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0. Introduction

The theory of joint spectra for commuting operators in a Hilbert space has recently
been studied by several authors (Vasilescu [11,12], Curto [4,5], and Cho-Takaguchi
[2,3]). In this paper we will use the definition by Taylor [10] of the joint spectrum to
show that the joint spectrum is determined by the action of certain "Laplacians" (cf.
Curto [4,5]) of a chain-complex of Hilbert spaces.

In particular, if Au...,An is a doubly commuting set of bounded linear operators,
then these Laplacians are all determined by the one single operator D = AfAi+--
+ A*nAn.

The paper is organized as follows. In Section 1 we briefly review the definition of joint
spectrum. In Section 2 we discuss the role of the Laplacians in the chain-complex of
Hilbert spaces described in Section 1. In Section 3 we look at the special case of doubly
commuting operators and relate the spectrum of D above to the joint spectrum of
A1,...,An. In Section 4 we study the classification of points in the joint spectrum,
particularly for the case of two commuting operators. In Section 5 we discuss an
example and conjecture of Dash [7]. Finally in Section 6 the connection with the work
of Vasilescu [11] is studied.

1. Joint spectrum

The concept of joint spectrum for commuting operators was introduced by Arens-
Calderon [1]. Subsequently several definitions have been given notably by Dash [6] and
Taylor [10]. We will review the definition by Taylor. It is known that in certain cases
the Taylor spectrum and the Dash spectrum coincide (cf. [2]).

Let H be a complex Hilbert space and AU...,AN bounded commuting linear
operators in H. Let eu...,eN be N indeterminates and construct the exterior algebra EN

with elt...,eN as generators. The elements of degree p^O in EN is the linear hull E"p of
all elements of the form

e h A • • • A e,r ( l ^ i i < • • • < i , ^ J V ) -

The space EN
P(H) is defined as H®E", the linear hull of all the elements of the form

x e h A • • • A e,- { \ - ^ i l < ••• <
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234 A. KALLSTROM AND B. B. SLEEMAN

Ep(H) is canonically identified with a direct sum of (p) copies of H and thus it is itself a
Hilbert space. We now define the maps 5P:EP*(H)->EP'+1(H) for p = 0,1, . . . ,N-1 (where

N

dpixe^ A • • • A ef) = £ Akxek A eiy A • • • A e, (1)
k = 1

and extended by linearity. With these maps we can construct the following sequence

Using the fact that the ,4's commute it is easily seen that (2) is a complex, i.e. that
im<5p£ker<5p+1, for all p. This is the Koszul-complex. Furthermore, all the maps Sp are
bounded linear maps.

Definition 1. The N-tuple A = (Al,...,AN) is called non-singular if the complex (2) is
exact, that is if

p p 1 , p=0,1,. . . ,JV-1,

otherwise it is called singular.

Definition 2. The complex iV-tuple X={Xl,...,kN) is said to be in the joint spectrum
of A — {AU...,AN), denoted by a(A) = a(Ai,...,AN), if A — XI = (A1 — X1I,...,AN—XNI) is
singular.

Example 1. In the case of a single operator A this reduces to the usual definition of
spectrum. The Koszul-complex for this case looks like

and A — H is non-singular if and only if ker{A — XI) = {0} and im(A — XI) = H.
We can also define a dual complex by using the maps 8*:Ep+1(H)-^Ep(H), defined by

p+i
d * { x e t l A ••• A e i p + i ) = £ ( - 1 ) * l A t k x e h / \ ••• A e i k A ••• A e t p + 1 (3)

and extended by linearity. The sign es denotes omission of the factor es. The dual
complex is

E?(H) JL...**lL £jv_l(H) «z l Efttf^o. (4)

It is a simple exercise to show that (2) is exact if and only if (4) is exact. This follows
from the facts that im8p is closed if and only if im^J is closed and that ker8p=(im8*)1

(J- denoting orthogonal complement) (cf. Kato [8], Theorem 5.13, p. 234).
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2. The Laplacians of a complex

In this section we will give a necessary and sufficient condition for a complex and its
dual to be simultaneously exact at a particular point of the complex.

Consider the complex of Hilbert spaces

•••^H-^H'-^H"^-- (C)

and its dual

A* R*
••••^H < H' < H"^. (C*)

Here A and B are closed densely defined maps between the respective Hilbert spaces.
This means that AA* and B*B are densely defined selfadjoint operators on H' (cf. [8],
Theorem 3.24, p. 275). We assume that the "Laplacian" D = AA* + B*B is also a closed
densely defined operator. D is easily seen to be symmetric and bounded from below by
0. Hence D always has a self-adjoint extension Do, the Friedrichs extension, with the
same lower bound as D.

Example 2. Let us consider the case of two bounded linear operators A^ and A2

such that Ay commutes with A2 and A\. Then also A\ commutes with A2 and A\. The
Koszul-complex can be written

where d0x = Alx®A2x, <51(x1©x2) =^1^2 — ̂ 2*1 aRd the dual complex

0<-tf J?- H@H J±- H^O

with the maps

The Laplacians of the complex are

Note that if Av and A2 are normal commuting operators and we put D = AfAl+A2
tA2,
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236 A. K A L L S T R 5 M AND B. D. SLEEMAN

then

D0 = D, D^DQD, D2 = D.

Returning now to the complexes (C) and (C*) we state the following.

Theorem 1 (cf. [5], Prop. 3.1, p. 395). (C) and (C*) are both exact at H', (i.e. imA =
kerB, im B* = ker A*) if and only if D is self adjoint and boundedly invertible on H'.

For the proof we need the following two facts about closed densely defined linear
operators T:HX^H2.

Lemma 1 (cf. [8], Theorem 5.13, p. 234). im T is closed if and only if im T* is closed.
In this case we have

im T = (ker T*)\ im T* = (ker T)1.

Lemma 2 (cf. [8], Theorem 5.2, p. 231), T has closed range if and only if there is a
constant C > 0, such that

llTxII^CUxIl! forall xeD(T) n(ker T)L. (5)

Proof of Theorem 1. First we note that since (C) and (C*) are complexes we always
have

im A £ ker B, im B* £ ker A*. (6)

Furthermore kerB and ker A* are closed since the maps B and A* are closed.
Assume now that D is selfadjoint and im D = H'. Then kerD = (imD)x = {0}. Hence

D" 1 is a closed map defined on all of H and consequently D~l is bounded. Now

H' = im D £ im A + im B* £ im A + im B* = im A + (ker B)1 £ H'.

By (6) it follows that imX = kerB and hence (C) is exact at H'. Similarly

showing that imB* = ker/l*. Thus (C*) is also exact at H'.
Conversely, assume that both (C) and (C*) are exact at H'. Then

im A = ker B=>im A closed =>im A* closed by Lemma 1

imB* = kerA*=>imB* closed=>imB closed by Lemma 1.

Hence, there are constants C1; C2>0 such that

I^XH^CJIXII x€D(A*)n(kerA*)x

\\By\\^C2\\y\\ y€D(B)n(kerB)\
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JOINT SPECTRA FOR COMMUTING OPERATORS 237

But any ueD(D) can be decomposed as u = u1+u2> where u1eD(D)n(kerB) and
u2eD(D) n (ker B)L. But then

«! e D(D) n ker B = D{D) n im A = D(D) n (ker A*)x

u2 e D(D) n (ker B)1 = D(D) n (im A)L = D(D) n ker A*.

Hence Du = AA*u + B*Bu = AA*Ul+B*Bu2 and

(DM, U) = {AA*uu u) + (B*Bu2, u)

| | M I | |
2 + ||M2||2} C = min(C1,C2)>0

= C||M||2 for all ueD(D).

This shows that im D is closed and also that D is bounded from below by C > 0. Hence
also D is bounded from below by C > 0. But then ker D = {0} and im D = H'. But im D is
dense in Im 5 and closed. Thus we must have im D = H' and it follows that D is already
selfadjoint. One sees easily that D~l is bounded.

The question of the selfadjointness of D can often be settled by the following.

Theorem 2 (cf. [9 ] , p. 88). Let GU...,GP be a finite set of selfadjoint operators such
that GU...,GP commute pairwise (i.e. their spectral families commute). In addition, suppose
that G{ ^ 0, i = 1 , . . . , p. Then G = G1+-+Gpis selfadjoint.

3. Doubly commuting systems

Let A!,..., AN be an AMuple of bounded linear operators on H.

Definition 3. A=(AU..., AN) is called doubly commuting if AiAj=AjA{ and AtAJ = AJAt

for all i,j=l,...,N. A is called weakly doubly commuting if, for all i=l,...,N

AiAj^AjAi and AiAf = AfAi for j£i.

In particular, in a doubly commuting system all the operators AU...,AN are normal.
The significance of these systems derive from the fact that all the Laplacians of the
Koszul-complex are defined in terms of one single operator D = AfA1 + --- + A^AN. The
dual complex also generates exactly the same Laplacians so that the complex is in some
sense "self-dual".

Let A=(Al,...,AN) be a doubly commuting system. We now want to relate the
spectral subspaces of H defined by the resolution of the identity belonging to D, to the
operators AU...,AN.
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238 A. KALLSTROM AND B. D. SLEEMAN

First we notice that if n is an eigenvalue of D and E(n) is the corresponding
eigenspace, then from the commutativity

for all xeE(fi) and i=l,...,N. Hence E(fi) is invariant under all At and Af. But then, if
), yeE(n)\

so that all the operators AU...,AN, Af,...,A% are reduced simultaneously by £(/x).
It is now easy to show that the discrete subspace Hd of H corresponding to the

spectral resolution of D is invariant under all of At and Af. Hence the continuous
subspace Hc is also invariant and all the operators Al,...,AN,...,A% are simultaneously
reduced by Hd and Hc. It is obvious that there are no joint eigenvalues of y4l5...,/4w nor
oiAX,...,A%mHc.

Let us now specialize further and assume that AU...,AN is a commuting set of
selfadjoint bounded operators. Clearly, to every joint eigenvalue (Als...,XN) to
(AU...,AN) there is an eigenvalue /i = Af + •• +AJ to D. Conversely, if n is an eigenvalue
to D and E(/i) the eigenspace, then AU...,AN are commuting selfadjoint operators on
E(fi) and hence they can be simultaneously diagonalized. In particular, if dim £(/*) < oo,
then there is a basis of E((i) consisting of joint eigenvectors to AU...,AN. This leads us
to the following.

Theorem 3. Suppose Alt...,AN are bounded commuting selfadjoint operators such that
D = Al + ••• + Af, is compact. Then

(i) if dim ker D < oo there is a complete system of joint eigenvectors of AU...,AN in H.

(ii) i / d i m k e r D = oo there is a complete system of joint eigenvectors to AU...,AN in

(kerD)1.

Proof. D compact =>Hc = {0} if dimkerD<oo, otherwise Hc = keTD. Every non zero
eigenvalue has finite multiplicity which means that there is a basis in the eigenspace
consisting of joint eigenvectors. From this the theorem follows easily.

Remark. If ju is an eigenvalue of infinite multiplicity to D there need not be any joint
eigenvectors to Ar,...,AN in the eigenspace as is shown by the following example.

Example 3. Let £(1) be a continuous spectral family. Define A1=\ cos ldE(X),
v42 = J sin X dE{X). Then Ax and A2 are bounded selfadjoint commuting operators with
continuous spectra only. But D = A\ + A\ is the operator

D = j (cos2A + sin2A) dE(A) = I,

which implies that D has eigenvalue 1 with infinite multiplicity.
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In order to clarify the situation when D o r D " 1 is compact we prove

Theorem 4. Let D = A\Al + - • - + A%AN. Then

(i) D is compact if and only if all the Ax are compact.
(ii) If at least one of the A{ has compact inverse then D has compact inverse.

Proof, (i) Assume all At compact. Then trivially D is compact. Conversely, if D is
compact, let xn be a sequence such that xn->0 weakly. Then Dxn^0 strongly. But then

Hence all Asxn->0 strongly as n->oo which implies that all A; compact,

(ii) Suppose At has compact inverse. Then also A\ has compact inverse. Furthermore

Hence D has a bounded inverse. If we now write

£
where C is a positive operator. But then (I + Q~l exists and

which is compact.

4. Classification of the spectrum

A=(AU...,AN) is an Af-tuple of bounded commuting linear operators on H.
The following definitions are given by Dash [6].

Definition 4. X=(kl,...,kN)eCN is in the joint approximate point spectrum an(A) if
there is a sequence of unit vectors xneH such that

\\(At-Xtl)xm\\-*0 as n ^ o o , i=l,...,N.

Definition 5. A=(A1,...,Aw)eCw is in the joint approximate compression spectrum
ap(A), if there is a sequence of unit vectors xneH such that

\\iAt-WxH\\-+0 as n^oo, i=l,...,N.
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240 A. KALLSTROM AND B. D. SLEEMAN

Let us furthermore introduce the joint point spectrum

= {A.eCN; there is a non-zero xeH, such that

and the joint compression spectrum

app{A) = {XeCN\ there is a non-zero xeH, such that

If we now construct the Koszul-complex for the operators A^ — X^, i=l,...,N we find
easily that the Laplacians Do and DN are given by

D0=fj(Ai-XiI)*(Ai-XiI)
i=l

and

respectively. From this it is follows easily that

op(A)c(7n(A) = {XeCN;D0 not boundedly invertible}

and

app{A) £ (7P(A) = {k e CN; DN not boundedly invertible}.

We now propose to classify the spectrum according to which Laplacians are
boundedly invertible.

Definition 6. The joint discrete spectrum aj^A) is defined as

oJ,A)= U
k = 0

where

Note that the sets a%A) need not be disjoint.

Definition 7. The joint continuous spectrum <rc{A) is defined as

https://doi.org/10.1017/S0013091500022677 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022677


JOINT SPECTRA FOR COMMUTING OPERATORS 241

We decompose this in the following (not necessarily disjoint) subsets

eJLA)= U <ftA),
k = 0

where

a^(A) = {X e <rc(A); Dk has an unbounded inverse}.

We see easily that if AU...,AN is a doubly commuting system then

This follows since all of the Laplacians can be expressed as direct sums of Do. Hence if
X £ od(A) u G°{A), Do is boundedly invertible and then all D} are boundedly invertible.
Hence the complex is exact.

Example 4. Let us look at the case of a single operator. The Koszul-complex is

So

where

80x = (A-XI)x,

The Laplacians are

D0 = (A-U)*{A-kI)

Hence

a°d = {X e C; ker (A - XI) j= {0}} = point spectrum of A

a\ = {X e C; ker {A — XI)* =fc {0}} = compression spectrum of A

<r° = {A e C; im (A — XI) dense in H but not closed} = approximate point spectrum.

Also a\ = a° since im <50 is not closed if and only if im <5$ is not closed. This is the usual
decomposition of the spectrum for a single operator.

Example 5. Two commuting operators At and A2. The corresponding Koszul-
complex is (cf. Example 2)
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242 A. K A L L S T R G M AND B. D. SLEEMAN

a° = {X; ker <50 =£ {0}} = joint point spectrum

crj = {X; ker Dt = ker <5$ n ker ̂  f {0}}

aj = {X; ker <5? =£ {0}} =joint compression spectrum

o® = {X;'\m5% not closed}. But then imd0 is not closed which implies that 0-°£<x*.
Similarly of^o*.

Conversely, if X ea] then either im<50 or im<5? is not closed and hence Xea° or Xeaj.
Hence

and we get the following decomposition of the joint spectrum

<r(A) = <T° U Oj U a\ U (T° U G2
C.

This contains the results of lemma p. 867 in [3].

Example 6. In case the underlying Hilbert space is finite-dimensional we clearly
have

Also for the case of two operators in a finite-dimensional Euclidean space we have the
relation

a(Al,A2) = aa(Al,A2) (which implies that <T°U<7J£<7J).

This can be seen as follows: (A1,A2)^<rj if and only if ker £>! = {()}, equivalently
ker 5J n ker ĉ  = {0}. Hence ker Dx = {0} if and only if the system

-(A2-X2I)x1+(A1-llI)x2=0 (i.e. d ^

has only the zero solution. But then the operator

{AX-XJ)* (A2-X2I)'
-(A2-X2I) {A.-X.I)

is invertible on H@H. Hence by Theorem 1.1 in Vasilescu [11], A — XI is non-singular,
that is X<£a(A).

We will here also give a proof of Theorem 3.1 in [11] based on the methods
developed here.
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Let Al:H1-*Hl and A2:H2->H2 be bounded linear operators with spectra of^x) and
<r(A2) respectively. In H = HX®H2 we can construct two commuting operators

Bl = A1®I2 and B2 = I1<g>A2.

Let a(B) denote the joint spectrum of Bt and B2 in H.

Theorem 5. <r(B) = o(A1) xa(A2).

Proof. We have the complex

0-*H -^-» H®H -^-> H->0,

where 80x = B1x@B2x, <51(x1©x2) = .B1x2 — B2xv

Note that it is enough to consider the point (0,0) since

B1—XlI=(Al — XlIl)<S>I2 and B2 — X2I =

The Laplacians for the complex are calculated to be

Assume now that (0,0)^a{A^^ja{A2). Then at least one of Ax and A2, say Au is
non-singular, so kery4! = {0} and im Al = H. But then iraA^ is closed and consequently
im AX is closed and we have

Hence A\ is also non-singular. Now Do, being the sum of two positive operators, one of
which is invertible, is boundedly invertible. Using the remark above about A\ we can
use the same kind of argument to show that Dx and D2 are boundedly invertible. Hence

Conversely, if (0,0) £ a{B), then Do is boundedly invertible. Hence, if w =

(Dow, w) = WA.ufWvf + \\u\\2\\A2v\\2 > C\\u\\2\\v\\2. (•)

But then at least one of At and A2 must be boundedly invertible, for suppose A2 is not.
Then 0<£<J{A2) and either

(i) 0 is an eigenvalue of A2 which implies that there is a v such that ||»|| = 1, A2v=0.
(*) then gives

IJ/l^lP^Cllull2 which implies that
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or
(ii) 0 is in the approximate point spectrum of A2 which implies that there is a sequence

vn such that ||un|| = l, A2vn->0. But then (*) gives

if n is large enough, implying

or
(iii) 0 is in the compression spectrum of A2 which implies that there is a v such that

\\v\\ = 1, A2'v = 0. But then from (*) on using the Laplacian D2 instead we have

Hence 0£G(A%) and so 0$o(A^). Consequently if A2 is not boundedly invertible, then At

must be and it follows that (0,0) ̂  <r(̂ 4i) x <r(A2). From this follows that a(B) = a(A^) x a(A2).

5. An example by Dash

In this section we will show that it is possible for a point (11,12)
 t o be in o\ but not

in a°d u a2. The example is given by Dash in [7] in order to disprove a certain
conjecture.

Let H = ©H°=! I
2 so that each element X e H is a sequence of elements Xn e I2, n = 1,2,

If each Xn is given by Xn=(xni,xn2,...) then the norm in H is

00 00

Define the operators A1 and A2 in H by the matrices

/ 0 / 0
0 0 /

\

• \

and

/ V 0 0
0 F 0
O O F

\

- \

where / is the identity operator in I2, 0 the zero operator and V the unilateral shift.
Clearly Ay and A2 commute. Also Al and A\ commute so that At and A2 form a
weakly doubly commuting system.

We find for the Laplacians of the corresponding complex

' = IM|2
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This shows that Do is boundedly invertible and so (0,0)^(7°. Also

which implies that D2 is boundedly invertible and consequently

(0,0) # o\.

However ker Dl ^ {0} as the following shows:

. Let f = X®YekerD1. Then

A1Y-A2X = 0

Choose X=0 which implies that

AtY=0 and A2'Y=0.

i fy=(y1 ;y2 , . . . ) then

A! y = 0 if and only if y2 = y3 = • • • = 0 with yt arbitrary.

Now A2'Y = 0 if and only if F*y1=O which is satisfied for y1 = {l,0,0,...}e/2. Hence
(O,O)e<rJ.

In the same paper Dash makes the following conjecture

(0,0)^(r(/41,/42)«>there is an e>0 such that

(ii) |Mf
(iii) \\A*

(iv) |K

If it is easily seen that (i) holds if any only if Do is boundedly invertible, and that (ii)
holds if and only if D2 is boundedly invertible.

The Laplacian Dt is in general given by a matrix operator in

(AXA\
1 \A2A\-A\A2 AXAl

In the case of a weakly doubly commuting system the off-diagonal operators are both
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246 A. KALLSTROM AND B. D. SLEEMAN

zero and we get

0

For this Laplacian (iii) and (iv) hold if and only if Dt is boundedly invertible.
Hence Dash's conjecture holds if AUA2 are weakly doubly commuting. In the general

case, however, Dt has the following structure

Q

Q*

where P = AlA% + A\A2, R = A%Al+A2A2' are positive operators and Q = A1A2' — A2'Al.
If u = f®g is a general vector in H@H, Dx is boundedly invertible if and only if there is
an e>0 such that (Dj^u,u)^e||u||2 or equivalently

(v)

If g = 0 this is inequality (iii) and if / = 0 it is inequality (iv). Hence (iii)-(iv) are
necessary for (0,0)^<T[A1,A2). However, without further conditions on the operator Q it
is not known whether conditions (iii)-(iv) imply (v).

6. Connections with [11]

In [11] Vasilescu proves the following theorem.

Theorem. (0,0)£a(AuA2)othe operator

\ — A2 At

is boundedly invertible on H@H.

We give another proof. A simple calculation shows that

1, -A?

and that

D1 (7)
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where D0,DuD2 are the Laplacians of the complex for Al and A2. Hence

|2 and

From this follows that if a(A) boundedly invertible and consequently also <x(A)*. Then
all of Do, Dt and D2 are boundedly invertible which implies that (0,0)£a(A1,A2)-

Conversely (0,0) ^a{AuA2) implies that all three Laplacians have bounded inverses.
Hence

which implies that ker<x(/l) = {0} and ima(A) is closed. Also ker<x(;4)* = {0} and hence

im<x(,4)=(kera(,4)*)x = tf.

Consequently a(A) is boundedly invertible.
From (7) and (8) follows also an interwining property of the Laplacians. By

evaluating a.(A)a.(A)*x(A) in two different ways according" to (7) and (8) we find

M. (9)

We can also easily show the equivalence of our approach with that of Vasilescu in
[12]. He defines the operators 8A and 5*A on ®%=0E%{H) by

(10)

0 0

and 5 = 5A + 3% Clearly 5 is a selfadjoint operator. The main theorem in [12] is that the
complex is exact if and only if 5 is boundedly invertible.

We notice that 52
A = 5\2=0 because of the properties <5j+1(5j = O and (5?(5f+1=O. Hence

52 = 5A5A' + 5A'5A, which has the same structure as a Laplacian. A simple computation
shows that

<52 = diag(D0,...,Z)jv) (diagonal matrix) (11)

where Do,...,DN are the Laplacians of the complex. From this it follows immediately
that 5 is boundedly invertible if and only if all the Laplacians Do,...,DN are boundedly
invertible.

The intertwining property (9) follows in this case by evaluating 53 in two ways as

5 diag (Do, ...,DN) = diag (Do,..., DN)5.

I °
ft

0
0

u

0

0

<5i

0

\

0

<Vi o/

/ 0I

\
\o

0
0

...
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