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SOME INTEGRAL EQUATIONS WITH RUMMER'S 
FUNCTIONS IN THE KERNELS 

BY 

TILAK RAJ PRABHAKAR 

1. Introduction. Since 1963 several authors ([13], [2], [6], [14], [10], [11], [12], [9]) 
have considered integral equations each one of which is contained as a special case 
in one of the two equations 

(1.1) K\a, b, c)f(x) = £ (? r(fcP l F l ( a ' è ' <(*-'»/(') dt =° SW> 

(1.2) Ka(a, b, c)f(x) = £ far(ftP iFi (a> è> *(*-0) / (0 * =° *(*) 

for Re 6 > 0 and * G [a, p]. 
In this paper we make a systematic use of the fractional integration operator 

Ju (see §2) to prove results on the linear operator K0(a, b, c) and to discuss theorems 
on the solutions of (1.1). The technique used immediately suggests that the cor­
responding results on Ka(a, b, c) and the related equation (1.2) also hold. 

The functions/and g belong to the class of measurable (in the Lebesgue sense) 
complex-valued functions defined for almost all x in [a, p]. Functions in this class 
which are equal almost everywhere in [a, p] are not regarded as distinct. Indeed, 
all the integral equations considered are understood to hold for almost all x in 
foffl-

The restriction Re6>0 is imposed throughout the paper to ensure the con­
vergence of the Lebesgue integrals used but the methods of the paper can be applied 
to obtain solutions of (1.1) and (1.2) for Re b<0 also, provided the integrals are 
interpreted as convolutions of generalized functions and the discussion is in the 
domain of generalized functions (see [3] and [5]). 

2. Linear operators J11 and K0(a, b, c). L is the space of (equivalent classes of) 
complex-valued functions / of a real variable which are L-integrable on a finite 

interval [a, )3], a>0 and is normed by ||/|| = |/(/) | dt. 
Ja 

The operator P. For complex /x with Re /x > 0 the linear operator Ju on L into 
itself is defined by 

(2.1) (/*/)(*) = f ^ ^ " V W dt for almost all x e [a, p]. 
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It is simple to see that Ju is bounded. If the integral equation 

(2.2) / * / = & R e / * > 0 

has a solut ion/eL, then its uniqueness is ensured by a well-known theorem; also 
the solution is denoted by J~»g. Thus when Re /x<0, Jli = (J-li)-1. We set J°f=f 
and denote by Z^ the subspace of functions g in L such that g=Jufmthfe L and 
Re /x > 0. If 0 < Re n < Re v, then it is easily verified that Lv <=LU <=L, the inclusion 
being proper. 

It is a standard result: if Re ^ > 0 , Re v>0, and feL, then 

(2.3) J»Jvf=J» + vfi 

Indeed (2.3) holds for all complex [x and v with Re n^O, Re v^O, Re (fi>+v)^0, 
provided that / is in a suitable LA such that / v / and Ju + v / both exist in L. If Re fx=0 
a n d / i s in LA with Re A>0, then / " / is defined by 

(2.4) J»f=J-1J1+fif 

and is in Z,. 
The operator Kp(a, b, c). We begin with the following general lemma which will 

be of frequent use and is a generalization of the standard theorem on the existence 
and integrability of the fractional integral (2.1). 

LEMMA 1. I/RQ J ^ > 0 andfeL, then the integral 

(t-xy-1 

i 
Jx 

• jifabcix-tyifWdt IV) 
defines a function in L where XF± is, in the standard notation, Rummer's confluent 
hypergeometric function and a, b, c are complex parameters, b^O, — 1, — 2 , . . . 

Proof. It suffices to show that 

< 00. (2.5) f dx f Kt-xY-^Ffa b, c(x-t))f(t)\ dt 
Ja Jet 

Since ^(a, b, z) is an entire function of z, it easily follows that the double integral 
(2.5) does not exceed M(Re/*)-1(]8Re ' l-aRe ' l)| |/ | | , M being a bound of ̂ F^a, b, 
— cu)\ for 0<u<fi— a. 

LEMMA 2. If a, b, and c are complex numbers with Re b > 0, then for almost all 
x e [a, p] 

(2.6) (K\a, b, c)f)(x) = £ ^ r j a P i*i(*> *• c^~'))/(') * 

defines a linear bounded operator Ke(a, b, c) on L into L. 
In particular when c = 0, we get that operating on L 

(2.7) K'(a9 b, 0) = J\ 
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Proof. This follows from Lemma 1 with n=b and a few simple verifications. 

3. Properties of KB(a, b, c). We require 

LEMMA 3. If Rep and Re b are positive, then 

.... piv-xy-iit-vy-1 „ , . , A W 

(11) )x-m—f^-^^,b,c{v-t))dv 

(3-2) I ' ( t f -xy-M'-u)"- 1 

i r * ' - i*i(a,*+/*,c(x-0), 

i-Fi(a, 6, c(x—#))*& 
r(*) i » 

_ (/-x)!,+"-1 

r(6+M) 

Proof. If Re & > 0, Re p > 0 and z is a complex number, then it is easily verified 
[9, (3.7)], that 

(33) T ̂ i r miFi(a'h'zs) ds = w+àiFi(a' *+M'z)-
Substitutions s = (t — v)/(t—x),z=c(x—t) in (3.3) at once give (3.1) while s=(v — x)f 
(t-x\ z=c(x-t) lead to (3.2). 

THEOREM 1. If Re b > 0 and Re ̂  > - Re Z>, //*£« operating on L 

(3.4) /*A*(a, i, c) = K*(a, b+n, c). 

Proof, (i) Suppose first that Re/x>0. For feL, K0(a, b, c)f is in L so that 
JuK*(a, b, c)/also exists in L and for almost all x e [a, /?] 

(3.5) J'K'fa b, c)f(x) = £ ( * r f c P * f * T $ p ^ > 6> ^ ~ 0) / (0 *• 

Changing the order of integration in the repeated integral and using (3.1) we 
immediately get the result in this case; the change is justified since the repeated 
integral in (3.5) can be easily verified to be absolutely convergent for almost all x 
in [a, ft. 

(ii) Suppose next that 0>Re yu> — Re b. Since Re (b+n)>0 and/eL, (i) gives 

J-»K*(a, b+n, c)f = K\a9 b, c)f 

which leads to (3.4) in this case also, 
(iii) Finally suppose that Re /x=0. By case (i) 

J1+*K'(a9 b, c)f = K'(a, b+n+1, c)f. 

Also by case (i), JxK\a, b+p, c)f= K*(a, *+/*+!, c)f. 
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Equating the left sides, we find that 

Kfi(a9 b+ti, c)f=J~1J1+liK$(a9 b9 c)f 
= J»K'{a9 b, c)f, 

using (2.4). 

THEOREM 2. IfReb>0,feL and\i is any complex number such that J*f exists 
in L9 then 

(3.6) J»K'(a9 b9 c)f = K%a9 b9 c)J»f; 

that is to say, the operator K^(a, b9 c) commutes with Ju. 

Proof, (i) Let Re ^>0; then for feL, Jufi$ in L and for almost all x e [a, p] 

(3.7) K\a9 b9 c)J"f(x) = j x - r g } 1F1(a9 b9 c(x-u)) du ^ {t ^ f(t) dt. 

Provided the order of integration in the repeated integral can be inverted, the right 
side is, for almost all x e [a9 p], equal to 

J fit) dt J ' ' ifiCa, b9 c(x-u)) du 

= J, r(b+ti lFl ( a '6 + / x ' c(x~0)f(t) dt9 

evaluating the inner integral by (3.2). We thus arrive at 

K%a9b9c)J»f=K*(a9b+n9c)f 

which combines with the preceding theorem to give the desired result; as in that 
theorem the correctness of the inversion in the order of integration can be verified 
by Fubini's theorem. 

(ii) When Re /x<0, set j y (x )=^ (x ) for almost all x in [a, /?]. Since ^ is in L 
and — Re n > 0, by case (i) 

J~»K\a9 b9 c)cf>(x) =° K*(a9 b9 c)J'^(x); 

but Kp(a9 b9 c)cf> exists in L so that 

K\a9 b9 c)cf> = J»K'(a9 b9 c)f 

and the result follows, 
(iii) Let Re /x = 0. Since /"/exists in L, by case (i) and definition of /" , 

J1+»K*(a9 b9 c)f = K*(a9 b9 c)/* + 1 / = K\a9 b9 c) / 1 /*/ . 

By case (i) again, since JufeL9 

K%a9 b9 c)J\J»f) = J*K*(a9 b9 c){J»f). 

Thus J'1J1+tlK0(a9 b9 c)f exists and is equal to K\a9 b9 c) J11/. 
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THEOREM 3. If Re b, Re b'>0, then operating on L 

(3.8) K\a, b, c)Ke(a', b', c) = Ke(a+a', b+b', c). 

Proof. For/ in L and almost all x s [<x, j8] 

K'(a, b, c)K>(ft, V, c)f(x) 

(3-9) = J, - T w - i F i ( a ' * * C ( * ~ M ) ) rfM J. ~w~ 
XiF^ .é ' . cCM-O)/^)* 

(3.10) = £ 7 ( 0 A £ ( " ~ ^ P ^ r " ^ " 1 iFafo i, <<*-«)) 
x iF1(a', V, c(u—t)) du, 

the reversal in the order of integration being valid if the repeated integral in (3.9) 
is absolutely convergent a.e. in [a, /?]. By Theorem 1 

f 
Ju 

I H L W " lFl(a'> b'> ^ - ^ / w i A 

exists in L and by another application of the same theorem the absolute conver­
gence, for almost all x e [a, ]8], of the repeated integral in (3.9) follows. 

Putting v=(u—x)l(t—x) in the inner integral in (3.10), we write it as 
(f - xf+b'~ H(x) where 

7<^ = J W) r(y) 1JFI^' è' ™(*-- 0)i*i(«'> *', (̂1 -v)(x- 0) * 

1 ; Jo r(i) r(6') m4on40 (é)m(6/)»w!i! 
— V Wm(^)nc (X—t) f b + m_1^1 _ w + n _ i J 
~ mi=o r(è+W)r(6'+«)m!«! J0

 Kl V) 

writing the series expansions for the Kummer's functions which we recall are 
entire functions, and inverting the order of integration and double summation. 
The inversion is correct because the double series in (3.11) converges uniformly with 
respect to v over the range of integration and for all x and t in [a, jS]. 

Evaluating the Eulerian integral in terms of Gamma functions, we deduce that 

TM _ _ J v (aUa%cm+n(x-tr+n 

IW ~ T(b+b') m J<=0 (b+b%+nm\nl 

n i n - 1 V c m (*- ' ) m v (g)»-.(a% 
( ' V{b + b')mio (b+b')m à0{m-n)\n\ 

1 _ £. (a+a')mcm(x-t)m 

V(b+b')m^0(b+b')m ml 
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in which we have summed the double series by diagonals instead of by rows, and 
used an analogue of Vandermonde's theorem. Thus we have 

(3.13) I(x) = f(FW) l F l ( * W ' b+b'> c ( *~ r ) ) 

from which it follows that the repeated integral in (3.10) is, for almost all x e [a, /?], 
equal to 

i r(b+bf) l F ^ + a '> b+b'> c(*~»)/(0 dt 

and this establishes the theorem. 

REMARK. Theorem 2 does not follow as a particular case of Theorem 3 though 
for c=0 both reduce to the standard result (2.3) on the product of fractional 
integration operators. 

THEOREM 4. I/RQ b>0 andfe L, then for almost all x e [a, jS] 

(3.14) J-bK*(a, b, c)f(x) =f(x)-ac f 1F1(a+l, 2, c(x-t))f(t) dt. 
Jx 

Proof. By Theorem 1, for almost all x e [a, p] 

Ji-bK\a, b, c)f{x) = K\a, 1, c)f(x) 

= C 1F1(a,l,c(x-t))f(t)dt 
Jx 

which suggests that 

J-»K(a, b, c)f(x) =° ~ £ 1F1(a, 1, c(x-t))f(t) dt 

= f(x)-ac f 1F1(a+l, 2, c(x-t))f(t) dt. 

As a direct verification of this we show that 

(3.15) J*{f(x)-ac£ 1F1(a+h 2, c(x-t))f{t) dtj 

=° K*(a9 b, c)f(x) for x e [a, p]m 

Since feL and Ree>0, by suitable applications of Lemma 1 and Lemma 2, it 
is immediate that the left-hand member in (3.15) exists a.e. in [a, j8] and can be 
written as 

(3.16) Pf(x)-ac £ ( " ~ g P du £ 1F1(a+1, 2, c(u-t))f(t) dt 

(3.17) =°Pf{x)-ac £ / ( ? ) dt £ ( " ~ ^ P 1f1(a+1, 2, c(u-t)) du 

by an application of Tonneli's theorem to invert the order of integration. 
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It is not difficult to verify that for complex z and Re b > 0 

xFiO, b, z) = 1 +az J (1 -s)b~1
1F1(a+1, 2, zs) & 

which on putting s=(t—u)/(t—x)9 z=c{x—t) gives 

g* [(u rjftP ifife+i. 2> g(«-0) ̂  = (-^|p{i--1F1(a,é,c(x~o)}. 

Since/is in L, for almost all x e [a, jS] 

a? £ / ( 0 dt £ ( M p * P 1F 1(a+1, 2, c(w- 0) A 

= r ^ w - ^ -iFi^ *» <<*- o»/(o * 
G 18Ï ' 

where the existence of the double integral in (3.18) a.e. in [a, ]8] is ensured by the 
absolute convergence for almost all x of the repeated integral in (3.16). This also 
ensures the existence of the integral on the right in (3.18) which is written as the 
difference of two integrals existing a.e. in [a, ft]. Finally substituting the last ex­
pression in (3.17) we get (3.15) as desired. 

COROLLARY 4.1. IfRe b>0 and J~bg exists in L, then the integral equation for 
unknown fin L 

(3.19) £ ° p g P xF,(a, b, c(x-t))f{t) dt =°s(x) for a < x < p 

is equivalent to the integral equation for unknown fin L 

(3.20) f(x)-ac f iJFi(a+l, 2, c(x-t))f(t) dt = J~bg(x) for a < x < j8. 
Jx 

LEMMA 4. If Re b > 0 andfe L, then a.e. in [a, p] 

K*(a, b, c)f(x) ecx = ecxK*(b-a, b, -c)f(x). 

Proof. It is immediate from Kummer's first formula [4, (6.3(7))]. 

THEOREM 5. If Re b > 0 andfe L, then for almost all x e [a, ft] 

(3.21) K\a, b, c)f(x) = Jb~a ecx Ja e~cxf(x) for Re a > 0, 

(3.22) = ecx Jae-°XP-af(x) for Re a < Re b. 

Proof, (i) When Re a>0, by Theorem 1 applied twice 

(3.23) JaK\a, b9 c)f = JbK*(a9 a, c)f 
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Since feL and Re b, Re a>09 the functions on both the sides exist in L. We now 
prove that under this assumption 

(3.24) K'{a, b, c)f = Jb~*K\a9 a9 c)f. 

If Re a < Re b, (3.23) gives 

JaK\a9 b, c)f = JbK*(a9 a9 c)f = JaJb~aK\a9 a9 c)f 

so that 

K*(a,b,c)f=Jb-aK0(a,a,c)f; 

the last function exists in L since Re (6 —d)>0. 
If Re a > Re b, (3.23) leads to 

JbK*(a9 a, c)f = JaK\a9 b9 c)f = JbJa'bK0(a9 b, c)f9 

so that 

K'(a, a9 c)f = Ja~bK%a, b9 c)f 

which gives 

K'{a, b, c)f = J-«-»K'{a9 a9 c)f9 

the existence of the functions involved having already been noted. 
If Re a=Re b9 instead of (3.23) we use 

PK'ia, b9 c)f = Pb~a)+1K\a9 a, c)f 

also obtained by two applications of Theorem 1. Since K^(a, b, c)f exists in L, 
this gives 

K\a9 b9 c)f = J-W-^K'ia, a9 c)f 
= Jb-aK\a9a9c)f 

using the definition (2.4). 
Thus (3.24) is established for any complex a, with Re a > 0. Noticing that 

(3.25) K\a9 a, c)f(x) = £ ^ ^ p e«*-»f(t) dt, 

(3.21) follows immediately, 
(ii) When Re a< Re b9 by Lemma 4 

Kfi(a, b9 c)f(x) =° ecx K*(b -a9b9- c)f'(x) for x e [a, )8] 

where f'(x) = e~cxf(x). But by the above case 

K\b-a9 b9 -c)f\x) = Jae~cxJb-a ecxf\x) 

and (3.22) follows. 
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4. Existence and uniqueness of solutions of (1.1). It is proved that the existence 
of J~ bg in L is a necessary and sufficient condition for (1.1) to possess a solution 
feL. Uniqueness of solutions is ensured by 

THEOREM 6. T/'Re 6>0, then the integral equation 

(4.1) £ ( ' ~ ^ P iFife 6, c(x-t))f(t) dt =°g(x) for a < x < p 

cannot have more than one solution/in L. 

Proof. Since Ke(a9 b, c) is a linear operator on L, it is enough to prove that 
K6(a9 b, c)f=0 implies/=0. This, however, follows directly from Theorem 5 and 
the uniqueness theorem for fractional integrals. 

THEOREM 7. If Re b>0, then a necessary and sufficient condition for the integral 
equation 

(4.2) £ ( ' ~ ^ P ^(a, b, c(x-t))f{t) dt =°g(x) for x e [«, fl 

to have a solution fin L is the existence ofJ~bg in L. 

Proof. Necessity. Suppose (4.2) has a solution/in L. Using (3.15) the equation 
(4.2) can be written as 

(4.3) J*\f{x)-ac £ 1F1(a+1, 2, c(x-t))f(t) dtj =°g(x). 

Since this equation has a solution fin L and the expression in braces exists in L, it 
readily follows that J~bg exists and is in L. 

Sufficiency. Suppose that J ~ bg exists in L. By Corollary 4.1, the integral equation 
(4.2) is equivalent to 

(4.4) f{x)-ac f &(?+1, 2, c(x-t))f(t) dt =° G(x), x e [a, ffl 

with G=J~bg.By the transformation x = a + j 3 - x ' , f=a+jB-f\ (4.4) is converted 
into a Volterra equation of the second kind: 

(4.5) f'(x')-ac fX
 1F1(a+1, 2, c ( f ' - J 0 ) / # ( O * ' = G ' M for *' e [a, j8] 

wheref'(x')=f(x) and G ' ( 0 = G(;t). 
Since G e L, it easily follows that G' eL. Also it is clear from the analytic charac­

ter of i f i that 

|iFx(a+1, 2, c(f '-* ')) I < M for all *', f ' e [a, j8], 

M a constant. Hence by a well-known theorem [8], the integral equation (4.5) has 
a unique solution/in L and the sufficiency part follows. 
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5. Explicit solutions of (1.1). In Theorem 10 we obtain an explicit solution of 
(1.1) under the assumptions of Theorem 7. A transform pair comprising (1.1) and 
an inversion integral is obtained in Theorem 9 under an assumption which has to 
be slightly more restrictive. We begin with the following theorem which apart 
from being of use in Theorem 10, is of some independent interest also. 

THEOREM 8. IfRc p>0, then the integral equation 

(5.1) e~cx J^ix) =Vtf e'cxf(x), x e [a, $] 

has for eachfe L a solution </> in L expressible by 

(5.2) <Kx) = /(*)-j*c f ^ ( 1 +K 2, c(x-t))f(t) dt 
Jx 

and for each <f> in L a solution fe L given by 

(5.3) f(x) = <f>(x)+fJLC I 1^(1-^ , 2, c(x-t))<f>(t) dt. 
Jx 

Proof, (i) Suppose that/eZ,. From (3.15) with both a and b replaced by /x 

^ | / (x)~/xc £ 1F1(ia+1, 2, C(x-t))f(t) dt} 

=° K'Qi, fi9 c)f{x) for x e [<*,£]. 

Using (3.25) for the right-hand member, it immediately follows that 

j»</>(x) = 0 ^ P r c x f ( x ) , x e [a, p] 

where 

<Kx) =f(x)-fic f x F ^ + 1 , 2, c(x-t))f(t) dt 
Jx 

Also since/e L is given, it is clear by Lemma 1 that </> is expressed as a difference 
of two functions in L and is indeed itself in L. 

(ii) Suppose that <f>eLis given. If we replace/(x) by ecxifj(x) and (f>(x) by ecx g(x), 
then (5.1) becomes 

J»ecxg(x) =° ecx Ju
 I/J(X). 

Clearly for <j> e L, g is in L, so by first part with c replaced by — c9 this equation has 
a solution iff e L given by 

*Kx) =g(x)+pc f ^ ( 1 + ^ , 2 , -c(x-t))g(t) 
Jx 

dt 

which becomes (5.3) when put back in terms of/and <f> and Kummer's first theorem 
is used. 
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THEOREM 9. IfRz l> Re b>0 andJ~lg9 J~lf exist in L, then for x e [a, 0] 

(5.5) £ ^Y§T iFM b* c{x-t))m dt ^sto 
(5'6) f ^TQ-b)1 lFl(~a' l~b' c^-'))/"'^)dt ^/W 
imply each other. 

Proof. In our notation, we are to show that 

(5.7) K\a9b9c)f=g 

(5.8) K*(-a9l-b,c)J-lg=f 

are equivalent. It is clear that under the assumptions of the theorem,/and g both 
exist in L. 

(i) First suppose that (5.7) holds. By direct substitution the left-hand member of 
(5.7), which exists in L, equals 

K'fo b9 c)K'(-a9 l-b9 c)J~lg = K'(091, c)J~lg9 by Theorem 3 

= JV-'g) = ft 

noting that for <f> e L, 

*'((>, /, c)m = £ ^rff)'1 ^> *• 
(ii) Suppose now that (5.8) holds. The left side can, again on a direct substitution, 

be written as 

K'(-a, l-b, c)J'l[K0(a9 b, c)f] = K'(-a, l-b, c)K0(a, b9 c)J~lf9 by Theorem 2 
= K*(09 /, c)J ~ lf9 by Theorem 1 

= JlJ~lf = f. 

THEOREM 10. I/RQ b>0 andJ~bg exists in L, then the integral equation 

(5.9) £ ( ' r (&P l F l f e è ' c (* - '» -W>* =°^(;c) f o r*GkP ] 

has the solution fin L given by 

(5.10) /(*) = ecxJ-a e-cxJa-bg(x) for Re a > 0, 

(5.11) =Ja-becxJ-ae-cxg(x) f o rRea<Re£ . 

Proof, (i) Suppose Rea>0. By Theorem 5, equation (5.9) can be written, for 
/ e l , as 

Jb-aecxJae-°xf(x) =°g(x). 
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This requires that 

Ja e~cxf(x) =°e-cxJa-bg(x), 

that is, 

Jae~cxf(x) =° e~cx (Ja(J-bg(x))). 

By Theorem 8, this has a solution/in L. By the definition of J~a such a solution is 
given by 

e~cxf(x) =°J-ae~cxJa(J-bg)(x), 

and this gives (5.10). 
(ii) Suppose Re a < Re b. By Lemma 4, equation (5.9) is equivalent to 

K\b-a9b9 -c){e-cxf(x)} = ° e " c ^ W . 

Since Re (b—a)>09 by case (i), this equation has the solution given by 

e'cxf(x) =° e-°xJa~becxJ-ae-cxg(x) 

which gives (5.11). 

REMARK 1. By specializing the parameters of ±Fl9 a device employed in [9, §7], 
it is simple to obtain solutions of integral equations similar to (1.1) with the kernels 
involving some classical polynomials or special functions. For example, our solu­
tion of the equation 

J 1 (u-oyLa
n(c(u-o))f(u) du = g(or), Re a > - 1 

solved by Srivastava [11] for c= 1, is easily seen to be 

/(*) = ^ ^ T ) 1 ' ^ ' 1 e°x Jn e~cx g{x)' 

REMARK 2. The results involving Ke(a, b, c) can be verified to hold analogously 
for a more general class of linear operators pK^(at; bj9 b; c) on L defined by 

vK^\bJ9^c)f{x) ^ ^ ^ ^ 

xpFq(al9..., ap; bl9..., bq.l9 b; c(x-t))f(t) dt 

where pFq is a generalized hypergeometric function with suitable p and q such that 
the series representing pFq either converges or terminates. Even the conditions for 
the existence of solutions of 

(5.12) PKi(ai;bj9b;c)f=g 

are the same as for (1.1); but from a consideration of Cauchy's functional equa­
tion [1] 

(5.13) f(x+y)=f(x)f(y) 
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and the relation 

(5.14) J*i ̂ t o bj9 b; c)f=P pK^a{\ K «IÎ c)f 

analogous to (3.23) it follows that the solutions of (5.12) cannot be expressed in 
an explicit form analogous to (5.10) in any case other than that discussed in the 
paper, viz. p=q=l and indeed the trivial one, p=q=Q. 

REMARK 3. The results can be extended to the case, 6=oo provided for Re a > 0, 
Re c>0 (equivalently for Re a<Re b and Re c<0) the discussion is restricted to 
a subclass Rq[7] of functions / such that xqf(x) is in L for suitable q; and for 
Re a< Re 6, Re c>0 (as also for Re a>0, Re c<0) it is restricted to a class of 
functions of exponential type. 

6. Integral equation (1.2). Define linear operators P and Ka(a, b, c) on L by 

(6.1) P(f(x)) = f* ( X p ( ^ " V ( 0 dt for Rep > 0, 

(6.2) Ka(a, b, c)f(x) = J* ( * r ^ P iUa, b, c(x-t))f(t) dt for Reb > 0. 

It is easy to discuss Ka(a, b, c) using P on the same lines as K0(a, b, c) has been 
discussed using/14; of course 

Ka(a, b, 0) = P, operating on L. 
The analogues of all the results proved on the operator K0(a, b, c) and the equation 
(1.1) are valid for the operator Ka(a, b, c) and the integral equation (1.2). The 
results of [9] are special cases of only some of these analogues when a=0 and 
c = ± l . 
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