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ON THE NUMBER OF CONJUGACY CLASSES OF
NORMALISERS IN A FINITE p-GROUP

NORBERTO GAVIOLI, LEIRE LEGARRETA, CARMELA SICA AND MARIA TOTA

In 1996 Poland and Rhemtulla proved that the number u(G) of conjugacy classes
of non-normal subgroups of a non-Hamiltonian nilpotent group G is at least c — 1,
where c is the nilpotency class of G. In this paper we consider the map that associates
to every conjugacy class of subgroups of a finite p-group the conjugacy class of the
normaliser of any of its representatives. In spite of the fact that this map need not
be injective, we prove that, for p odd, the number of conjugacy classes of normalisers
in a finite p-group is at least c (taking into account the normaliser of the normal
subgroups). In the case of p-groups of maximal class we can find a better lower
bound that depends also on the prime p.

INTRODUCTION

For any group G, we denote respectively by v(G) and w(G) the number of conjugacy
classes of non-normal subgroups of G and the number of conjugacy classes of subgroups
of G that are the normalisers of some subgroup of G.

The inequality v(G) > c - 1 has been established to hold by Poland and Rhemtulla
in [7] when G is a nilpotent group of class c that is not Hamiltonian. More recently
Fernandez-Alcober and Legarreta [4] found a sharper bound for finite p-groups: v{G)
^ p(k — 1) + 1, where k is defined by |G'| = p* and p is an odd prime.

Clearly, for any conjugacy class K of subgroups of G, there exists one conjugacy
class p(K) of the normaliser of a representative of K. In spite of the fact that the
function p is not injective, there exists computational evidence, with very few exceptions,
that for a finite p-group, with p odd, the number u>(G) satisfies the similar inequality
UJ{G) ^ p(k — 1) + 2 (note that the group G is the normaliser of the normal subgroups).
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In the present paper we find lower bounds for w(G), when G is a finite p-group and p
is an odd prime, depending on the structure of G. These bounds are surprisingly similar
to those found for u(G).

In the first section we prove that the mentioned inequality w(G) ^ p(k — 1) + 2 holds
for any p-group G of maximal class not isomorphic to Q2» (see Theorem 4) and we give
an example where the inequality becomes an equality.

In the second section we study the general case and we show that there exists a
bound similar to the one given by Poland and Rhemtulla: in Theorem 6 we show that
when p is an odd prime, the inequality ui(G) ^ c holds for all finite p-groups having
nilpotency class c. The p-group of order p3 and exponent p2 is an example where equality
holds.

We acknowledge the use of the library of groups of small order, that is part of
computer package GAP [5], as a useful tool to find two groups of order 36 that do not
satisfy the inequality ui(G) ^ p(k - 1) + 2.

1. p-GROUPS OF MAXIMAL CLASS

In the present section G will denote a finite p-group of maximal class of order p"
and n ^ 4.

We start by enumerating some well known results for p-groups of maximal class
mainly due to Blackburn [2]. For the proofs of the statements the reader is referred to
[3].

NOTATION. Let us denote G, = 7t(G) for any 2 < i ^ n, Go = G and Gx = CG(G2/G4),
which means that G\ consists of the elements x € G such that [x, G2] ^ G4. Furthermore,
in the same way as the subgroup Gi is denned, we consider more generally the so-called
two-step centralisers C G ( G J / G J + 2 ) for 1 ^ i ^ n - 2.

n-2

DEFINITION 1: We say s € G is a uniform element if s g \J G G ( G J / G , + 2 ) .
t=2

THEOREM 1 . Let G be a p-group of maximal class of order p" and suppose that
s is a uniform element in G. The following properties hold:

(i) CG(s) = (s)Z(G).

(ii) sp e Z(G) and consequently o(s) ^ p2 and |GG(s)| = p2.

(iii) The conjugates ofs are exactly the elements in the coset sG2-

(iv) If 1 < i ^ n - 2 and g e Gt \ Gi+i then [3, g] € Gi+X \ Gi+2.

DEFINITION 2: We define the degree of commutativity of G, which we denote by
l(G) as follows,

l(G) = m a x { A < n - 2 | [GitGj) ^ Gi+j+k for al l i,j^l}.
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It is clear that l(G) = n — 2 if and only if Gi is Abelian. Since the terms of the
lower central series of any group G satisfy the condition [ 7 « ( G ) , 7 J ( G ) ] ^ 7 J + J ( G ) for all
i, j ^ 1, it is clear that for any p-group of maximal class, l(G) ^ 0.

DEFINITION 3: A p-group of maximal class is called exceptional if l(G) = 0.

THEOREM 2 . Let G be a p-group of maximal class. The following statements

hold:

(i) G has uniform elements.

(ii) 1{G/Z(G))2 1.

(iii) If \G\ ^ p" + 1 then exp(G/Z(G)) = exp G2 = p , in particular, exp Gn_2 = p.

(iv) I f |G | ^ p v + 2 then l(G) ^ 1. Furthermore, expGn_p +i = p and in particu-

lar, ifp > 2, expGn_2 = p.

LEMMA 1 . Let G be a p-group. If g is an element in G of order p then Na((g))

= Ca{g).

PROOF: (NG((g)))/(CG{g)) < Aut«5)) a AutCp £ U(Z/pZ), where |U(Z/pZ)|

= p - 1 and \(NG{(g)))/{CG(g))\ is a power of p. So, \(Na{(g)))/{CG(g))\= 1 and,

in consequence, NG((g)) - CG(g). D

LEMMA 2 . Let G be a p-group of maximal class. Then:

(i) The only normal subgroups ofG are the 7i(G) and the maximal subgroups

ofG. More precisely, ifN is a normal subgroup ofG of index pl ^ p2 then

iV = 7i(G).

(ii) If N is a normal subgroup ofG of index ^ p2 then also G/N has maximal

class.

(iii) If N is a normal subgroup ofG of index ^ p4 then (G/N)1 = G\/N.

LEMMA 3 . Let G be a p-group of maximal class of order p".

(i) G has at most two different two-step centralisers: G\ and Gc(Gn_2). More-

over, Gi ± CG{Gn.2) if and only ifl{G) - 0.

(ii) Ifl(G) ^ 1, every element in G\G\ is a uniform element.

THEOREM 3 . Let G be a 2-group of maximal class of order 2" and let M = (o)
be a cyclic maximal subgroup ofG. Then:

(i) G is isomorphic to one of the groups £>2», SD2» or Q2
n •

(ii) M coincides with all the two-step centralisers CG(Gi/Gi+2). As a conse-

quence, Gi is cyclic and G is a non-exceptional group.

Now, we prove the following new results for a p-group of maximal class.

LEMMA 4 . Let G be a p-group of maximal class of order p" and let M be a

maximal subgroup ofG different from G\ and from CG(Gn-2). Then there exist at
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least n — 3 conjugacy classes of normaliser subgroups contained in M and which are not

contained in G2-

P R O O F : Let us observe (Lemma 3) that any s £ GiUCc(Gn_2) is a uniform element.
Let us choose s £ M\ (d UGo(Gn_2)), which is clearly not in G2. For any 1 ^ i ^ n - 2 ,
let us define H( = (s ,Gi + i ) . Since by Theorem 1, sp G Z(G) = Gn_! < Gi+i for any
1 ^ i ^ n - 2, then \Hi\ = pn~* for any 1 ^ i ^ n — 2, in particular Hi = M.

It is clear that, for any 2 ^ i < n — 2, if,_i ^ ATG(#«)- Conversely, since G = (s)Gi,
for any x G NG(Hi) and i fixed, then x = slg for some t and some g G Gi and, since
s € No(Hi) it follows that 5 G Nc(Hi). On the other hand, for the mentioned g G G\,
if <7 / 1 there exists some j G { 1 , . . . ,n — 1} such that g € Gj \ Gj+i and then by
Theorem 1, [s,#] G Gj+i \ GJ+2- If J > « then clearly g € Git g e Ht-i and, since
also s G #j_i, we have x G # i - i , as desired. If not, j ^ i— 1 that is, J + 1 ^ i and
consequently [s,g] £ Gi+i. But g G Nc{Hi) implies that [s,g] G ^ D G2 = Gi+i, and
we get a contradiction. In conclusion, since for any 2 ^ i ^ n — 2 the above n - 3
normalisers, i f i , . . . ,Hn-3 have respectively the different orders p " ~ \ . . . ,p3, then they
are non-conjugate normalisers and obviously they are not contained in G2- D

THEOREM 4 . Let G be a p-group of maximal class of order pn and G ?= Q2n.
Then G has at least p(n — 3) + 2 conjugacy classes of normaliser subgroups.

P R O O F : Since G is a p-group of maximal class, there are at least p — 1 maxi-
mal subgroups of G, different from Gi and from Gc(Gn_2). Let us denote them as
M i , M 2 , . . . , M p _ i .

According to Lemma 4, for each 1 < I ^ p - 1 the corresponding n - 3 normaliser
subgroups in M( are not conjugate to each other because they have different orders, and
also not conjugate to the ones of the same order found in a different maximal subgroup
Mv of G. Otherwise, since each M( is a normal subgroup then some uniform element
would be contained in M; n Me = $(G) = G2, which is a contradiction. So, there are
at least (p — l)(n - 3) non-conjugate classes of normalisers. Also, G itself is another
normaliser.

Now we distinguish two cases according to G is or is not an exceptional group.

(i) Let G be an exceptional group. In particular, n ^ 6. Now, the previously found
(p— l ) (n -3 ) conjugacy classes of normalisers in Lemma 4 are, in particular, not contained
in Cc(Gn_2) and not in G\. Furthermore, by Theorem 2 we know that G = G/Z(G),
whose order is p " ~ \ is a non-exceptional group. Now, since G is an exceptional group, by
Lemma 3 we get that GG(Gn_2) ^ Gi and, since Z(G) C CG(Gn-2) and Z{G) C Gu we
get that Gc(Gn_2) # G\ — (G)v On the other hand Gc(Gn_2) is a maximal subgroup of
G so that, applying Lemma 4 for the non-exceptional p-group of maximal class G, we get
n — 4 conjugacy classes of normaliser subgroups in G which are contained in Cc(Gn_2)
and not in (G)1. Obviously we get also n - 4 conjugacy classes of normaliser subgroups
in G which are contained in Gc(Gn_2) and not in Gi and which are also clearly not
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conjugate to the previous ones. Hence, in this case, adding the normaliser subgroup G

there exist at least (p — l ) (n - 3) + (n - 4) + 1 = p(n — 3) conjugacy classes of normaliser

subgroups in G.

Let us take g € d \ G2 and H = {g,G3). Since G1/G3 ^ Cp x Cp and g £ G3

then \H\ = pn~2 and H is a non-normal subgroup in G because otherwise, the Lemma 2

implies that H must be equal to G2, which is a contradiction. Hence | iVG(H) | must be

equal to p"" 1 . Since H is a maximal subgroup of G\, it is also a normal subgroup of it so

that G\ = Nc(H): this is obviously a normaliser subgroup not conjugate to the previous

ones.

Furthermore, in this case, by Theorem 2, we know tha t exp G2 = p . Now, let us take

any g0 € G2\ G3, so tha t NG((go)) = CG(SO) (Lemma 1). If we prove tha t Cc(go) < <?i,

we have got at least another conjugacy class of normalisers not conjugate to the previous

ones. To prove this, first of all we observe that any 1 G Ca(go) is contained in d . In

fact, since G2 = (go,G3), [x,g0] = 1 C G4 and [x, G3] C G4, it is clear tha t [x,G2] C G4

and, in consequence, x is an element of G\. On the other hand, for some go € G2 \G3,

the centraliser CG(<7O) can be chosen different from G\. If not, for any g0 € G2 \ G3 we

have CG(<7O) = Gi so tha t we see that G\ commutes with (G2 \ G 3 ) . Furthermore, since

(G2\G3) = G2 we get that G\ commutes with G2 and in consequence, G2 C Z{G{). Now,

since G\/G2 is a cyclic group, the quotient G\/Z(G\) is also cyclic and in consequence

Gi is an Abelian group. Then l(G) > 0 that is, G is a non-exceptional group, which is a

contradiction with the hypothesis.

(ii) Let G be a non-exceptional group. In this case there are p maximal subgroups

different from G\ = Ca{Gn-2) so that , according to Lemma 4, we get directly at least

p(n — 3) conjugacy classes of normaliser subgroups not contained in G i . Since G itself is

another normaliser, what we shall do next is to find another conjugacy class of normaliser

subgroups not conjugate to the previous ones. To do this, we distinguish the cases p > 2

and p = 2.

(a) Let p > 2. By Theorem 2 we know that expG n _2 = p . Let us take 50

€ Gn_2 \ Gn-i- Clearly, Gn_2 = (g0, Z{G)). Since 0(50) = P, by Lemma 1

we have that NG((go}) = Gc(ffo)- In this case GG(<7O) = Gc(Gn_2) = G\ so

that Nc{(go)) = Gi and this normaliser in not conjugate to the previous

ones.

(b) Let p = 2. We know by Theorem 3 tha t G\ is a cyclic group and in

consequence, there exists only one element of order 2 in G\, which is con-

tained in Z(G). Since G 5* Q2n there exists 50 € G \ G\ of order 2,

which is in particular a uniform element. (Observe tha t by Theorem 3,

we know that any 2-group of maximal class is a non-exceptional group

and apply Lemma 3). In particular, for the uniform element g0, apply-

ing the Theorem 1 we have that |CQ(<7O)| = 22 and, since by Lemma 1

https://doi.org/10.1017/S000497270003879X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003879X


224 N. Gavioli, L. Legarreta, C. Sica, and M. Tota [6]

NG({9O)) = CG(0O), that N G ( ( 5 O » = 4. On the other hand, since the
p(n — 3) conjugacy classes of normalisers found previously are represented
by subgroups whose order is greater than or equal to 23, we have that
NG((9O)) represents another conjugacy class of normalisers not conjugate
to the previous ones. Q

LEMMA 5 . IfG = Q2» then w(G) = 2n - 5.

PROOF: Since any two conjugate non-normal subgroups in G have conjugate nor-
maliser subgroups and G itself is the normaliser subgroup for all the normal subgroups in
G, it is clear that w(G) ^ v(G) + l. Furthermore, if G = Q2» we know that v{G) - 2 n - 6
(see [7]). Thus w(G) < 2n - 5.

On the other hand, for the non-exceptional 2-group Q2n, mimicking one part of
the proof in Theorem 4 we get that Q2n has at least 2(n - 3) + 1 conjugacy classes of
normaliser subgroups. It means that, u>(G) ^ 2n — 5. In conclusion, u{G) = 2n — 5. D

N O T E . G = Q2* is a counterexample for the bound in Theorem 4.

Next, we study one case in which the inequality in Theorem 4 becomes an equality.

THEOREM 5 . Let G be a p-group of maximal class of order pn and G 2* Q2» • If
G\ is an Abelian group and for any g € G \ Git o(g) = p2 then w(G) = p(n - 3) + 2.

PROOF: First of all we observe that in this case G is a non-exceptional group. Let
H be any proper subgroup in G. We distinguish the cases H ^ G\ and H -£G\.

(a) For any H subgroup in G\ there are two possibilities for its normaliser. In fact,
if H < G then NG{H) = G and if not, since H C Gu Gi is Abelian and is a maximal
subgroup in G, hence G\ = NG{H).

(b) For any H ^ G\ there exists a maximal subgroup M of G with M £ G\,
such that H < M. Looking at the structure of the subgroups in G, we get that there
exists some h 6 M \ G2, h £ G\ and some i £ { 1 , . . . , n - 1} such that H = (h, Gj+i).
(Bear in mind that ft is a uniform element). Furthermore, since we know that hp G Z(G)
and h £ Z{G), we have that {h, Gn-i) has order p2 and, since by hypothesis o(h) — p2,
we find that (h) = (h,Gn) = (h, Gn_i). Hence, for each fixed h as above and each
fixed M maximal subgroup, arguing as in Lemma 4, we get n - 3 non-conjugate proper
normalisers:

Next we shall prove that these conjugacy classes of normalisers do not depend on the
choice of the element h. To do this, we shall prove that for any k € M \ G2, k £ Gi
and K = (k, Gj+i) the normalisers Nc(H) and NQ{K) are conjugate in G. In fact, since
M = (h)G2 = {k)G2 and, by Theorem 1, k" € Z{G) C G2) then h = k'z for some
0 < I ^ p- 1 and z e G2. Furthermore, since (l,p) — 1, we see that k' 6 M\GX, that is,
it' is also a uniform element (Lemma 3). By Theorem 1, we have that C1G(A:') = A:'G2.
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Thus, h ~ kl and, since d < G, we find that
G

(h,G{) = NG(H) ~ (kl,Gi} = (k,G{) = NG(K).

In conclusion, since there exist p maximal subgroups in G different from G\, we get

exactly p(n - 3) conjugacy classes of proper normalisers non-conjugate and not contained

inGi.

Furthermore, since we know that G itself is another normaliser, that there is at

most one conjugacy classes of normalisers contained in G\ represented by Gx and that,

by Theorem 4, there are at least p(n — 3) + 2 conjugacy classes of normalisers, we get the

equality w(G) = p{n - 3) + 2. D

2. OTHER GENERAL RESULTS

DEFINITION 4: Let G be a group. The norm of G, denoted by Norm(G), is the
intersection of the normaliser subgroups of G:

Norm(G) = f | NG(H).

By a well known result ([8, 6]) the norm of a group G contains the centre Z(G) and is

contained in the second term Z2(G) of the upper central series of G. The group Z0(G)

is denned as the trivial subgroup of G.

In this section we want to prove the following theorem.

THEOREM 6 . HG is a finite p-group (p odd) ofailpotency class c then w(G) ^ c.

Before giving a proof, we need some preliminary results. From now on we shall use

the letter G to denote a finite p-group (p odd) whose nilpotency class is c.

LEMMA 6 . If K is a normai subgroup of G then w(G) ^ u>{G/K), moreover
equality occurs if and only if for every subgroup H ^ G tiere exists a subgroup T ^ G
containing K such that NG(H) = NG(T).

P R O O F : The preimages in G of the normalisers in G/K of the subgroups of G/K

are all the normalisers in G of the subgroups of G containing K. Since two subgroups

of G/K are conjugate in G/K if and only if their preimages are conjugate in G the

inequality of the statement follows readily. If equality holds then every normaliser in G

is the preimage of a normaliser of G/K. U

COROLLARY 1 . Let K be a normaJ subgroup ofG. If u(G) = u(G/K), then

K < Z2{G) and Norm(G/K) = Noim(G)/K. Moreover if Z(G) ^ K then we have that

Norm(G) = Z2{G) and Z(G/K) = Z2(G)/K = NoTm(G)/K.
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PROOF: By Lemma 6 it follows that for every subgroup H < G there exists a
subgroup Ttf < G containing K such that NC(H) = NG(TH). If K s$ H then we can
choose TH = H so that

H^G

= (C\NG(TH))K/K

= f l NG(T)/K

= Norm{G/K).

Hence K ^ Norm(G) ^ Z2(G).

Note that Norm(G) < Z2(G), therefore if Z(G) ^ K then

Z2{G)/K ^ Z(G/K) ^ Norm{G/K) = Norm{G)/K s£ Z2(G)/K

so that every inequality in the previous chain is actually an equality. This implies that
Norm(G) = Z2{G). D

We remind the reader that a group T is capable if there exists a group H such that
H/Z(H) = T. The following result appears as part of Theorem 3 and Theorem 4 in [1].

LEMMA 7 . Let G be a finite p-group. One o( the following holds true:

(i) Norm(G)/Z(G) is cyclic,

(ii) [G,Norm(G)j is cyclic.

Moreover if [G, Norm(G)] is cyclic and non-trivial then G is not capable.

DEFINITION 5: Let G be a finite p-group of nilpotency class c and TV a normaliser
subgroup of G. We shall say that N is of level i if i = sup {h \ Zh(G) ^ N}.

R E M A R K 1. Note that two normaliser subgroups of G having different levels cannot be
conjugate. We shall use this fact in the following without any further reference.

LEMMA 8 . Suppose that c ^ 2. If Norm(G) ^ Z2{G) then there exists a nor-
maliser subgroup NofG of level 1.

P R O O F : By hypothesis there exists an element x € Z2(G) and a subgroup H ^ G
such that x $ NG(H): let N = NG{H). D

Trivial consequences are the following Corollaries.

COROLLARY 2 . IfG is Abelian or Norm(G/Zi(G)) ^ Z2(G/Zi(G)) for every i
in the set {0 , . . . , c - 2}, then for every j in the set { 1 , . . . , c} there exists at least one
normaliser subgroup Nj of level j . In particular w(G) ^ c.

P R O O F : Taking quotients with respect to the terms of the upper central series and
using inductively Lemma 8 we are reduced to prove that an Abelian group G has a
normaliser N of level 1: let N = G in this case. 0
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COROLLARY 3 . If G is a finite p-group ofnilpotency class c ^ 2 then w(G) > c.

PROOF: If G is Abelian then w(G) = 1 = c. Suppose now that G has nilpotency
class c = 2. Note that G = Zi(G) cannot be equal to Norm(G), since otherwise G would
be a Dedekind p-group with p odd, that is, an Abelian group. Thus Corollary 2 yields
the claim for this case. D

LEMMA 9 . Suppose that G is non-Abelian and that there exists d € Z2(G) such
that H — [d, G] is cyclic of order p. If the set of the elements of G having a non-trivia/
power in H is contained in a maximal subgroup T of G then d € Zi{G) \ Norm(G) and
G has at least two non-conjugate normaliser subgroups of level 1 not containing d.

P R O O F : Let C = Cc(d). The subgroup C is a maximal subgroup of G being the
kernel of the non-trivial homomorphism defined on G by g -* [d, g] € H. Choose an
element x € G \ (C U T), since [x, d] ^ 1 and x has no non-trivial power in H, it follows
that d ^ NG({X)) and d £ Norm(G). Let V be a maximal subgroup of G containing
AT — NG((X)), since i ^ C w e have that V ^ C. Thus K = C n V is a normal subgroup
of G of index p2. Choose an element y £ C\K and for every i in the set { 1 , . . . ,p} let
Xi = xyl~l. Assume by way of contradiction that xitXj E T where i ^ j . It follows that
j / ' - - 7 = xjlX{ £ T, so that y € T and also x € T: a contradiction. Thus there exists at
least one index i0 > 1 such that xio £ T and, as a consequence, if we let M = Nodx^)),
we see that d £ M. We have shown that the two normaliser subgroups M and N are of
level 1.

Now we show that N and M are not conjugate. We shall use the bar notation to
denote the projections on G/K of elements and subgroups of G. Assume by way of
contradiction that xio 6 TV, then j / 1 " ' 0 = x~o

lx e 77 and also y € 77. This yields 77 = G.
Therefore \V/K\ ^ \NK/K\ = |77| = \G\ = p2, a contradiction since A' is a maximal
subgroup of V. It follows that M ^ N so that M and AT cannot be conjugate subgroups
in the Abelian group G/K. As a consequence M and N cannot be conjugate subgroups
ofG. D

LEMMA 1 0 . If G is capable non-Abelian and [d, G] is cyclic for some element

d € Z2(G) \ Z(G) then G has at least two non-conjugate normaliser subgroups of level 1.

PROOF: We can assume that d has order p modulo Z{G). Let 5 be the set of
elements of G having a non-trivial power in the cyclic group H = [d, G]. The set 5 cannot
generate G, otherwise G would be not capable (since the preimage of the cyclic subgroup
H would be central in every central extension of G). It follows that 5 is contained in a
maximal subgroup T of G. The claim now follows readily from Lemma 9. D

A straightforward consequence is the following corollary.

COROLLARY 4 . If G is capable non-Abelian and Z(G) is cyclic then G has at
least two non-conjugate normaliser subgroups of level 1.

https://doi.org/10.1017/S000497270003879X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003879X


228 N. Gavioli, L. Legarreta, C. Sica, and M. Tota [10]

LEMMA 1 1 . If A is an Abelian finite group, B a non trivial subgroup of A and
M a subgroup of A maximal with respect to the property of being a subgroup of A not
containing B, then A/M is cyclic of prime power order.

PROOF: Every non-trivial subgroup of A/M contains BM/M, since otherwise its
preimage in A would not contain B and would contain properly M, in spite of the
maximality of M. Thus the finite Abelian group A/M, which is the direct product of
cyclic groups of prime power order, has a unique minimal subgroup and therefore A/M
itself is necessarily cyclic of prime power order. D

LEMMA 1 2 . Suppose that G has nilpotency class c ^ 2. If

= Z(G)/K = Norm(G)/K

for every subgroup K of Z{G) not containing yc(G) then one of the following occurs:

(i) Z2{G)/Z(G) is cyclic, c ^ 3 and G has one normaliser subgroup of level 1
and two non-conjugate normaliser subgroups of level 2,

(ii) Z2(G)/Z(G) is not cyclic and G has two non conjugate normaliser subgroup

of level 1.

P R O O F : Assume first that Z2(G)/Z(G) is cyclic. Since G/Z{G) cannot be non-
trivial cyclic, the group G has nilpotency class c ^ 3. Also Norm(G) = Z(G) =£ Z2(G)
so that, by Lemma 8, the group G has a normaliser subgroup of level 1. Applying
Corollary 4 to the capable group G/Z{G) we find that G has also two non conjugate
normaliser subgroups of level 2.

Now we suppose that Z2(G)/Z(G) is not cyclic. Let d\ and d2 be two elements in
Z2(G) of order p modulo Z(G) such that {di) Z(G) ^ (cfe) Z(G). Let H be a subgroup
of Z{G) maximal in the set {K ^ Z{G) \ jc(G) & K). We shall use the bar notation
to denote the projections of elements and subgroups of G over G = G/H. By our
hypotheses we have Norm(G) = Z(G)/H = Z(G). Also, by Lemma 11, we find that
Z(G) — Z(G)/H is a cyclic group. Thus there exists j , e C that is not normalised
by d\ and two integers Ai and A2 that are nor both divisible by p such that d3 = d{d£
centralises 1}V Clearly No{{g\) H) contains the normal subgroup (d3) Z(G) and is of level
1 since it does not contains d\. Using the same argument with d3 in place of d\ we find an
element g2 e G such that iVG((<72) H) is of level 1 and does not contain d3. In particular
it does not contain the normal subgroup (̂ 3) Z(G) so that it cannot be conjugate to
NG((9l)H). D

LEMMA 1 3 . Suppose that G is non-Abelian and capable. One of the following

occurs:

(i) Norm(G) ^ Z2(G) and G has a normaliser subgroup of level 1,

(ii) Norm(G) = Z2(G) and G has two non-conjugate normaliser subgroups of

level 2 and c > 3.
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P R O O F : By Corollary 3 we can assume c ^ 3 and by Lemma 8 that Norm(G)
= Z2{G). Lemma 7 implies that Z2{G)/Z(G) = Norm(G)/Z(G) is cyclic and is the
centre of the capable group G = G/Z(G). By Corollary 4 the group G has two non-
conjugate normaliser subgroups of level 1. Their preimages in G are two normaliser
subgroups of level 2 in G that are not conjugate. D

THEOREM 7 . If G is a capable finite p-group (p odd) of nilpotency class c then

w(G) ^ c.

P R O O F : The statement is trivial if G is Abelian. Otherwise, by Lemma 13, we
have that u)(G) ^ 1 + w{G/Z(G)) if G has a normaliser subgroup of level 1 or w{G)
^ 2 4- UJ(G/ZI{G)) if c ^ 3 and G has two non-conjugate normaliser subgroups of level
2. The claim now follows by arguing induction on the nilpotency class of G. U

Now we are in a position to prove the main result in this section.

P R O O F OF THEOREM 6: We shall use the bar notation to denote the projection of
elements and subgroups of G onto G = G/Z{G). By Corollary 3 we can assume c ^ 3.

If Norm(G) / Z2{G) then Lemma 8 (or Corollary 1) yields w(G) > 1 + u{G). Since
G is capable, Theorem 7 shows that w(G) ^ c - 1 so that CJ(G) ^ c as required.

Suppose now that Norm(G) = Z2(G). By Theorem 7, we can assume that G is not
capable. We have w(G) ^ w(G) ^ c - 1 since G is a capable group of nilpotency class
c - 1 .

Assume, by way of contradiction, that w(G) < c and that c is minimal with respect
to this property. We have c ^ 3 and w(G) = w(G) = c - 1, hence, by Corollary 1, we see
that Norm(G) = Z{G). If ~K is a subgroup of Z(G) not containing 7c_i(G) then G/~K
has nilpotency class c — 1, so that c - 1 ^ w(G/K) ^ w(G) = c - 1. Applying once more
Corollary 1 we have that Noim{G)/~K = Norm(G/F) = Z(G)fK. We have shown that
G satisfies the hypotheses of Lemma 12 so that, arguing induction, either w(G) = w(G)
^ 2 + ui(G/Z(G)) > c or G has class c ^ 4 and w{G) = ui(G) ^ 3 + u(G/Z2(G)) Z C.
In both cases we have a contradiction. D
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