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Merit Factors of Polynomials Formed
by Jacobi Symbols

Peter Borwein and Kwok-Kwong Stephen Choi

Abstract. 'We give explicit formulas for the L4 norm (or equivalently for the merit factors) of various
sequences of polynomials related to the polynomials

and

where (%) is the Jacobi symbol.

Two cases of particular interest are when N = pgq is a product of two primes and p = g + 2 or
p = q + 4. This extends work of Hgholdt, Jensen and Jensen and of the authors.

This study arises from a number of conjectures of Erdés, Littlewood and others that concern the
norms of polynomials with —1, 1 coefficients on the disc. The current best examples are of the above
form when N is prime and it is natural to see what happens for composite N.

1 Introduction

There are a number of old conjectures of Erd6s, Littlewood, Turyn and others that
concern the norms of polynomials with —1, 1 coefficients. See [BC-98], [BC-99],
[E-57], [E-62], [L-68], [NB-90], [S-90], [M-94].

Littlewood’s conjecture is that it is possible to find p a polynomial of degree n with
coefficients —1, 1 so that

Civn < |p(2)] < Cov/n

for all z of modulus 1 and for two constants C;, C, independent of n. This is com-
plemented by a conjecture of Erd&s that says that the constant C, above cannot be
arbitrarily close to 1. The most significant related results may be found in [K-80] and
[B-95].

This latter conjecture of Erd6s would be proved by showing that the Ly norm of
such polynomials is bounded below by C;4/n for some C; > 1. The Ly norm is
attractive to work with because it computationally far more tractable than the sup
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norm. These problems arose separately in the mathematics community and the en-
gineering community. In the engineering community the problems arose as signal
processing questions and here again the Ly norm is natural to consider [G-83].

The example, due to Turyn and proved by Hgholdt and Jensen [HJ-88], that gives
the smallest asymptotic Ly norm is of the form

p—1
fp(z) :Z <n+£)p/4])zn

n=0

where (;) is the Legendre symbol and p is prime. (Recall that the Legendre symbol
(£) is 1 if n is a quadratic residue mod p and is —1 otherwise.) This is discussed in
[BC-98] where explicit formulae for these Ly norms are given. In the above case the
L, norm is asymptotic to (7/6)/4p'/2,

In this paper we extend the analysis to the non-prime case.

Suppose N is odd. Let x(n) be a real primitive character modulo N. Then N is a
product of distinct primes p; p, - - - p, with p; < p, < --- p, and

n
(L.1) x(n) = <7p1pz-~-pr>

where (ﬁ) is the Jacobi symbol. We consider the polynomial formed by x(n) as

N-—1 N-—1 n
(1.2) f@ =3 xtmz" =3 (N) 2",
n=0 n=0

Then f(z) is a polynomial having coefficients either 0 or 1. We also consider the
shifted polynomial f;(z) by shifting the coefficients of f(z) to the left by ¢. Thus, if
1 <t < N, then

(1.3) fil2) = (””)z".

In particular, fy(z) = f(2).

We are particularly interested in the behavior of the growth of the L, norm of these
polynomials. For the case that N is a product of twin primes, we are able to derive an
exact formula for the L, norm of the unshifted polynomial f(z). A similar formula
for the case when N = pq with odd primes p, g, p = g+ 4 and p = 3 (mod 4) can
also be derived. We have the following theorem.

Theorem 1.1 Let N = pq and f(z) be the polynomial defined in (1.2). If p = q + 2,
then

(5N*+9N +4— (8N + 1)(p +q))

W=

I£1I3 =

3

+24%<2—(%)>h;—24£]—32<1—(2)>h§+%h§
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andif p = q+4 and q =3 (mod 4) then

IfI4= = (5N* + 9N +4 — (8N + 1)(p + q))

W=

3

+12%<5—3(%)>h;—36£—;<1— (§)>h§+%h§

where by := Zi:l n (%) for odd integer .

For the general case, we obtain an asymptotic estimation for the Ly norm and
prove

Theorem 1.2 Let N = pip,---p, with py < p, < --- < p, and f,(z) is defined in
(1.3) with 1 <t < N. Then

5 N2+5
(1.4) Ifli = gN2—4Nt+8t2+o( 5 )
1

Theorem 1.2 immediately implies that if we define the merit factor of a sequence
{xu}n' by )
__ IFl
IFll3 = [IF1I3
where F(z) := Zf:_ol x,2z", then from (1.4), we have the merit factor MF of the Jacobi

sequence satisfying

1

MF

2 t r\? . 1
7574N+8(N> + O(N“p; ).

It follows that if N“p; ' — 0 when N — oo, then

1 2 t £\?
——>——4—+8(—) .
MF 3 N N
In particular for t approximately N /4 the merit factors approach 6 which is conjec-
tured by some to be best possible [G-83].

This should be compared with the result of T. Hgholdt, H. Jensen and J. Jensen
in [HJJ-91]. They showed that the same asymptotic formula but a weaker error term
O((‘Mq);,#) for the special case N = pq. So we generalize their result to N =
p1p2 - - - pr and also improve the error term.

Additional history of this problem is outlined in [BC-98] and [BC-99].

2 L, Norm for Character Polynomial

Let x be a non-principal primitive character mod N. Let

N—-1
f@) =) x(nz"
n=0
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be the character polynomial associated to . Let w := ¢*™/N and 7(x) be the Gaus-
sian sum defined by

N—1
() = Y x(nw".
n=0

Since x is primitive,
(2.1) f@) = T00x(k).

for k = 0,1,...,N — 1. Also we have |7(x)|> = N and 7(x) = x(=1)7(X) (see
Chapter 8 in [A-80]). The shifted polynomial f;(z) by shifting the coefficients of f(z)
to the left by ¢ is defined as

N-1
fi(z) == Z x(n+1)Z"

n=0

for1 <t < Nand fy(z) = f(2). Itis easy to see that
(2.2) filw®) = W™ (Wb

forany 0 < k < N — 1. We are interested in estimating the Ly norm of f;(z). It can
be shown (see [HJ-88], [BC-98]) that

1 N—-1 N—-1
(23) 1A = 5 { S0 1RO+ S Ia=wbt ).
k=0 k=0

Using (2.1) and (2.2), the first summation above is N2¢(N). It remains to evaluate

the second summation
N-1

PG

k=0

For1 <t < Nand0 <k <N — 1, we have
fN—t+1(*Wk) = wka(*l)ft(fwfk).

In particular, we have |f;(—w*)| = |fy_1s1(—w™F)| for 0 < k < N — 1 and hence
from now on we may assume 1 < ¢ < (N +1)/2.

We employ an interpolation formula as in [HJ-88], [BC-98] and by (2.8), (2.9)
and (2.10) in [BC-99] which is

N 16
(2.4) ; (M)t = A +B+C)
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where

(2.5)

1 N-1
A= NN +2) S i

a—k
- m{z @ fi ") Z f(”)(””“)}

W k
NZZ“(( a)| Zﬁ( )

In this section, we will simplify the terms A, B and C by using (2.1) and evaluate
them in the next section. Using (2.1) and (2.2), we have

N*(N? + 2)¢(N)'

(2.6) A= 15

Using (2.1) and (2.2) again, we have

4 N1tk —1
:_N_m{z 1Cy 1+21) me(n—k)}
0

k
Nt [SR ok ) A
- R {Z o1 2 XX = k)
k=1 n=0
N2 N—1 N-1 N—1
(2.7) — 7%{ ab Z WKEFaD (k1) Z x(n)x(n — k)}
a,b=1 k=1
N2 N-1 N-1 N—1
_ 7%{ ab (wk(1+t+a+b) +w k(t+a+b) )Z X(”)X(” — k)}
a,b=1 k=0 n=0
 NY(N — 1)%(N)
4 M
because
N—1
1 1 o
(2.8) 1N Z nw’
n=1

forj=1,2,...,N—1.
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For the term C, the second term in (2.5) equals

N2 N—1 N—1 @ h 2
=R ;f,(w“)z (Z o

from (2.1) and (2.8). Using (2.1) again, this is equal to

N4 N-1 ) Nl N—-1—— ’
= f7§R ; Xz(a) (TE\IX) nz:; nx(n+ t)w“(t+n) - 2X(0)>
B N* T(X)z pl P a(n+m+2t)
— 77% { H;I nmyx(n+t)x(m+1t) az; X 2(a)w
9 7N7(N ) ¢(N) N4(N_1)§R TX)Niln (n+t)f(wt+n)
(2.9) 5 ) N & X
N—1 N—1
= - R{F00" Y mmxtn+ 0xtm+ 0 Y gt
n,m=1 a=0
N—1
NN NN 3
8 2 n=1
(n+t,N)=1

Similarly, the first term in (2.5) equals

N—1 N-Toeoam k)
= N> YW Z
a=0 k=1
- LWy (a— k) )
N le <a>\ - eesd
(2.10) N_1 N_1
= N? Z nmyx(n+t)x(m +t) Z \Xz(a)|w”(”7m)
nm=1 a=0
NN = 1%9(N) =
e NN D) Y
(n+t,:Nl):1
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and hence from (2.5), (2.9) and (2.10)
N—1

C= —i%{ T(X) Z nmx(n+t)x(m+1t) Z X (a)w“("m”t)}
n,m=1
NYN = 1)%6(N) R~ S
(2.11) + — 5 +N Z nmx(n+t)x(m+t)Cny(n — m)
nm=1

N{N-1) =

-0 Z

(n+rtl,:Nl):1

where Ci (/) is the usual Ramanujan sum defined as

k—1
ah=> e

(n.l?):l

We remark that formulas (2.3), (2.4), (2.6), (2.7) and (2.11) hold for any non-
principal primitive character. In the next section, we will confine our consideration
to the Jacobi symbol.

3 Real Primitive Character Modulo pg
Lemma 3.1 If1 <k < N, then

N—1 N
> nm:E(N2—6N—1+6k+3Nk—3k2).
n,m=1
k+n+m=0 (mod N)
Proof Thisis Lemma 2 in [BC-98]. |

Lemma 3.2 Let py, p, ..., p, be distinct primes and x = x1X2 - - - Xr where X are
non-principal characters modulo p;. Let N = p\p, - - - p,. Then

N-—1 N—1 ‘ -
(3.1) S AR = {N LN =1

k=0 n—0 0 otherwise.

Proof Letw, = ezTﬂi. Then

Pl_l Pr_l Pl_l Pr_l

Yo Y >l = k) () (n — k)
k=0 k=0 n=0 n,=0

r pj—1 Pf_l

= H Z wp, Z Xj(n)xj(nj —kj)

j=1 k;j=0 ;=0
pi—1

—H{P] Zwm}
kj=0
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because
pji—1 .
———— _ Jpi—1 ifpjlkj,
(n)x:(n; —k;) =
HZ;O X = k) {O otherwise.
=
Hence the summation in (3.1) equals N if (I, N) = 1 and 0 otherwise. [ |

From (2.7), we have if py, p,, ..., pr are distinct primes and x = x1x2 - - - Xr With
non-principal characters x ; modulo p;, then

N = R N4(N — 1)26(N)
62 =N Y w Y g MDD
a,b=1 a,b=1
(a+b+t+1,N)=1 (a+b+t,N)=1
by Lemma 3.2.
Lemma 3.3 If N = pq then we have
N-1 |
3.3 b= —N(3N?* —7N —2)¢p(N
(3.3) >, ab= N )(N)
a,b=1
(a+b,N)=1
and
N-1 1
3.4 b= —N(N —1)(3N — 4)p(N
(3.4) Y. ab= NN = 1) )$(N)
a,b=1
(a+b+1,N)=1
Proof Write
(3.5)
N-1 N-1 N-1 N—1 N—1
Z ab:Zabf Z ab — Z ab + Z ab.
a,b=1 a,b=1 a,b=1 a,b=1 a,b=1
(a+b,N)=1 a+b=0 (mod p) a+b=0 (mod q) a+b=0 (mod N)

We then apply Lemma 3.1 to the last three summations. Formula (3.4) can be proved
in the same way. u

Now from (3.2)—(3.4), if t = N and N = pq, then we have
1
(3.6) B= —EN“(N +2)p(N).

Lemma 3.4 If N = pq, then we have

N—

(3.7) > a= %Ngb(N)

a=1
(a,N)=1

—
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and

—_

= 1
a? = 8N(zN +1)(N).

(3.8)

a=1
(a,N)=1

Proof The proofis similar to Lemma 3.3.

It remains to compute the term C using (2.11). Suppose x isrealand ¢t = N. Then

the first term in (2.11) equals

__ (N1> v > (") i+ m)
_ (%) N;;inw ) <”( ’”)> C(n — m)
SO LIS WEICO LR
= E TR )T E () v
-X Ni; wie Nflnm(—)cmn—m)

Hence from this together with (2.11) and (3.7), we have

3.5 s nm
C= EN n;I nm (W) Cn(n—m)
N4
(N(N —1)*¢*(N) — 4N*¢(N) — 8(N — 1)) .

+_
16

(3.9)

The last step is to evaluate the summation

N—1
Z nm (ﬁ) Cn(n—m).
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Since C(I) is a multiplicative function of N (see Section 8.3 of [A-80]) and also if p
is a prime, then
-1 if (p,k)=1
Cplk) = L
p—1 if(p,k)#1

soif N = pq, then

N—1 N-1
nm nm
ngl nm ( N ) N (1 — m) nél nm p(n—m)Cy(n — m)
N-1 N—1 m
=N nt — nm (—)
(n,N)=1 n—m=0 (mod p)
N-1 m
_ )+ K.
q n;O " ( N > "

n—m=0 (mod q)

Lemma 3.5 Let p and q be primes greater than 3 and N = pq. If p = q + 2 then

N—-1

(3.11) S um (%) - 1—12N2(q2 —1) +2p2<1 _ (2) ) 5

n,m=0
n=m (mod p)

and
ply nm 1 2
(3.12) n;() nm (W) - lzNZ(pz—l)—Zq2<2— (p))hf,.
n=m (mod q)

Ifp=q+4andq=3 (mod 4) then

N—1

(3.13) Y am (%) - 1—12N2(q2 D+ 3p2<1 - (2) ) hy

n,m=0
n=m (mod p)

and
il nm 1 2
(3.14) n;() nm (W) = ENz(pz—l)—q2<5—3<;)>hf,.
n=m (mod q)
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Proof We only give a proof for (3.11). The proof for (3.12)—(3.14) is similar.

(3.15)

n,m=0
n—m=0 (mod p)

K L + + pb
-y ¥ (n+pa)(m+pb)<n p“) (’” p)

a,b=0 n,m=0 Pq Pq
n—m=0 (mod p)

" i + + pb
- Z (”’”) Z(ﬂ+pa)(m+pb) (n Pa> (m )4 >
n,m=0 p a,b=0 a 1

n—m=0 (mod p)

= nm\ n+ pa m+ pb
T e () ()
n—m=0 (mod p) ’

_ i abP 1<n+pa> <n+pb>
b=0 q

n=1

R

q-—1 p—1 q-—1
-z () () -2 (9) ()
a,b=0 n=0 q 1 a,b=0 4 4
q—1 p—1
_ b <n+pa) (n+pb> pzhé
a,b=0 n=0 9 9

If p = g+ 2 then

= 1<n+pa> <n+pb> o <n+2a) (n+2b>
n=0 n=0 q

(3.16) 5 -5 (a2

n=0

N (a_b) . <(2a+ 1)(2b + 1)) .
q q

The first summation on the right hand side of (3.16) (see [BEW-98, p. 58]) is

{q—l ifa=b (modgq)

-1 otherwise .
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Hence, the first term in (3.15) is

q—1 q—1 q—1 b
:p2{—2ab+q Z ab+2ab(%>

a,b=0 a,b=0 a,b=0
a=b (mod q)
. (Qa+1)@2b+1)
a
+ Z ab (—) }
a,b=0 9

q—1

:p2{_(q<q2—1>)2+q§az+hg+(Za(za;))z}

a=0
N, 2 2 )
—12(q—1)+p (32<q)>hq.

This proves (3.11). [ ]

So,if p = g + 2, then

N—-1

Z nm (%) Cn(n—m)

n,m=1

2
:%(4N2—5N(p+q)+6N—(p+q)+2)

2p3(1 (2)>h§+2q3<2 (;)>h§+h§,.

From (3.9), we obtain

4

N
C= ?(N3+3N2+3N+1—(2N2+N+1)(p+q))

2 2 3
_ 3.3 e 2 3 3 2N 12 4 232
3Np<1 (q))hq+3Nq(2 p)hp+2NhN.
Therefore, using this, (2.4), (2.6) and (3.6), we have if p = g + 2, then

N—1 N
DIt =T (IN? +15N +8 — (13N +2)(p + )
k=0

+48q£<2— (%))h;—z;s%s(l— <§)>h2+%h§]
and

1715 = (5N + 9N + 4 — BN + 1)(p + )

3

+24;\%<2— <§))h§,—2411\’]—32<1— <§)>h§+%h§v.
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Similarly, if p = g+ 4 and g = 3 (mod 4) and instead of using (3.11) and (3.12)
in Lemma 3.5, we employ (3.13) and (3.14), then we obtain

N—-1
|f(—wh)* = (7N2+15N+87(13N+2)(p+q))
k=0
3 3
Tls_s(2\V—ml (1= (2) 2+ 22
+24N(5 3(p)>hp 72N<1 (q)>hq+NhN
and

1£14 =5 (5N? +9N +4 — (8N + 1)(p +q))

+121‘3:2<53(p)>h236£72< (2)>h2+;]22h§,.

This proves Theorem 1.1.

W[ =

4 Asymptotic Estimate for Real Primitive Character

Let x be a real primitive character modulo N with odd N. Then N = pyp,---p,
with p; < p, < --- < prand

=) GG

In view of (2.4), we need to estimate the term A, B and C. The term A has been
evaluated in (2.6). We now consider the term B using formula (3.2). We first prove
the following lemma.

Lemma 4.1 Forany1 <t < N, we have

N—1
(4.1) Z ab = in(N) + O(N*).
b

,b=1
(a+b+t,N)=1

Forany1 <t <N, then

1
4.2 —— 1+e
(4.2) E n 2N¢(N)+O(N )
n<N
(n+t,N)=1
and
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(4.3) Z n = §N2¢(N) + O(N?).

n<N
(n+t,N)=1

Here all the implicit constants are independent of t and N.

Proof The summation in (4.1) is

N—-1
=Y ab Y ud

a,b=1 d|N
dla+b+t
(4.4)
N-1
= pud) > ab.
d|N a,b=1

a+b+t=0 (mod d)

Using Lemma 3.1, we have

N—1 -1 d—1
>ooooab=>" Y (a+dn)(b+dm)
a,b=1 n,m=0 a,b=0
a+b+t=0 (mod d) a+b+t=0 (mod d)
-1 a—1 N2 -1
_ 72
=d Z nm Z 1+ ’ Z ab
n,m=0 a,b=0 a,b=0
a+b+t=0 (mod d) a+b+t=0 (mod d)
N1 d—1
24 Y b
n,m=0 a,b=0
a+b+t=0 (mod d)
N* N°
=~ 4 O(N%).
44  2d ( )

It follows now from (4.4) that

N—1

N ) 1 pld) N
> ab= > EE =N+ (N i)
ab=1 N AN AN
(a+b+t,N)=1
= iN%b(N) + O(N*).
The proofs of (4.2) and (4.3) are similar. [ |
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Therefore, using (3.2) and Lemma 4.1,
(4.5) B < N°*,

We next estimate the term C using formula (2.11). The summation in the first
term of (2.11) is

N—1
- Z nmx(n +t)x(m+ t)Cn(n +m+ 2t)
n,m=1
N—1 N
= Z nmx(n+1t)x(m+1t) Z d#( E)
mm=1 d|n+m+2t
dIN
(4.6) N » y
n m
oo E (0 0N)

n+m+2t=0 (mod N)

N-—1
n+t m+t
+0(2d () ()]
(Z > i) (R
d|N n,m=1
d<N n+m+2t=0 (mod d)

because ¢ (l) = Zdlk,d\l du(k/d) (see Section 8.3 in [A-80]).
The error term in (4.6) is

& — n+ad+t m+bd+t
<y odl Y (n+ad)(m+bd)( N )( = )‘
fffv =0 n+m+2gg:0(mod d)
-1 N_
So 5 (Y SR ()
d<N  n+m+2r=0 (mod d) ’*
B3 I S ) P (ALAT V) SR T
d|N n,m=0 a=0 b—0

d<N n+m+2t=0 (mod d)

We next employ Polya’s inequality for character sums (see Theorem 13.15 in [A-80]),
namely, if ¢ is any nonprincipal character modulo k, then for all x > 2 we have

> " 4p(m) < k* logk.

m<x
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Using this inequality and the partial summation formula, we have for any square-free
odd integer k and any integer /,

’Ea(?) ‘ < k3 log k
a=0

and hence the error term in (4.6) becomes

d—1

N3
<> & > - log*(N/d)
d|N n,m=0
d<N n+m+2t=0 (mod d)
< N*> " dlog’(N/d)
dIN
d<N
N4+e
< .
P1
Thus
N—1
Z nmx(n+t)x(m+1t)Cy(n+m+2t)
n,m=1
(4.7) Ne1
n+t\ /m+t N4te
S () (),

n+m+2t=0 (mod N)

In the same manner, we can prove that the summation in the third term of (2.11) is

N—1
= Z nmyx(n+t)x(m+t)Cy(n — m)
n,m=1
N—1
n4+t\ /m+t N*te
=N (") () +o(50)
Z nm N N (0] 3
n,m=1
(4.8) n=m (mod N)
N-1 4+€
=N n*+0
nz:; < b1 )
(n+t,N)=1
1 5 4+€
= 3N ¢(N)+o( : )

using (4.3) in Lemma 4.1. Now it remains to consider the main terms in (4.7). If

https://doi.org/10.4153/CJM-2001-002-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2001-002-6

Merit Factors of Polynomials Formed by Jacobi Symbols 49

1<t < Y- then

N-—1
n+t m+t
E nm E—
N N
n,m=1
n+m+2t=0 (mod N)

() S

n,m=1
(49) n+m+%;ft(3N)(:n110d N)
_1 N-—-2t N—-1
:<W>{ Y oaN-n-20+ Y n(ZN—n—Zt)}
n=1 n=N-—2t+1
(n+t,N)=1 (n+t,N)=1

—1\1 2 2 2te
(W) GOV + 6Nt —121%) + O(N™)

by (4.2) and (4.3). It can be easily verified that (4.9) is also true for t = % Thus,
from (2.11), (4.2), (4.7), (4.8) and (4.9), the term C is

1 1
C= gN7 - £N6t + Nt + O(N"*/p)

and hence

zZ

-1
7
|f(—b)|* = 5N3 — 8Nt + 16Nt2 + O(N**/py)
0

o~
Il

from (2.4), (2.6) and (4.5). Finally, Theorem 1.2 follows from this and (2.1) and

(2.3).
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