Parasitology

Supplement to Parasitology 1993

Human nutrition and parasitic infection

EDITED BY D. W. T. CROMPTON

CO-ORDINATING EDITOR L. H. CHAPPELL

CAMBRIDGE UNIVERSITY PRESS

Subscriptions may be sent to any bookseller or subscription agent or direct to the publisher: Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU. Subscriptions in the USA, Canada and Mexico should be sent to Cambridge University Press, Journals Department, 40 West 20th Street, New York, NY 10011–4211. All orders must be accompanied by payment. The subscription price of volumes 106 and 107, 1993 is £225 (US \$440 in the USA, Canada and Mexico), payable in advance, for ten parts plus supplements; separate parts cost £20 or US \$40 each (plus postage). Japanese prices for institutions (including ASP delivery) are available from Kinokuniya Company Ltd, P.O. Box 55, Chitose, Tokyo. Second class postage paid at New York, NY and at additional mailing offices. POSTMASTER: send address changes in USA, Canada and Mexico to Parasitology, Cambridge University Press, 110 Midland Avenue, Port Chester, New York, NY 10573–9864.

ISBN 0 521 45601 0

© Cambridge University Press 1993

The Pitt Building, Trumpington Street, Cambridge CB2 1RP 40 West 20th Street, New York, NY 10011–4211, USA 10 Stamford Road, Oakleigh, Melbourne 3166, Australia

Printed in Great Britain by the University Press, Cambridge

Parasitology

Volume 107 Supplement 1993

Human nutrition and parasitic infection

EDITED BY
D. W. T. CROMPTON

Contents

Preface	S1	Clinical features and definitions of acute and	
List of contributions	S3	persistent diarrhoea and dysentery	S37
Dist of contributions		Enteric pathogens in diarrhoeal diseases	S38
Foreword	S5	Pathogenesis of Diarrhoea	S38
		Interventions for reducing	
Human nutrition needs and parasitic		mortality/morbidity amongst under-fives	
infections	S7	from diarrhoeal diseases	S39
Introduction	S7	Case management	S40
Human energy requirements	S7	Appropriate feeding	S40
Proteins Proteins	S9	Chemotherapy	S41
Proportions of major energy sources in the	07	Increasing host resistance	S42
diet	S11	Measles immunization	S42
Micronutrients	S16	Rotavirus immunization	S42
References	S17	Shigella spp. and ETEC	S42
References	517	Cholera immunization	S43
		Reducing transmission of pathogens	S43
Pathways to the impairment of human		Experiences from Sierra Leone	S43
nutritional status by gastrointestinal	~	Diarrhoeal disease-associated morbidity	
pathogens	S19	and mortality in children under five	
Summary	S19	years of age in Freetown, Sierra Leone	S43
Introduction	S19	Case management in Sierra Leone	S45
The nature of human nutritional status and		Increasing host resistance in Sierra Leone	S46
its assessment	S20	Reducing transmission of pathogens in	
The nutrients	S20	Sierra Leone	S47
Nutritional status and nutrient deficiency	S20	Identification of epidemics and	
Nutrient requirements and		implementation of control in Sierra	
recommendations	S21	Leone	S48
The interaction of nutrition and infection	S22	Conclusion	S48
Epidemiology of diarrhoeal illness and		Acknowledgements	S48
intestinal parasitosis	S23	References	S48
Diarrhoea in infants and young children	S23		
Intestinal parasitism in the population	S23	Nutrition support and the human	
Diarrhoea and parasitism in		immunodeficiency virus (HIV)	S53
immunocompromised hosts	S23	Summary	S53
Mechanisms of nutrient loss and malnutrition		Introduction	S53
in intestinal infections	S24	Clinical symptomatology	S54
Maldigestion	S24	Relationship of malnutrition and disease	S55
Malabsorption	S24	Prevalence	S55
Excessive wastage	S24	Hospital	S55
Intestinal pathogens associated with nutrient		Outpatient	S56
loss	S25	Predicting death	S56
Viruses	S25	Malnutrition	S56
Bacterial pathogens	S25	Body composition	S56
Protozoal pathogens	S26	Energy expenditure in AIDS	S57
Helminthic pathogens	S28	Energy expenditure: pre-AIDS to AIDS	S58
Conclusion	S30	Substrate utilization	S59
References	S30	Lipid metabolism and cytokines	S60
		Selecting the optimal diet	S60
Diarrhoeal disease in early childhood:		Nutrition assessment and requirements	S61
experiences from Sierra Leone	S37	Oral diet	S62
Summary	S37	Tube feeding diets	S63
Introduction	S37	Parenteral nutrition	S64

Contents iv

Topics for future research	S65	Malarial parasites and antioxidant	
References	S65	nutrients	S95
		Summary	S95
Resistance to intestinal parasites during		Introduction	S95
murine AIDS: role of alcohol and		Dietary pro-oxidant/antioxidant balance of	
nutrition in immune dysfunction	S69	the host and the antimalarial efficacy of	
Summary	S69	qinghaosu	S95
Introduction	S69	Vitamin E status and the development of	
LP-BM5 murine leukemia virus, a murine		murine malaria	S97
model of retrovirus disease (AIDS)	S69	Peroxidizability of dietary fat and	
Cryptosporidium	S70	development of malaria	S98
Giardia	S71	Vitamin C status and development of malaria	S99
Cytokine modification by alcohol and		Riboflavin status and development of malaria	S100
retrovirus: effects on intestinal immunity	S72	Oxidative stress and development of malaria	S100
Nutrition and intestinal resistance	S73	Concluding remarks	S102
Conclusion	S73	References	S103
Acknowledgements	S73		
References	S73	The impact of schistosomiasis on human	
		nutrition	S107
Food-borne bacterial infections	S75	Summary	S107
Summary	S75	Introduction	S107
Introduction	S75	Nutritional outcomes and functional	
The incidence of food poisoning	S75	significance	S107
Campylobacter	S76	Schistosoma haematobium and malnutrition	S109
Clinical features	S77	Blood and iron loss in urine	S109
Treatment	S78	Haemoglobin levels, anaemia,	
The bacteria	S78	splenomegaly and hepatomegaly	S111
Genetics of campylobacters	S79	Proteinuria and daily protein loss	S112
Natural habitat of campylobacter	S79	Child growth and adult protein-energy	
The source of human infections	S80	status	S112
Salmonella	S81	Physical fitness, physical activity and	
The diseases	S81	appetite	S114
Salmonella enteritidis	S82	Schistosoma mansoni and malnutrition	S115
Infective dose of salmonella	S83	Community studies of S. mansoni	S116
E. coli O157 and Listeria monocytogenes	S83	Schistosoma japonicum and malnutrition	S117
E. coli O157 (VTEC)	S83	Clinical studies of S. japonicum	S117
The toxin	S84	Field studies of S. japonicum	S117
The source	S84	Conclusions and recommendations	S119
Control of ETEC	S84	References	S120
Listeria monocytogenes	S84		0405
Introduction	S84	Ascariasis and childhood malnutrition	S125
Listeria: microbiology	S85	Summary	S125
Listeriosis: the disease	S85	Introduction	S125
The source	S85	Morphology	S125
The incidence of the disease in the UK	S86	Life history	S125
Listeria pathogenesis and virulence factors	S86	Epidemiology	S125
Infective dose	S87	Population biology	S126
The food industry – the problems	S88	Study country and population	S126
(a) L. monocytogenes: its thermotolerance	S88	Study design	S126
(b) Contamination after cooking	S88	Study method	S127
(c) Multiplication of the bacteria during	600	Parasitological examinations	S127
storage	S88 S88	Nutritional, biochemical and clinical	C117
(d) Recovery of heat-damaged bacteria	500	examinations	S127
(e) Growth of L. monocytogenes at low	200	Intervention	S127
temperatures	S89 S89	Duration of study	S127 S128
Comment	589 S90	Analysis Results	S128
Acknowledgements Performance	S90	Physical growth	S130
References	570	i nysicai growin	3130

Contents

Non-intervention studies	S130	Energy requirements in human	
Non-randomized intervention studies	S130	pregnancy, in human nutrition and	
Randomized intervention studies	S130	parasitic infection	S169
Lactose tolerance	S130	Summary	S169
Vitamins and protein	S130	Introduction	S169
Discussion	S133	Energy cost of pregnancy	S169
Acknowledgements	S134	Energy intakes	S171
References	S134	Possibility of energy savings	S173
		The influence of parasitic infection	S173
Hookworm infections and human iron		Conclusion	S174
metabolism	S137	Acknowledgement	S174
Summary	S137	References	S174
Introduction	S137		2111
Life history of hookworms	S138	Nutritional and physiological	
Epidemiology of hookworm infections	S138	consequences of tumour glycolysis	S177
Human iron status and anaemia	S139	Summary	S177
Hookworm feeding activity and human blood		Introduction	S177
loss	S141	Glycolysis in tumour cells	S177
A provisional model for hookworm anaemia	S142	Changes in enzyme and metabolite patterns	
References	S144	Enhanced glucose uptake	S178
References	3177	Lack of a Pasteur effect and mitochondrial	5170
Filariasis: nutritional interactions in			S178
human and animal hosts	S147	Modulation of turnous alreaducie by ATP	S178
	S147 S147	Modulation of tumour glycolysis by ATP	S176
Summary	S147 S147	Activity of the NADH shuttles	
Introduction	5147	Role of lactate transport	S179
Effect of human infections on growth and	C140	Other pathways of glucose metabolism: the	
mortality	S149	glycolytic bypass	S179
Studies on experimental rodent filariasis	S150	Other sources of lactate	S179
Onchocerciasis, vitamin A and experimental	0151	Role and regulation of glycolysis and the	0170
filariasis	S151	parasitic nature of tumour cells	S179
Other deficiencies	S153	Gluconeogenesis in the host	S180
Conclusions	S155	Mechanisms of the gluconeogenic increase	S181
References	S156	Gluconeogenesis and cancer cachexia	S181
		Approaches to treatment using the	0404
Parasitic infection and chronic energy	0450	glucose/lactate cycle	S181
deficiency in adults	S159	Hexose analogue glycolytic inhibitors	S181
Introduction	S159	Lactate transport inhibitors	S181
Defining chronic undernutrition in adults	S160	Inhibitors of host gluconeogenesis	S181
Morbidity and mortality in adult	0440	Nutritional manipulations	S182
undernutrition	S160	Carbohydrate deprivation	S182
Parasitic infections and adult undernutrition:		Hyperalimentation	S182
associations and consequences	S161	Summary of Cori cycle-based cancer	~
Adult malnutrition – a causative factor in	~	treatments	S182
parasitic infections?	S161	Summary: tumours as glycolytic parasites	S182
Parasitic infections – a causative factor in		References	S183
adult malnutrition?	S161		
Adult malnutrition, parasitic infections and		Infection, nutrition and cognitive	
work productivity	S163	performance in children	S187
Nutritional repletion and reactivation of		Summary	S187
parasitic infection in malnourished adult	s S164	Introduction	S187
Alteration in pharmacodynamics of		Intelligence, cognition and mental processes	S187
drugs in adult malnutrition	S164	Cognition and intelligence	S187
Conclusions	S165	Information processing	S188
Acknowledgements	S165	IQ and DQ	S189
References	S165	Malnutrition, development and psychological	
		function	S190
		Undernutrition - PEM	S190
		Correlational studies	S190
		Intervention studies	S190

Contents S191 S196 Iron deficiency Models and measures S197 Conclusions: malnutrition and cognitive References function S192 Summary and recommendations S201 Infection and cognitive performance S193 S202 Parasites, behaviour and cognitive References performance S193 Causal connections: and a speculative hypothesis S194

vi