T. Kubota Nagoya Math. J. Vol. 37 (1970), 183–189

ON A CLASSICAL THETA-FUNCTION

TOMIO KUBOTA

To Professor Katuzi Ono on his 60th birthday

The purpose of this paper is to get a certain explicit expression of automorphic factors, formulated rather differently than usual, of the classically well known theta function¹⁾

(1)
$$\vartheta(z) = \vartheta_3(0, z) = \sum_{m=-\infty}^{\infty} e^{\pi i m^2 z}, \quad (z = x + iy, y > 0).$$

The special linear group $G = SL(2, \mathbf{R})$ over the real field \mathbf{R} has a 2-fold topological covering group \tilde{G} , and the maximal compact subgroup T = SO(2) of G has also a naturally corresponding 2-fold covering group \tilde{T} in \tilde{G} . While the upper half plane H is usually identified with the homogeneous space G/T, the properties discussed in §1 of the automorphic factors of $\vartheta(z)$, (13) among others, show directly that for the purpose of investigating $\vartheta(z)$ it is legitimate to identify the upper half plane H with \tilde{G}/\tilde{T} . Moreover, as we see in §2, the quadratic reciprocity law in the rational number field \mathbf{Q} can be formulated as a multiplicativity of a number-theoretical function defined on a discrete subgroup of \tilde{G} . For a totally imaginalry number field this kind of result was already stated in [4] in a simpler form, but in general we need the covering group \tilde{G} .

It is famous in number theory that there is a close relationship between the quadratic reciprocity law and the function $\vartheta(z)^{2}$. The investigation in this paper, inclusive of all explicit calculations, may be regarded as a trial to catch as simply as possible the theoretical background of that interesting phenomenon.

Received March 31, 1969

¹⁾ Called in many cases theta constant. It is an automorphic form with respect to the discontinuous group Γ defined in §1.

²⁾ For example, see [2].

The contents of the present paper have various connections with [6], but can be read independently.

§1. Automorphic factors of the theta function.

Let Γ be the subgroup of the elliptic modular group $SL(2, \mathbb{Z})$ consisting of all $\sigma \in SL(2, \mathbb{Z})$ such that $\sigma \equiv \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ or $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ (mod 2). On the other hand, normalize the square root of a complex number $z \neq 0$ once for all by

(2)
$$\sqrt{z} = e^{\frac{1}{2}i \arg z} \sqrt{|z|}, \quad -\pi \leq \arg z < \pi.$$

Then, for the theta function in (1), we have

(3)
$$\vartheta(z) = \frac{1}{\sqrt{-iz}} \,\vartheta\left(-\frac{1}{v}\right)$$

and

(4)
$$\vartheta(z) = \vartheta(z+2).$$

The formula (3) is Poisson's summation formula. Since Γ is generated by $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 2 \\ 1 \end{pmatrix}$, a consequence of (3), (4) is

(5)
$$\vartheta(z) = \frac{c_{\sigma}}{\sqrt{cz+d}} \vartheta(\sigma z), \qquad |c_{\sigma}| = 1,$$

for an arbitrary $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$. Of course, $\sigma z = \frac{az+b}{cz+d}$, c_{σ} is a constant depending upon σ , and is already studied in classical literatures³). But, here we propose to look for a convenient expression of c_{σ} for our purpose.

PROPOSITION 1. Let $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element of Γ such that $b \neq 0$ and $\sigma \equiv 1 \pmod{4}$. Then the constant c_{σ} in the transformation formula (5) is given by $c_{\sigma} = (-c, d) \left(\frac{2b}{d}\right)$ for $c \neq 0$, and $c_{\sigma} = 1$ for c = 0. Here, $\left(\frac{2b}{d}\right)$ is the Jacobi symbol, and (c, d) is the Hilbert symbol of degree 2 for **R**.

*Proof.*⁴⁾ Denoting by $\xi = \frac{b}{a}$, $(a, b \in \mathbb{Z})$, a rational number given by an irreducible fraction, we define a Gauss sum of exponential type by

(6)
$$G_0(\hat{z}) = \sum_{c \bmod a} e^{2\pi i \hat{z} c^2}, \quad (c \in \mathbb{Z}),$$

 $^{^{3)}}$ [3], for example.

⁴⁾ This proof is partly identical with the proof in [2] of the reciprocity law of the Gauss sum.

and put

(7)
$$G(\xi) = G_0(\xi) / |G_0(\xi)|$$

whenever $G_0(\xi) \neq 0$. Now, if t > 0, then

$$\begin{aligned} \vartheta(2\xi + it) &= \sum_{m=-\infty}^{\infty} e^{\pi i m^2 (2\xi + it)} \\ &= \sum_{c \bmod a}^{\infty} e^{2\pi i \xi c^2} \sum_{m=-\infty}^{\infty} e^{-\pi (am+c)^2 t}, \end{aligned}$$

and Poisson's summation formula yields

$$\sum_{m=-\infty}^{\infty} e^{-\pi (ma+c)^2 t} = \frac{1}{\sqrt{t}} - \frac{1}{|a|} \sum_{m=-\infty}^{\infty} e^{-\pi \frac{m^2}{a^2 t} + \frac{2\pi i c}{a} m}.$$

So, we obtain

(8)
$$\lim_{t \to 0} \sqrt{t} \ \vartheta(2\xi + it) = G_0(\xi)/|a|$$

If, especially, this is applied to the both sides of (3), the so-called resciprocity of Gauss sum

(9)
$$\frac{G_0(\xi)}{|\gamma||a|} = \eta^{\operatorname{sgn}\xi} \frac{\sqrt{2|b|}}{|b_0|} G_0\left(-\frac{1}{4\xi}\right), \qquad \eta = e^{\frac{\pi i}{4}},$$

as stated in [2], Satz 161, is derived, where sgn $\xi = \xi/|\xi|$. From (9) follows also

(10)
$$G(\xi) = \eta^{\operatorname{sgn}\xi} G\left(-\frac{1}{4\xi}\right).$$

Next we put z = it in the formula (5), and use (2), (3), (8) to have

$$1 = c_{\sigma}(c, d) \eta^{\operatorname{sgn} d-1} G\left(\frac{b}{2d}\right), \ (c \neq 0).$$

Furthermore, from (10) and from elementary properties of Gauss sums⁵⁾ follows

$$G\left(\frac{b}{2d}\right) = G\left(\frac{b/2}{d}\right) = \left(\frac{2b}{d}\right)G\left(\frac{1}{d}\right)$$
$$= \left(\frac{2b}{d}\right)\eta^{\operatorname{sgn} d} G\left(-\frac{d}{4}\right),$$

⁵⁾ See [1], [2].

ΤΟΜΙΟ ΚUBOTA

and $d \equiv 1 \pmod{4}$ implies $G\left(-\frac{d}{4}\right) = \eta^{-1}$. Hence, $c_{\sigma} = (-c, d) \left(\frac{2b}{d}\right)$ as asserted. If c = 0, then d = 1. So, the assertion is claer by (4).

Using fundamental properties of the Jacobi symbol, we can deduce from Proposition 1 immediately the following

COROLLARY. Let $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element of Γ such that $\sigma \equiv 1 \pmod{4}$. Then, $c_{\sigma} = (c, d) \left(\frac{2c}{d}\right)$ for $c \neq 0$, and $c_{\sigma} = 1$ for c = 0.

As shown in [5], the factor system of the 2-fold non-trivial covering group \tilde{G} of $G = SL(2, \mathbf{R})$ is given by

(11)
$$a(\sigma,\tau) = (x(\sigma), x(\tau)) (-x(\sigma)^{-1}x(\tau), x(\sigma\tau)), (\sigma,\tau \in G),$$

where, for $\sigma = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in G$, $x(\sigma) = \gamma$ or δ according to $\gamma \neq 0$ or = 0. Now, for the square root fixed by (2), the relation

(12)
$$\sqrt{c(\tau z) + d} \cdot \sqrt{c'z + d'} = a(\sigma, \tau) \sqrt{c''z + d''}$$

holds with $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $\tau = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$, $\sigma \tau = \begin{pmatrix} a'' & b'' \\ c'' & d'' \end{pmatrix}$, 1 $x(\sigma) < 0$ is equivalent with the fact that $0 \leq \arg(cz + d) < \pi$, resp. $-\pi \leq \arg(cz + d) < 0$ is the case for all z in the upper half plane H. Therefore, if the elements of \tilde{G} are denoted by $\tilde{\sigma} = (\sigma, \varepsilon)$, $(\sigma \in G, \varepsilon = \pm 1)$, and the operation of $\tilde{\sigma}$ on a function f(z) of a complex variable is defined by $f^{\tilde{\sigma}}(z) = f(\sigma z)$, then

$$j(\tilde{\sigma}, z) = \varepsilon \sqrt{cz + d}$$

becomes an automorphic factor over \tilde{G} , that is, j satisfies

(13)
$$j(\tilde{\sigma}\tilde{\tau},z) = j^{\tilde{\tau}}(\tilde{\sigma},z) j(\tilde{\tau},z), \qquad (\tilde{\sigma},\tilde{\tau}\in G).$$

Thus we get

PROPOSITION 2. Let $\tilde{\Gamma}$ be the covering group of Γ determined by the factor set (11), denote by $\tilde{\sigma} = (\sigma, \varepsilon)$, $(\sigma \in \Gamma, \varepsilon = \pm 1)$, an element of $\tilde{\Gamma}$, and put $\chi(\tilde{\sigma}) = \chi(\sigma, \varepsilon) = c_{\sigma}\varepsilon$, c_{σ} being as in (5). Then χ is a representation of degree 1 of $\tilde{\Gamma}$, i.e., we have $\chi(\tilde{\sigma}\tilde{\tau}) = \chi(\tilde{\sigma}) \chi(\tilde{\tau})$, $(\tilde{\sigma}, \tilde{\tau} \in \tilde{\Gamma})$.

In this way, the automorphic factor in (5) of $\vartheta(z)$ is decomposed into a representation of $\tilde{\Gamma}$ and an automorphic factor of \tilde{G} . Making use of this result, the following theorem is proved:

186

THEOREM. Let $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element of Γ , and put $\eta = e^{\frac{\pi i}{4}}$, Then, c_{σ} in (5), or in other words $\chi(\sigma, 1)$ in Propositoin 2, is given by:

	conditions on σ	value of $c_{\sigma} = \chi(\sigma, 1)$
2 c and		
$c \neq 0$,	$d \equiv 1 \pmod{4}$	$(c,d)\left(\frac{2c}{d}\right)$
$c \neq 0$,	$d \equiv -1 \pmod{4}$	$i(c, d)\left(\frac{2c}{d}\right)$
c=0,	d = 1	1
c = 0,	d = -1	-i
2 d and		
$d \neq 0$,	$c \equiv 1 \pmod{4}$	$\eta\left(rac{2d}{c} ight)$
$d \neq 0$,	$c \equiv -1 \pmod{4}$	$\eta^{-1}\left(\frac{2d}{c}\right)$
d = 0,	c = 1	η
d = 0,	c = -1	η^{-1}

Proof. If $d \equiv 1 \pmod{4}$ and $c \equiv 0 \pmod{4}$, then $a \equiv 1 \pmod{4}$, and the theorem follows at once from Proposition 1. So, we assume $d \equiv 1$, $c \equiv 2 \pmod{4}$. Put $\tau' = \begin{pmatrix} 1 & -2 \\ 1 \end{pmatrix}$, $\tau = \begin{pmatrix} 1 \\ 2 & 1 \end{pmatrix}$, $\rho = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$; then $\rho \tau = \tau' \rho$, and a $a(\rho, \tau) = 1$, $a(\tau', \rho) = 1$ by (11). Therefore, $\chi(\tau, 1) = 1$, where $(\tau, 1)$ stands for an element of $\tilde{\Gamma}$. Hence, under the additional assumption $c + 2d \neq 0$, Proposition 2 and the results for the case of $c \equiv 0 \pmod{4}$ imply

$$c_{\sigma} = \chi(\sigma, 1) = \chi(\sigma\tau, 1)a(\sigma, \tau)$$

= $(c + 2d, d) \left(\frac{2(c + 2d)}{d}\right) (c, 2) (-2c, c + 2d)$
= $(-2cd, c + 2d)^{6} \left(\frac{2c}{d}\right) = (c, 2d) \left(\frac{2c}{d}\right)$
= $(c, d) \left(\frac{2c}{d}\right)$.

If c + 2d = 0, then d must be 1. So,

187

⁶⁾ Apply here the formula $(a, b) (-a^{-1}b, a+b) = 1$ of Hilbert's symbol.

ΤΟΜΙΟ ΚUBOTA

$$c_{\sigma} = (c, 2) \left(-2c, d\right) = 1 = (c, d) \left(\frac{2c}{d}\right).$$

Thus the theorem is verified for the case of $d \equiv 1 \pmod{4}$.

Next we put $\tau = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$, $\rho = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ to have $\rho^2 = \tau$, $a(\rho, \rho) = -1$. Since (3) implies $\chi(\rho, 1) = \eta$, $\chi(\tau, 1)$ must be -i. Therefore, if $d \equiv -1 \pmod{4}$ and $c \neq 0$, then

$$\begin{aligned} c_{\sigma} &= \chi(\sigma, 1) = \chi(\sigma\tau, 1) \,\chi(\tau, 1)^{-1} \,a(\sigma, \tau) \\ &= i(-c, -d) \left(\frac{-2c}{-d}\right) (-1, c) \,(c, -c) \\ &= i \,(-1, -d) \,(c, d) \left(\frac{-2c}{-d}\right) = i(c, d) \left(\frac{2c}{d}\right). \end{aligned}$$

The assertion for c = 0 is almost the same thing as $\chi(\tau, 1) = -i$. Thus the proof for the case of 2|c is finished.

If 2|d and $d \neq 0$, then $a(\sigma, \rho) = (-c, d)$ for $\rho = \begin{pmatrix} & -1 \\ 1 & \end{pmatrix}$.

So,

$$c_{\sigma} = \chi(\sigma\rho, 1) \, \chi(\rho, 1)^{-1} \, (-c, d) = \eta^{-1} \, (-c, d) \, \chi(\sigma\rho, 1),$$

and our assertion reduces to former cases. If d = 0, then $c_{\sigma} = \eta^{-1} (-c, -c) \cdot \chi(\sigma \rho, 1)$, and the theorem is still valid. This completes the proof.

§2. Remarks on the reciprocity law.

In a previous paper [4], the author has shown that the reciprocity law of the power residue symbol of an arbitrary degree in a totally imaginary number field is essentially equivalent with the multiplicativity of a function defined by means of the power residue symbol on an arithmetically defined discontinuous subgroup of SL(2, C). For the rational number field, a corresponding result is stated in Proposition 2 of this paper using the quadratic residue symbol which is the only residue symbol of a number field with real conjugates. Proposition 2 shows that, whenever a number field has a real conjugate, SL(2, R) is not enough to get a corresponding result to the theorem of [4] for the number field, but we must use the covering group \tilde{G} which is not an algebraic group. Although Proposition 2 concerns only the rational number field, the situation is not completely different for the

188

THETA-FUNCTION

general case; we merely need such a theta function of several variables as is used in the integral representation of Dedeking's zeta function instead of the theata function in (1), to have a generalization of Proposition 2, i.e., a result like the theorem of [4].

As well as the theorem of [4] is proved by an elementary computation, it is possible to see the equivalence of Proposition 2 and the quadratic reciprocity law directly without any analytic function. For example, put $\sigma = \begin{pmatrix} a & b \\ 2c & d \end{pmatrix}$, $(c \neq 0)$, $\tau = \begin{pmatrix} 1 & 2m \\ 1 \end{pmatrix}$. Since then $a(\sigma, \tau) = 1$, the relation $\chi(\tilde{\sigma}\tilde{\tau}) = \chi(\tilde{\sigma}) \chi(\tilde{\tau})$ together with Theorem 1 yields

$$(c,d)\left(\frac{c}{d}\right) = (c, d + 4cm)\left(\frac{c}{d + 4cm}\right),$$

which is a somewhat non-explicit formulation of the quadratic reciprocity. Conversely, assuming the quadratic recipricity, we can prove Proposition 2 by the method in [4]. The procedure becomes, however, rather complicated. In this manner one can any way understand the mechanism of the so-called analytic proof of the reciprocity law.

Proposition 2 gives various different forms, or formal generalizations, of the quadratic recipirocity law. Put for instance $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $\tau = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$, $\sigma \equiv \tau \equiv 1 \pmod{4}$, $c \neq 0$, $c' \neq 0$, $ca' + dc' \neq 0$. Then, Proposition 2 entails

$$(c, d) \left(\frac{2c}{d}\right) \cdot (c', d') \left(\frac{2c'}{d'}\right)$$
$$= (ca' + dc', \ cb' + dd') \left(\frac{2(ca' + dc')}{cb' + dd'}\right) \cdot (c, c') (-cc', ca' + dc').$$

References

- H. Hasse, Allgemeine Theorie der Gaussschen Summen in algebraischen Zahlkörpern, Abh. Deutsch. Akad. d. Wiss. zu Berlin, Math-Naturw. Klasse, 1951.
- [2] E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Leipzig, 1923.
- [3] C. Hermite, Sur quelques formules relatives à la transformation des fonctions elliptiques, Oeuvres I (1905), 487–496.
- [4] T. Kubota, Ein arithmetischer Satz über eine Matrizengruppe, J. reine angew. Math. 222 (1966), 55–57.
- [5] T. Kubota, Topological covering of SL(2) over a local field, J. Math. Soc. Japan 19 (1967), 114–121.
- [6] A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143-211.

Mathematical Institute, Nagoya University.