 4.6 and 4.4 part (ii) that Z(U(A)/R) 
reduces to the complex field and R C\ Z(D(A)) belongs to Prim Z(D(A)). 
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LEMMA 4.9. Let A, B be two algebras and -q a homomorphism of B into A. 
If rj-^P) e Prim B for each P £ Prim A, then the map'.P -> trl{P) is 
continuous on Prim A. 

Proof. Set TV(P) = >q-l(P) for each P Ç Prim ,4. Let K be a closed 
subset of Prim B and P 0 a limit point of Tn~

l(K). Then we have 

Po D ker TVHiQ = H {P ç Prim A \iTl(P) € X}, 

and hence 

r,(P0) 3 n {irKPY-ir^P) £ K} D kerK. 
Therefore Tv(Po) belongs to the hull-kernel closure of K and hence K. 
Thus Tv~

l(K) is also closed. In other words, the map: P —> f)~l(P) is 
continuous on Prim A. 

LEMMA 4.10. Let A be a complex Banach algebra with a bounded approx­
imate identity. Then R—>RC\ Z (D (A)) is a continuous map of Prim U(A) 
into Prim Z(D(A)). 

Proof. Let i be the inclusion map of Z(D(A)) into U(A). Note that for 
each element R of Prim U(A), i-x(R) = RC\Z(D(A)) and hence 
i~l(R) belongs to Prim Z(D{A)) from Lemma 4.8. Therefore the desired 
result is easily obtained from Lemma 4.9. 

5. The construction of $T
U and its application. We assume 

throughout this section that A is a complex Banach algebra with a 
bounded approximate identity. Here we will construct a bounded com­
plex-valued function <bT

v on Prim A for each T £ Z(M(A)), which is 
similar to $T- Also as an application of this construction, we see that 
Prim U(A) is a desired compactification i£(Prim A) of Prim A. 

Let T be a central double centralizer on A and R a primitive ideal of 
U(A). Then JUP Ç Z(£>C4)) from [15, Lemma 2.2], so that ixT + P 
belongs to the center of £7(̂ 4 )/R. Hence there exists a unique complex 
number $T

U(R) such that 

Mr + R = $T
C7(P)(/ + P) 

from Lemma 4.8. Moreover, 

\*TU(R)\ ^ \\*TV(RHJ + R)\\ = WnT + R\\ 

^ un è iiMii imi. 

We thus obtain a bounded complex-valued function $ r ^ o n Prim U(A) for 
each P £ Z(Af(i4)). Also by [12, Theorem 2.6.6], there exists a unique 
homeomorphism 4> of Prim A into Prim £7 (-4) such that 0(P) H r f i ) = 
r (P) for all P € Prim 4 . 
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THEOREM 5.1. If the ideal center Z(D(A)) of A has a Hausdorff structure 
space, then the map T —» <&T

U is a continuous homomorphism of Z{M(A)) 
into C(Prim U(A)) = C6(Prim U(A)) such that $T = 3>T

U • 0 /or a// 
r e z(iif(.4)). 

Proof. We will refer to the proof of Theorem A. The map T —» $T
U is 

a continuous homomorphism of Z(M(A)) into the Banach algebra of all 
bounded complex-valued functions on Prim U(A) from the construction 
of $T

U. We first show that for each T £ Z(M(A)), $T
U is continuous 

on Prim U(A). By Lemma 4.10, P —> P H Z(D(A)) is a continuous map 
of Prim U(A) into Prim Z(D{A)). Also since Prim Z(D(A)) is Hausdorff, 
the algebra Z(D(A)) is completely regular. It follows from [12, Theorem 
3.7.1] that the map Q —» XQ is a homeomorphism of Prim Z(Z)(^4)) onto 
the carrier space Horn Z(D(A)) ol Z(D(A)). We thus observe that the 
map 

R —* XRC\ z{DU))(Z) 

is a continuous complex-valued function on Prim U(A) for each 
Z e Z{D(A)). Let r e Z(M(A)) and P Ç Prim U(A). Since 

/xP + P = *T*(R)(J + R), 

we have that 

Mr - $T
u(R)j e Rr\ zp(A)). 

It follows that 

$TU(R) = x«n Z{DU))(VT). 

Then $7^ is continuous on Prim £7(^4) from the above argument. 
We next show that <$>T = <$>T

U • 0 for all P G Z(M(A)). To see this, 
let P £ Z(M(A)) and P G Prim 4 . Choose an element x0 of 4 with 
xo + P ^ 0. Then 

$T(P)(XO + P) = TX0 + P 

from Theorem A. On the other hand, $T
u(<j>(P))J — \xT belongs to 

<t>(P), and hence we have 

T(*T
U(4>(P))XO ~ Txo) = (*T

U(4>(P))J - vT) • r(xo) 

€ * ( P ) n r ( i 4 ) = r ( P ) . 

Then $ r
t 7 (0(P))x o — Tx0 £ P since r is one-to-one. Therefore we have 

that 

*T
u(4>(P))(xo + P) = Txo + P = $T(P)(XO + P ) . 

It follows that $T
U - <t>{P) = &T(P) and the proof is complete. 
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The following result is a Urysohn's lemma for the structure space of 
an arbitrary algebra and it is used to show the theorem below. 

LEMMA 5.2. Let B be an arbitrary algebra. Let K0 be a closed subset of 
Prim B and Kx a closed subset of Prim B disjoint from K0 such that ker Ki 
is modular. Then there exists an element u of ker K0 such that u + P = 
e + P for all P £ K\, where e is an identity for B modulo ker K\. 

Proof. Note that ker K0 + ker Kx = B. In fact, if ker K0 + ker Kx ^ B, 
then there exists a maximal modular two-sided ideal M of A such that 
ker Ko + ker Ki Q M since ker K0 + ker Ki is modular. However M 
belongs to Prim B, and hence M £ Ko r\ K\. This contradicts that 
Ko C\ Ki = 0. Thus there exist x0 £ ker K0 and Xi £ ker K\ such that 
#o + #i = e. Setting u — x0, we see that u is the desired element. 

Remark. There is the Urysohn's lemma for the strong structure space 
of an arbitrary algebra (see [12, Lemma 2.6.9]). Also there are the 
Urysohn's lemmas for normed algebras and C*-algebras (see [11, Lemma 
1] and [13, Theorem]). 

THEOREM 5.3. If A is quasi-central and semi-simple, and if Z(D(A)) 
has a Hausdorff structure space, then #(Prim A) is dense in Prim U(A). 

Proof. Suppose, on the contrary, that 0(Prim A) is not dense in 
Prim U(A). Choose an element Ro of Prim U(A) which does not belong 
to 0(Prim A). Here the bar denotes the hull-kernel closure in Prim U(A). 
Recall that R-^ R f~\ Z(D(A)) is a continuous map, let us say 6, of 
Prim U(A) into Prim Z(D(A)) from Lemma 4.10. Since U{A) possesses 
the identity element / , the space Prim U(A) is quasi-compact and hence 
so is <j> (Prim A ) . Now we show that 6 (R0) does not belong to 6 (0 (Prim A ) ). 
Indeed, assume that there exists an element Ri of #(Prim A) such 
that d(R0) = 6(R!). If Rx belongs to tf>(Prim A), then there exists 
Pi Ç Primal such that Rx = </>(Pi). Since R0 does not belong to 
</>(Prim A), T(A) C RO and hence T(Z(A)) C ^O- Note also that 

Ro H Z(D(A)) = d(Ro) = 0(i?i) = 0(Pi) r\ Z(D(A)). 

We therefore have 

r(Z(A)) = R,r\r(Z(A)) 

= R,C\Z{D(A))r\r{Z(A)) 

(from Lemma 4.4 part (i)) 

= <t>(P1)r\Z(D(A))nT(Z(A)) 

= r ( P , ) n r ( Z ( 4 ) ) . 

It follows that T{Z(A)) C T{PI) and so Z(A) C P\ since r is one-to-one. 
But this is impossible since A is quasi-central. On the other hand, if i?i 
does not belong to <̂ >(Prim A), then i?i 6 U(A)-h\A\ T{A). Notice also 
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that i?0 G U(A)-hull T(A). Hence, we have from (4.5.2) that 

* (P 0 ) = R*C\Z(D(A)) = ^(J?o) = 0(£i) 

= i ? i n z ( D ( i ) ) = ^(i?i) . 

Here >F denotes the homeomorphism of U(A)-hull r(-4) onto Z(D(A))-
hull r(Z(^4)) given in Lemma 4.5. By the above equality, we have 
Ro = R\. However this is also impossible since 

Ro g 0(Prim 4 ) and Ri G ^ ( P r i m ^ ) . 

Then these observations imply that d(R0) does not belong to 
6(<t>(Prim ^4)). Now since Prim Z(D(A)) is Hausdorff, the quasi-
compact subset 0(</>(Prim ^4)) of Prim Z(D(A)) is closed. It follows from 
Lemma 5.2 that there exists an element Z0 of Z(D(A)) such that 

Z0 + 0(PO) = / + 0(*o) 
and 

Zo £ Q for all Ç G 0(tf>(Prim -4)). 

Set r 0 = ix-1 (Z0), so that T0 G Z ( M ( ^ ) ) . Since 

z0 - J e d(R0) = Ro n z(P(^)) c P0, 
it follows that 

| $^ ( i ?o ) | ||J + Ro\\ = WnTo + Ro\\ = l|Zo + -Roll 

= ll̂  + ^o||, 

so that \$T0U(RQ)\ = 1. On the other hand, for each P £ Prim A, 

0(*(P)) G 0(<KPrim^4)) 

and hence 

z0 G 0(*(P)) = 0(P) n z(z (̂i4)) c *(P) 

from the construction of Z0. We then have, from Theorem 5.1, 

|*r„(P)| ^ ||*r„(P)(/ + *(P))|| 

= ||Sro"(*(P))(/+*(P))H 
= ||Mr0 + *(P)|| = ||Zo + *(P)|| = o 

for all P £ Prim A. In other words, T0 belongs to the kernel of the homo-
morphism T —> $ T , which coincides with ZMR{A) from Theorem A. 
However since A is semi-simple, ZMR(A) = {0}. It follows that T0 = 0 
and so $TOU — 0 since the map T —» $7^ is homomorphic from Theorem 
5.1. This contradicts that $To

u(R0) ^ 0 as was observed in the above 
argument and the theorem is proved. 
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6. The proofs of the main theorems. 

6.1. Proof of Theorem 3.1. Let {ea} denote the bounded approximate 
identity of A and let z be an arbitrary element of Z(A). We then have 

(6.1.1) n(Lz) = weak* Jim r(Z,2(e«)) 
a 

= weak*-lim r(zea) 
a 

= r(z). 

Therefore it follows from Lemma 4.1 that 

(6.1.2) * L , ( P ) = XP. 

= XP' n Z(D(A))(TZ) 

= XPC\ ZU)(Z) 

for all P G Prim A. Now let e be an arbitrary positive number. Recall 
that the map T —» $T is a continuous homomorphism of Z(Af(^4)) into 
C&(Prim 4 ) from Theorem B. Set 

W(z;e) = {P e PrimA:\$L2(P)\ è e}. 

We first show that the set W{z\ e) is quasi-compact. Notice that W(z; e) 
is closed. Then we have only to show that ker W(z; e) is modular from 
[12, Theorem 2.6.4]. The map^i lP—>P C\ Z(A) is a continuous map of 
Prim A into PrimZ(^4) from [12, Theorem 2.7.5] and the map 
^2''M -^ XM(Z) is a continuous complex-valued function on Prim Z(A) 
from the complete regularity oi Z(A) and [12, Theorem 3.7.1]. Therefore 
we have that $Lz = ^ 2 * ^ i from (6.1.2). Set 

K = {M 6 Pr imZ(^) : |* 2 ( ikO| ^ e}. 

Hence W(z; e) = {P £ PrimAiV^P) G X}. Since K is closed in 
Prim Z(A), it follows from Lemma 4.2 that there exists an element z' of 
Z(A) such that XM(Z') = 1 for all M £ K. Let P be an element of 
W(z; e). Since ^ ( P ) 6 X, it follows from (6.1.2) that 

$z,*'CP) = Xpnzu)(z') = x^wiz') = 1. 

Therefore for each x 6 ^4, we have 

s'x + P = Lz'(*) + P = $Lz>(P)(x + P) = x + P 

for all P G PF(z; e). Then we conclude immediately that ker W(z; e) is 
modular. These observations imply that $Lz belongs to C0(Prim A) for 
a l ls Ç Z ( 4 ) . 

We next show that Prim A is locally quasi-compact. To show this, let 
Po be any fixed element of Prim A. Then there exists an element zo of Z (A ) 
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such that ZQ i P0 from the quasi-centrality of A. Set 

6o = | 3 > ^ o ( P o ) | . 

By (6.1.2), €0 must be a non-zero number. Also set 

V(Po) = {P £ ?rimA:\<S>Lzo(P)\ > e0/2}. 

Then F(P0) is an open subset of Prim A which contains P 0 . Furthermore 
consider the set W(z0', e0/2). This set is quasi-compact from the above 
argument. We also see that 

V(PÔ) C W(z0; eo/2), 

where the bar denotes the hull-kernel closure in Prim A. Therefore V(Po) 
is an open neighbourhood of P 0 such that V(Po) is quasi-compact. In 
other words, Prim A is locally quasi-compact. 

6.2. Proof of Theorem 3.2. We first construct a continuous map T of 

Prim A into Prim T(Z(A)) such that 

*T(P) = XrwfaT) 

for all P G Prim A and all T G ^l(r(Z(A))). Recall that P -> P' is a 
continuous map of Prim 4̂ into Prim D(A). Moreover, Q —> Q C\ Z(D(A)) 
is also a continuous map of Prim D(A) into Prim Z(D(A)) as was 
observed in the proof of [15, Theorem 3.2]. Also the map 

M->M r\r(Z(A)) is a homeomorphism of (Z(D(A))-hull r(Z{A)))c 

onto Prim r(Z(^4)) from [12, Theorem 2.6.6], where c denotes the com­

plement. Notice that P' C\ Z(D(A)) belongs to (Z(D(A))-hull r(Z(A)))c 

for each P G Prim ^4. Suppose, on the contrary, that 

HZ(I))c (P«yr^z(D(A)) 

for some element P 0 of Prim ^4. By Lemma 4.4 part (i), we have 

T{Z{A)) = r ^ n r ^ 

C (PoY^r(A)nZ(D(A)) 
= r ( P 0 ) n r ( Z ( ^ ) ) , 

so that T(Z(A)) C r(P0) and hence Z(^4) C Po- This contradicts the 
quasi-centrality of A. Now set 

v(P) = P'nz(D(A))r\^zXA)) (= P'c\^zX&))) 
for each P G Prim ^4. Then we see, from the above argument, that V is 

a continuous map of Prim A into Prim r{Z(A)). Let P be an arbitrary 

element of Prim A and T an arbitrary element of / X - 1 ( T ( Z ( ^ 4 ) ) ) . Then 
there exists an element z0 of Z(A) such that z0 € P from the quasi-
centrality of ^4. Note that the element 

XP' n z(D(A))(^P)r(z0) — (/xP) • rso 
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belongs to T(P). Therefore we have 

XP' n Z(DU))(VT)XT(P)(TZO) — XT(P)(^T)XT(P)(TZ0) = 0. 

Since Zo $ P implies that XT(P)(TZQ) 9e 0, it follows that 

XP' n Z(DU))(VT) = xv(p){^T). 

On the other hand, we have 

$ r ( j P ) = X p ' n z ( f l ( 4 ) ) ( ^ ) 

from (4.1.2). These observations imply that $T{P) = XT(P)(^T) for all 

P É Prim ̂  and all T G /x"1^^^))). ^ - \ _ ^ 
We next show that $ r belongs to C0 (Prim ,4 ) for all T Ç M_1 (T (Z (4 ) ) ). 

To see this, let T be an arbitrary element of /x_1 (r(Z(A))) and e an 

arbitrary positive number. Set 

K = {P e Prim^4:|$ r(P)| ^ e] 

and / — ^ _ ^ 
£ = {Qe Prim T(Z(A)):\XQ^T)\ ^ e}. 

Then i£ = r - 1(D). Now Z(D(A)) is a commutative Banach algebra 
with identity and r(Z(A)) is a closed ideal of Z(D(A)). Also r(Z(A)) is 
completely regular from the assumption. It follows from Lemma 4.3 

part (ii) that T(Z(A)) is completely regular. Therefore the map 

Q —» XQ(^P) is a continuous complex-valued function on Prim r(Z(A)) 

and hence D is closed. Note also that r(Z(^4)) is a complex commutative 

Banach algebra. Then the difference algebra T(Z (A))/ker D has an 
identity element E' — E + ker D from Lemma 4.2. In this case, we can 
choose an element z of Z(A) such that E' = r(z) + ker D. In fact, 

T(Z(A))/T(Z(A)) is a radical algebra from Lemma 4.3 part (i). Also the 
map 

A:T(Z) + T(Z(A)) H ker D -> r(z) + ker D 

is an algebraic isomorphism oî T(Z(A))/T(Z(A)) C\ ker Z) into T(Z(A))/ 

ker Z). Denote by Image A the image of A. Hence Image A is an ideal of 

T(Z(A))/ker D and hence there exists the canonical homomorphism of 

7^{A))/r{Z{A)) onto (r(Z(,4))/ker £>)/Image A. Since f(JZ(A)) 

/T(Z(A)) is radical, it follows that (r(Z(^))/ker £>)/Image A is also 
radical and hence it does not possess an identity element. Thus E' must 
belong to Image A and so there exists an element z of Z(A) such that 
E' = T(z) + ker D. We then have 

XQ(TZ) = XQ/ker / ) (£ ' ) = 1 

for all Q £ D. Moreover, Lz belongs to ^rl{r{Z{A))) from (6.1.1). It 
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follows that 

= XT(P)(TZ) (from (6.1.1)) 

= 1 

for all P £ K. Therefore we have 

ZX + P =; Lz(x) + P 

= $Lz(P)(* + P) 
= X + P 

for all P £ i£ and all x G i . This shows that ker K is modular. However 
K is closed in Prim A from the continuity of Y (or <J>r). It follows from 
[12, Theorem 2.6.4] that K must be quasi-compact and the theorem is 
proved. 

6.3. Proof of Theorem 3.3. We will refer to the method in the proof of 
[14, Theorem 1]. Now we have to show that an arbitrary element T of 

Z(M(A)) with <$>T e Co(Primyl) belongs to M"1 (T(Z(A))) . Suppose, on 
the contrary, that there exists an element T0 of Z(M(A)) such that 

$T o e Co(Primyl) but nT0<£ T(Z(A)). Then, by the definition of 

T(Z(A)), there exists a primitive ideal M0 of Z(D{A)) such that T(Z(A)) 

C Mo but MPo $ M0. Since M0 belongs to Z(D(A))-hu\\ r(Z(A)), it 
follows from Lemma 4.5 that there exists an element R0 of U(A)-hull T(A) 
such that 

r ( ^ ) + Mo = Ro and M0 = Ro H Z(D(A)). 

In this case, JUPQ € Po- Actually, if /xPo G Po then there are a0 G A and 
Z0 G Mo such that fxT0 = r(ao) + Z0. By Lemma 4.4 part (i), 

r(a0) = MPO - ZO G r(A) H Z (D(^ ) ) = r(Z(A)) C M0 

and hence nT0 £ Mo- But this is impossible since nT0 (t Mo. We put 

eo = \XMO(V>TO)\-

Then e0 > 0. Note that 

$ToU(Ro)(J + Ro) = »To + Ro 

and so 

*T0
u(Ro)J - MPO e Ro n z(D(^)) = M0. 

Therefore 

XMO(MPO) = ^ ^ ^ ( ^ X M O U ) = ^ o ^ o ) , 
so 

| * T o ^ ( ^ o ) | = 60. 
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Let { U\(Ro)'.\ G A} be a fundamental system of neighbourhoods of R0 

in Prim U(A), where A is a direct set and pu t 

K = {P G P r i m ^ : $ r o ( P ) = ^>^ 0 ^(^ 0 )} . 

We see tha t 0( i£) C\ U\(R0) ?* 0 for all X G A, where 0 is the homeo-
morphism of Prim A into Prim U(A) given in Section 5 and the bar 
denotes the hull-kernel closure in Prim U(A). Indeed suppose, on the 
contrary, tha t there exists X0 G A such tha t 

</>(#) H LhjR^) = 0. 

Since $T0
U is continuous on Prim U(A) from Theorem 5.1, there exists, 

for an arbi t rary e > 0, an element X(e) of A such tha t 

(6.3.1) \*T0
U(R) - $TOU (Ro)\ <e 

for all R G U\(€)(Ro). We can assume tha t U\(€)(Ro) C U\0(Ro). Recall 
t ha t 0 (Pr im A) is dense in Prim U(A) from Theorem 5.3. Then we can 
find an element Pe of Prim A such tha t <t>(Pe) G U\(e)(Ro). Let 70 be the 
open interval (0, e0/2) on the real numbers and put 

K0 = { P G P r i m ^ : | $ r o ( P ) | ^ eo/2}. 

Since $ r o belongs to C0(Prim A), K0 is a closed quasi-compact subset of 
Prim ^4. Moreover since $To = ^TO*7 * </> from Theorem 5.1, it follows 
from (6.3.1) t ha t Pe belongs to K0 for all e G IQ. N O W choose a positive 
integer N such tha t \/N G /o- Then the sequence {Pi/n'-n ^ N\ is con­
tained in K0. Thus there exists a subnet {P1/nj:j = 1,2,...} which 
converges to some element P0 of K0 in the hull-kernel topology. We have, 
from (6.3.1), t ha t 

|*roCPi/»,-) - *TOU(RO)\ = I ^ O K - P i / » , - ) ) - ^ W l 
^ 1/n, 

for all j G 7. Hence, after taking the limit with respect to j , we obtain 
t ha t $TO(RO) = <S>TOU(RO) and hence P0 G K. On the other hand, 

4>(Pi,nj) G UM1M(Ro) C ^xo(^o) 

for all j G / and hence 

*(Po) G t ^ C R i ) . 

In other words, 

0 ( p o ) G « ( X ) n OT^). 

This is a contradiction and therefore # ( X ) H U\(R0) ^ 0 for all X G A. 
T h u s we can find an element Q\ of K such tha t <j>(Q\) G U\(Ro) for each 
X G A. Notice t ha t K is a closed subset of Prim A which is contained in 
the quasi-compact subset K0. Therefore we can assume without loss of 
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generality that the net {Q\'.\ G A} converges to some element Ço of K 
in the hull-kernel topology. Now let z be an arbitrary element of Z(A) 
and 8 > 0 be chosen arbitrarily. By the continuity of $LZUI there exists 
X(5) 6 A such that 

(6.3.2) 1*^(2?) - *L,u(Ro)\ < « 

for all R G U\{S)(Ro). On the other hand, we have 

^ C R o K Z + R o ) = /x(£*) + #o 
= T(«) + RO (from (6.1.1)) 

and therefore 

$LZ
U(RO)J - T(Z) 6 2?0 H Z(Z?(i4)) = Mo. 

Hence 

S L ^ C R O ) = XMO(T^). 

Since r(Z(i4)) C M0, it follows that $Lz
u(Ro) = 0. We thus have, from 

(6.3.2) that 

\*L,U(R)\ Û* 

for all R Ç U\(5)(RQ). However since 

*(0x) G ZM^ol C UMi)(R0) for each X è X(«), 

it follows that 

|$LZ(<2A)| = |*£ ,*(*(Gx))| ^ 

for all X ^ X(ô). By taking the limit with respect to X, 

| * L . ( O O ) | S à. 

We then conclude that $L2(Ço) = 0 since ô is arbitrary. Therefore 

Xconzu)W = $L«((?O) (from 6.1.2)) 
= 0 

for all 2 G Z ( i ) . In other words, Z(A) C (V This contradicts the 
quasi-centrality of A and the theorem is proved. 

7. Application. In this section, we first show, from the main theorems, 
the following result established by C. Delaroche. 

COROLLARY 7.1 [7, Proposition 1], Let A be an arbitrary quasi-central 
C*-algebra. Then Z(A) is isometrically *-isomorphic with C0(Prim A). 

Proof. The map T —» $T is an isometric *-isomorphism of Z(M(A)) 
onto C6(Prim A) from [15, Corollary 3.4]. Then the map z —> $Lz is 
also an isometric *-isomorphism of Z(A) into C0(Prim A) from Theorem 
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3.1. Note also that 

^ZÇlf) = r(Z(A)) 
from [8, Théorème 2.9.7]. Hence, Theorem 3.3 and (6.1.1) imply that 
this map is surjective. 

COROLLARY 7.2. If A is a quasi-central C*-algebra such that Prim A is 
quasi-compact, then A has an identity element. 

Proof. Since C0(Prim A) = C6(Prim A), we can choose an element e 
of Z(A) such that $Le is the identity element of C6(Prim A) from 
Corollary 7.1. We then have 

x + P = *Le(P)(x + P) = ex + P 

for all P 6 Prim A and x £ A. Since A is semi-simple, it follows that 
for all x £ A and the proof is complete. 

We next give an extension of the above corollary. It is well known that 
when A is a strongly semi-simple, completely regular Banach algebra, A 
has an identity element if and only if the strong structure space of A is 
quasi-compact (cf. [12, Theorem 2.7.10]). As an application of Theorem 
3.3, we have the following theorem which is similar to the above result 
and is also an extension of Corollary 7.2. 

THEOREM 7.3. Let A be a complex quasi-central Banach algebra with a 
bounded approximate identity \ea). Suppose that Prim Z(D(A)) is Haus-
dorff and A is semi-simple. Then A has an identity element if and only if 
Prim A is quasi-compact. 

Proof. Let id be the identity map on A and so id Ç Z(M(A)). If 
Prim A is quasi-compact, then $>ld must belong to C0(Prim A) and hence 

id Ç ix-l{r{Z(A))) from Theorem 3.3. Also, 

/ = weak*-lim r(id(ea)) (from [6, Lemma 2.7]) 
a 

= M(id). 

We thus obtain that / G T(Z(A)). In this case, J <E r(Z(A)). Indeed, if 
/ € T(Z(A)), then 

Z(D(A))-hull r(Z(A)) * 0 

and so T(Z(A)) is a proper ideal of Z(D(A)). This contradicts that 

J Ç T(Z(A)). Therefore there is an element e of Z(A) with / = r(e). We 
can easily see that e is an identity element of A. 

Conversely, if A has an identity element then Prim A is obviously 
quasi-compact from [12, Corollary 2.6.5]. 
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Remark. Let 12 be a compact Hausdorff space and C(fi) = CÔ(Œ). Also 
let R be the space of complex measurable functions/ on the positive real 
numbers such that 

11/11 = j exp (-te')\f(t)\dt < œ , 
•J 0 

and let 

(/**)(') = flf(s)g(t-s)ds. 
J 0 

Then R is a commutative radical Banach algebra with a bounded approx­
imate identity (cf. [10, Section 4] or [2, p. 255]). Now define 
A = C(12) © R, where the algebra operations and norm in A are given 
in the standard manner (see [12, p. 169]). Then A is a commutative 
Banach algebra with a bounded approximate identity. The radical of A 
is equal to R. Moreover Prim A is homeomorphic with 12, so that Prim A 
is a compact Hausdorff space. However A does not possess an identity 
element. Thus it seems that the semi-simplicity is needed in the above 
Theorem. 
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