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Abstract
We present an overview of the SkyMapper optical follow-up programme for gravitational-wave event triggers from the LIGO/Virgo obser-
vatories, which aims at identifying early GW170817-like kilonovae out to ∼ 200Mpc distance. We describe our robotic facility for rapid
transient follow-up, which can target most of the sky at δ < +10 deg to a depth of iAB ≈ 20 mag. We have implemented a new software
pipeline to receive LIGO/Virgo alerts, schedule observations and examine the incoming real-time data stream for transient candidates. We
adopt a real-bogus classifier using ensemble-based machine learning techniques, attaining high completeness (∼ 98%) and purity (∼ 91%)
over our whole magnitude range. Applying further filtering to remove common image artefacts and known sources of transients, such
as asteroids and variable stars, reduces the number of candidates by a factor of more than 10. We demonstrate the system performance
with data obtained for GW190425, a binary neutron star merger detected during the LIGO/Virgo O3 observing campaign. In time for the
LIGO/Virgo O4 run, we will have deeper reference images allowing transient detection to iAB ≈ 21 mag.
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1. Introduction

The observable signature of merging binary neutron stars (BNS)
was revealed for the first time by the event GW170817, which
started with a gravitational-wave (GW) chirp signal detected by
the Advanced LIGO/Virgo detectors and was then followed by
electromagnetic (EM) observations over a broad range of wave-
lengths from γ -rays to radio (Abbott et al. 2017a, 2017b). One
of the most promising outcomes is luminous EM emission in the
optical and near-infrared bands after the final coalescence of the
stars (e.g. Andreoni et al. 2017; Arcavi et al. 2017; Coulter et al.
2017; Cowperthwaite et al. 2017; Drout et al. 2017; Kilpatrick et al.
2017; Kasliwal et al. 2017; Smartt et al. 2017). This fast-evolving
transient, referred to as a kilonova, was predicted to be powered
by the radioactive decay of heavy elements via rapid neutron cap-
ture processes (Li & Paczyński 1998; Metzger et al. 2010; Barnes
& Kasen 2013; Tanaka & Hotokezaka 2013; Fernández & Metzger
2016). We now know that rapid EM follow-up (on the timescale
of hours) provides a wealth of information on the nature of the
progenitor (Abbott et al. 2017c; Kruckow et al. 2018), its envi-
ronment (Levan et al. 2017; Adhikari et al. 2020), and explosion
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mechanism (Troja et al. 2017; Mooley et al. 2018). In particular,
the spectral evolution of such events is key to understanding the
merger process and the origin of rare heavy elements (Kasen et al.
2017; Kasliwal et al. 2019; Wu et al. 2019). Furthermore, the iden-
tification of an EM counterpart is needed to pinpoint the host
galaxy, thus determining the redshift (Coulter et al. 2017; Hjorth
et al. 2017).

Photometric and spectroscopic data of kilonovae provide a
novel probe into the physics and nature of the BNS themselves
(e.g. NS radius or mass ratio) and into the process and end-
product of mergers. Although GW170817 remains the only kilo-
nova that was both spectroscopically confirmed and associated
with a GW signal, it allows us to better understand how different
ejecta components (with different lanthanide fractions) contribute
its EM emission from early to late times after themerger. However,
little is known about the earliest stages of the kilonova, because the
EM coverage of GW170817 started more than 10 h after the event.
Hence, we have no constraints yet on possible emission from the
outermost layers of the ejecta that may have faded after a few
hours. For example, Metzger et al. (2015) proposed a candidate
precursor of kilonova emission, caused by β-decay of free neu-
trons in the outermost ejecta, which can increase the luminosity
of the EM source by over an order of magnitude during the first
hour after the merger. Metzger (2019) mentions r-process heat-
ing or radioactive decay of free neutrons. And further mechanisms
such as jet/wind reheating could play a similar role in producing
enhanced luminosity at early times (e.g. Metzger, Thompson, &
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Quataert 2018). Only high-cadence observations in the first few
hours after the merger can test these predictions in detail and
reveal the source of the blue emission (Arcavi 2018).

The SkyMapper optical wide-field telescope in Australia (see
Section 2.1) is one of the facilities that can discover early
GW170817-like kilonovae and is probably the pivotal optical facil-
ity for events that occur in the Southern Sky between the end of
the Chilean night and late in the Australian night. The size of the
GW localisation area (a few hundred deg2, see Abbott et al. 2020a)
is usually much larger than the field of view (FoV) of our camera
(5.7 deg2). While the GW triggers in the third LIGO/Virgo observ-
ing run (O3) had amedian localisation area of 4 480 deg2 (Kasliwal
et al. 2020), the area shrinks quickly for events with stronger sig-
nals. A synoptic tiling strategy covering the high-probability sky
area for the counterpart will usually best exploit our wide FoV,
and our tiles follow the basic tiling scheme of the general-purpose
SkyMapper Southern Survey (Onken et al. 2019, see Section 2.1).
In contrast, an alternative galaxy-targeted approach makes more
sense for telescopes with smaller FoV and for nearby events such
as GW170817, where it has proven to be effective. However, for
events at distance larger than 50 Mpc, which are expected to be by
far the most common, our FoV contains usually several possible
host galaxies and empty tiles will be rare. Crucially, we can detect
transient candidates in real time as we have reference images for
subtraction over the full hemisphere (at least in some passbands,
see Section 2.3.2), which are deep enough to detect GW170817-
like kilonovae at distances up to 200 Mpc as well as the rising part
of kilonova light curves in more nearby cases.

In the O3 run, 56 gravitational-wave events from com-
pact binary systems were detected, which is 5 times more
than reported during the first two observing runs. Only
two of them had significant (> 85%) initial probability of
being BNS events: S190425z (LIGO Scientific Collaboration &
VIRGO Collaboration, 2019) and S190901ap (LIGO Scientific
Collaboration & Virgo Collaboration, 2019). However, after
reanalysis with background statistics the latter is no longer consid-
ered a significant candidate (Abbott et al. 2020c). S190425z, a.k.a.
GW190425 and known in Australia as the ANZAC Day event,
was also confirmed as the second case of gravitational waves from
a binary neutron star inspiral (Abbott et al. 2020b). The system
is noteworthy for a total mass of 3.4M�, which exceeds that of
known Galactic BNS and may suggest that not all all binary neu-
tron stars are formed in the same way (Romero-Shaw et al. 2020,
Safarzadeh, Ramirez-Ruiz, & Berger 2020). No EM counterpart
was found by SkyMapper or any other facility, because (i) the sky
localisation of this event was poorly constrained with a 90% confi-
dence area of 8 284 deg2, (ii) it is expected to be much fainter than
GW170817 in the optical due to its distance, and (iii) it may be
intrinsically faint due to a low ejecta mass or unfavourable view-
ing angle. In preparation for the next LIGO/Virgo observing run
(O4), we describe here our facility and its performance with the
current processing pipeline.

For an autonomous selection of transient candidates, it is key
to maximise the recovery rate and minimise the false-positive rate;
in order to reduce the volume of human intervention required to
identify the likely source of interest, on which detailed follow-up
observations may be triggered. This process faces two challenges:
(1) Image artefacts appear in the subtraction process and pose as
transient candidates; this is often addressed with machine learn-
ing approaches that separate astrophysical sources from spurious
detections in a difference image (e.g. Bailey et al. 2007; Bloom et al.

2012; Brink et al. 2013; Wright et al. 2015; Goldstein et al. 2015;
Duev et al. 2019). (2) Astrophysical foreground and background
transients produce a fog of events that are not related to the
GW event, and these are usually too numerous for simultaneous
follow-up. In this work, we use an ensemble-based transient clas-
sifier to reject spurious sources and refer to catalogues of known
sources to label other types of variables.

In this paper, we present an overview of the SkyMapper follow-
up programme of GW triggers. In Section 2, we describe our
optical facility and the AlertSDP pipeline in detail, from observing
strategy to real-time data processing and transient identification.
In Section 3, we introduce an ensemble-based machine learning
approach for real-bogus classification. We also present metrics
for evaluating the performance of the classifier. In Section 4,
we present a real case and discuss the resulting transient statis-
tics. In Section 5, we close with an outlook to future work and
the LIGO/Virgo O4 run. Throughout the paper we use the AB
magnitude system.

2. EM counterpart searches with the SkyMapper facility

2.1. SkyMapper telescope

SkyMapper is a 1.35m modified Cassegrain telescope located at
Siding Spring Observatory (SSO) in New South Wales, Australia
(Wolf et al. 2018). The telescope has a wide field of view of 2.34×
2.37 deg2, a uvgriz filter set (Bessell et al. 2011) and a mosaic of 32
2k× 4k CCD detectors with a pixel scale of 0.5arcsecpixel−1. It is
owned and operated by the Australian National University (ANU)
and, most importantly for EM follow-up, it is a robotic facility.

The main purpose of the telescope is the SkyMapper Southern
Survey (SMSS), a hemispheric sky atlas which has been under-
way since 2014 (DR1: Wolf et al. 2018; DR2: Onken et al. 2019).
For point sources with SNR> 5, the expected photometric depth
of single-epoch 100-s images is u = 19.5, v = 19.5, g = 21, r =
20.5, i = 20, and z = 19 mag. Alongside, SkyMapper has been
used to search for extragalactic transients, including low-redshift
Type Ia supernovae (Scalzo et al. 2017; Möller et al. 2019) as
well as optical counterparts to GW events (GW170817: Abbott
et al. 2017b; Andreoni et al. 2017) and fast radio bursts (e.g.
Petroff et al. 2015; Farah et al. 2018; 2019; Price et al. 2019; Chang
et al. 2019a). Different needs made the SMSS and the transient
searches develop separate data reduction software: the Science
Data Pipeline (SDP: Luvaul et al. 2017; Wolf et al. 2018) for
the SMSS and the Subtraction Pipeline (SUBPIPE; Scalzo et al.
2017) for the Transient Survey. SUBPIPE was used for EM data
analysis before before LIGO/Virgo ER14 (Engineering Run 14),
but for the O3 run we updated it to an automated real-time
pipeline (AlertSDP: Alert Science Data Pipeline) that borrows
many features from the SDP (see Sections 2.2 and 2.3 for details).

2.2. Alert response

We continuously listen to the live stream of LIGO/Virgo public
alerts for compact binary merger candidates.a The stream is dis-
tributed through the Gamma-ray Coordinates Network (GCN)
using the pygcn Python module.b We developed a robotic alert
handler that extracts relevant information, ingests the GW event

ahttps://emfollow.docs.ligo.org/userguide/.
bhttps://github.com/lpsinger/pygcn.
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Figure 1. Top left: LIGO/Virgo probability skymap for S190814bv producedwith the ligo.skymapmodule (Singer et al. 2016). The inset shows themost probable area for the optical
counterpart. Darker colours correspond to higher probability sky regions, and contours enclosing regions with 50%, 90%, and 99% of the probability are indicated. Bottom left:
probability map convolved with the coverage of reference images in SkyMapper DR2. Bottom right: zoomed-in map of the 20 highest-probability fields selected for the search;
here, one field alone has∼ 39% probability of containing the GW source. Symbols are bright galaxies from the 2MASS redshift survey. Top right: Observability plot for the top 20
fields with telescope altitude, night-time range and Moon separation.

into our database, downloads the HEALPix 3D localisation map
(skymap), prioritises areas for follow-up, and generates a list of
observations for SkyMapper.

The first preliminary GCN notice is automatically issued for
a superevent within 1–10 min after the GW trigger. From this
notice, our robotic handler initiates rapid-response search obser-
vations by convolving the probability in the BAYESTAR skymap
(Singer & Price 2016) with the tile pattern of the SkyMapper
Southern Survey (Onken et al. 2019), ranking the fields by proba-
bility integrated per field and then selecting the top 20 fields with
existing i-band reference images (∼ 100 deg2 total area). Figure 1
shows the sky maps for a real alert and an observability map of the
selected target fields.

In this search stage, we obtain two 100 s exposures in i-band
for each field, separated by ∼ 8min. Requiring a twin detection
in the two images eliminates moving objects from the candidate
list. The typical rate of motion for main-belt asteroids, 0.625 arc-
secmin−1 near opposition (Jedicke 1996), provides a sufficient∼ 5
arcsec spacing between observations. With a depth of i≈ 20mag,
we can identify kilonovae that are ∼ 3mag(16×) fainter than the
kilonova of GW170817 was 10 h after the GW trigger. Hence, we
could detect kilonovae for GW170817-like events out to 4× the
distance of GW170817, or 160 Mpc. Figure 2 shows the lightcurve
of the GW170817 kilonova shifted to different distances up to 200
Mpc. The declining nature of the i-band light curve suggests that

kilonovae may be more luminous during the first 10 h. We thus
assume that we might be able to detect early kilonova emission,
just hours after a BNS merger, out to distances of 200 Mpc or
beyond.

We search in i-band for three reasons: (i) kilonovae are
expected to be red due to the large opacity of neutron-rich ejecta,
although at early times (within an hour of the merger) blue emis-
sion from hotter, polar ejecta may be expected (e.g. Troja et al.
2018), (ii) the i-band covers the largest sky area with deep ref-
erence images in the SMSS that can be used for real-time image
subtraction, and therefore provides the greatest search volume for
kilonovae, and (iii) the dominant source of transient events, flares
on M stars too faint to be seen in quiescence, is nearly irrele-
vant in i-band (Chang, Wolf, & Onken 2020). The aim of the
search phase is to find a counterpart as fast as possible, report it
to facilities around the world and get SkyMapper itself into mon-
itoring mode. We expect that the search phase provides a full
set of possible counterparts within 4 h (limited by image process-
ing) after the GW trigger, if the trigger occurs during darkness
and the sky is clear. Later, possibly within 4 h for BNS or NSBH
events, an updated LALInference skymap (Veitch et al. 2015) will
be distributed, including an updated sky localisation and source
classification. This sometimes leads to a significant change in
the sky localisation, and the SkyMapper observing plan may be
modified and re-executed as a result.
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Figure 2. The i-band light curve for the GW170817 kilonova, at different distances:
at the true distance of 40 Mpc (top), shifted to 100 Mpc (middle) and 200 Mpc (bot-
tom); solid lines are power law decay fits. The dashed line at iAB = 20 marks our
typical 5-σ magnitude limit in 100 s exposures (data were taken from various litera-
ture sources; AST3-2: Hu et al. 2017 ; B&C: Utsumi et al. 2017; DECam: Cowperthwaite
et al. 2017; Gemini: Kasliwal et al. 2017; LaSilla: Smartt et al. 2017; LCO: Arcavi et al.
2017; Magellan: Shappee et al. 2017; Pan-STARRS: Smartt et al. 2017; REM: Pian et al.
2017; SkyMapper: Andreoni et al. 2017; Swope: Drout et al. 2017;T80S: D az et al. 2017;
VLT: Tanvir et al. 2017; VST: Pian et al. 2017).

At any time, once a position of a likely kilonova transient is
identified, we can manually switch from the search phase to a con-
tinuous high-cadence monitoring of the new source. Observations
of an early kilonova with a cadence of 2 min would reveal struc-
ture in the lightcurve arising from shocks induced by the kilonova
ejecta (e.g. Metzger 2019). We will also get high-cadence, multi-
band light curves for several consecutive nights after any kilonova
discovery. The monitoring strategy will change depending on the
colour, luminosity, and fading timescale of the kilonova candi-
dates. If the optical counterpart gets identified by other groups
before SkyMapper can observe, we will do only light-curve moni-
toring, as was the case for GW170817 (Andreoni et al. 2017).

2.3. AlertSDP: Alert science data pipeline

The AlertSDP is a new pipeline created from two existing software
packages, which are the SkyMapper Science Data Pipeline, SDP,
and SUBPIPE, which was used for discovering low-redshift super-
novae (see Section 2.1). The SDP has provided the general process
control framework as well as improved calibration and masking
treatment, while the subtraction and transient classification have
evolved from SUBPIPE components. First, each raw image is pre-
processed and calibrated. After that, i-band reference images for
image subtraction are selected, and transient candidates detected
on difference images are uploaded into a database. The database
also includes external catalogues to assist transient classification.

2.3.1. Ingest and calibration of new images

Raw SkyMapper images from Siding SpringObservatory are trans-
ferred in real time via Ethernet to a 64-core server at Mount
Stromlo Observatory. Data transfer takes 5–7 s per frame and can
be done while the next exposure is already being taken. To acti-
vate the AlertSDP, the Linux inotifymechanism detects the arrival

Figure 3. SkyMapper i band coverage in DR2 (top) and DR3 (bottom). Darker colours
resemble deeper reference images used for subtraction.

of an image from the telescope immediately and initiates the data
processing.

The raw data are processed into scientific data products using
typical SDP procedures, including bias correction, flat-fielding,
defringing, bad-pixel masking, and generation of an astrometric
solution (see Wolf et al. 2018 and Onken et al. 2019 for details).
A significant structural change from the SDP to the AlertSDP is
a different parallelisation paradigm designed to minimise the time
between image acquisition and production of transient candidates:
while the SDP processes images in parallel with all the component
CCDs treated serially, the AlertSDP processes the 32 CCDs of each
image in parallel and up to 4 images concurrently.

2.3.2. Selection of reference images

Reference images are required for image subtraction and real-time
transient searching. We take advantage of the nearly all-Southern-
sky coverage (>98%) of the deeper Main Survey exposures from
the SMSS in i-band (λcentre/�λ = 779/140nm). Figure 3 shows the
area of sky covered by SkyMapper DR2 (Onken et al. 2019) and by
DR3, which was released to the Australian community in February
2020 in the late stages of the O3 run. DR3 expands the deep cov-
erage by including survey observations from 2014 March to 2019
October.c

From any new image, we subtract each available reference
image. The best possible reference image combines a small PSF
and a large overlap with the new image. The reference images
come with a range of point-spread functions (PSF), and because
the SMSS obtains repeat images with dithering to cover the sky
homogeneously, the best-available reference PSF changes discon-
tinuously with sky location. Small overlaps lead to badly deter-
mined convolution kernels and thus bad subtractions. Hence, we
require at least 15% overlap area for mosaic frames and at least 5%
overlap for each individual CCD. Following a common strategy of
other transient surveys, we require that the reference image should
be taken at least two weeks prior to a given new epoch.

2.3.3. Subtraction of images

We perform image subtraction on each field of overlapping
new/reference image pairs. First, we resample each of the refer-
ence mosaic frames onto the new image with SWARP (Bertin et al.

chttp://skymapper.anu.edu.au/data-release/dr3/.
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2002). Next, we convolve those pairs of images to a common PSF
using HOTPANTS (Becker 2015), which implemented the popu-
lar image subtraction algorithm byAlard & Lupton (1998). Solving
for the convolution kernel is a crucial step to equalising the PSFs of
the reference and new images. The position-dependent PSF varia-
tion in both images is modelled as a linear combination of basis
functions, and by default we choose a 2D polynomial of order
two. Next, the flux level of the subtracted image is normalised
to that of the reference image. Since the photometric calibration
is directly tied to the SMSS photometry, this approach has the
advantage of allowing explicit calculation of zero-point corrected
magnitudes. The preliminary calibrated magnitude and error used
for lightcurve construction is

msub = −2.5 log fsub + ZPref,

δmsub =
√
(1.0857× δfsub/fsub)2 + δZPref

2,

where fsub is the difference flux on the subtracted image and ZPref
is the zeropoint of the reference image. Here, we use the 15 arcsec
(30-pixel-diameter) aperture as a total-magnitude reference. The
zeropoint error δZPref contributes little, since only images with
robust zeropoints are included in SMSS data releases.

Finally, we run SExtractor (Bertin & Arnouts 1996) on the
subtracted images to produce a list of transient candidates and
their associated metadata, using a low detection threshold of 1.5σ
above the background. Gaussian filters in SExtractor are applied
to an image prior to the detection of sources. Only sources with
a signal-to-noise ratio below 2 are referred to as sub-threshold
detections.

2.4. Transient classification

Until the end of O3, we classified transient candidates with a ran-
dom forest (RF) classifier trained on earlier supernova survey data
(Scalzo et al. 2017). We computed a set of features derived from
difference images of individual candidates, similar to those pro-
posed in Bloom et al. (2012). The main difference was that three
additional checks were made on each candidate: (i) we removed
any detections where the measurement of shape parameters (e.g.
FWHM, elongation) was significantly larger than the median
quantities for sources found in the new science images, and (ii)
we matched each of them to the nearest object (< 30arcsec) seen
on the reference frame, which will be associated with host galax-
ies or bright stars that might be poorly subtracted. Then, the RF
model assigned a real-bogus score (RBscore) from 0 (artefacts =
bogus) to 100 (transients = real) to all the detected candidates.

In this work, we added a new classifier (XGBoost) and new
training sets to exploit our improved image processing. A combi-
nation of classifiers is often more accurate than a single classifier,
and thus we introduce a new metric (Tscore) that combines
RBscore and XGBoost score to compensate for the weakness of
each classifier (see Section 3 for the full description and perfor-
mance).

For each transient candidate, we identify whether it may be a
known variable or Milky Way source by cross-matching it against
catalogues of stars, variable objects and quasars, using a 3 arcsec
search radius. We also reject known solar system objects with the
SkyBoT cone-search service (Berthier et al. 2006). Our preselected
categories are as follows:

• We define a ‘Star’ sample using parallaxes and proper motions
(PPM) from Gaia eDR3 (Gaia Collaboration et al. 2016, 2020),
requiring that the significance of a PPM signald is SPPM > 3.

• For Gaia eDR3 objects with lower PPM SN or no PPM infor-
mation, we use a ‘GaiaSource’ label.

• We use the label ‘Var’ for all sources cross-matched to the
AAVSO International Variable Star Index (Watson, Henden, &
Price 2006; version 2020 October 19). It contains mainly known
variable stars and a few QSOs.

• We assign a label of ‘Quasar’ to sources matched to the
Milliquas catalogue (Flesch 2015, version 7.0a).

• For detections that are too close to very bright stars and carry
a risk of being an optical reflection (defined by the algorithm
in item 3 of Section 2.6.1 from Onken et al. 2019), we use a
‘BrightStar’ label.

In addition, image mask data allows us to reject sources as being
likely spurious, when they could be affected by bad pixels, neigh-
bouring saturated pixels, or cosmic ray hits. Only candidates with
Tscore greater than 30 (see Section 3) are considered plausible
candidates and presented for visual inspection. If the number of
plausible sources in a single CCD image exceeds 50, we reject all
detections in that CCD because the quality of subtracted image is
likely to be poor.

2.5. Further follow-upmechanisms

We manage data sets of transient candidates, building on a web
user interface developed by Scalzo et al. (2017) based on the
Django framework. Following the initial automated typing of the
candidates, the next step requires a human to visually inspect and
classify the remaining candidates in a web interface. All plausible
candidates are assigned a unique name. Since we visit any field
at least twice during the search, we prioritise candidates in the
visual examination that are detected at least twice. We keep a list
of ‘active’ candidates, which human vetting has identified as rele-
vant for spectroscopic or photometric follow-up. If another facility
reports a kilonova discovery, we can add such an object manually.

The web interface displays light curves, thumbnails of new,
reference and subtracted images, and information from external
services. Because of the rapid nature of the kilonova evolution and
the robotic nature of SkyMapper operation, we added features to
the web interface that trigger interaction with the telescope sched-
uler for follow-up modes that we anticipate to use during the next
GW observing run (O4):

• Candidate Dweller: this feature can be used to monitor one or
several objects in one of three possible modes: (1) The ‘one-
off’ mode triggers just three exposures in the filter sequence
i-u-i using an exposure sequence of 100-300-100 s (default but
changeable). This mode is designed to probe the colour of a
source quickly after an initial detection is made to help assess
its likelihood of being a kilonova from a BNS merger. Two fur-
ther modes with different sampling patterns can be used for
continuous monitoring. (2) The ‘sampling’ mode probes the
lightcurve and its colour evolution with alternating 100 s i band
and 300 s u band exposures. And (3) the ‘intense sampling’

dS2PPM = ((pmra/pmra_error)2 + (pmdec/pmdec_error)2+(max (0, parallax)/parallax_
error)2)/3.
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mode takes a series of ten consecutive 100 s i-band images fol-
lowed by one 300 s u-band image, which provides the highest
possible cadence, while recording colour evolution at lower
cadence. Both sampling modes will continue observing the
chosen target(s) until it sets or the dome closes.

• Alert Schedule Cleaner: this feature simply removes all obser-
vations in the queue, aborting any previously committed
sequence and allowing a fresh start.

• AlertSDP Status: this web page reports the execution status of
individual pipeline tasks (Section 2.3) and includes execution
times for all jobs in the workflow.

We also trigger prompt Target-of-Opportunity spectroscopy at
the ANU 2.3m Telescope to verify the physical nature of relevant
candidates and inform further SkyMapper activities.

3. Ensemble-based transient classifier

In this section, we describe a new ensemble-based approach for
transient classification. The previous RF classifier had a complete-
ness of ∼ 83% at 95% purity, declining to ∼ 70% at 99% purity
(see Scalzo et al. 2017). The classifier was in need of retraining,
because (i) the seeing range of images changed from the pre-
vious SkyMapper Transient Survey that mostly used bad seeing
time and (ii) the characteristics of the image noise changed after
implementing the SDP-style image calibration in the AlertSDP
pipeline. However, the image sample used to train the RF classifier
was not reprocessed with the AlertSDP and hence not available
for retraining. Instead a new image set and transient sample was
required. We used the opportunity given by the need to start from
scratch to switch to a gradient boosted tree model (Section 3.1),
as implemented in XGBoost (Chen & Guestrin 2016), and develop
a new training set from SMSS imagery (Section 3.2). While com-
paring results with the performance of the previous RF classifier,
we found that the two classifiers have complementary strengths
and weaknesses. By combining the outputs of both classifiers, we
were able to improve both purity (Section 3.3) and completeness
(Section 3.4).

3.1. New XGBoost classifier

We adopt XGBooste using an ensemble of decision trees. It uses a
gradient boosting algorithm (Friedman 2000) to minimise a loss
function when adding new decision trees. Unlike random forest
methods, which train each tree independently, gradient boosted
trees are built sequentially such that each subsequent tree aims to
reduce the errors from its predecessors. The accuracy of classifica-
tion is improved as more trees are added to the model, although
a large complexity of the trees can lead to overfitting. However,
XGBoost provides additional regularisation hyperparameters that
can help reduce model complexity and guard against overfitting.
Therefore, we use a column subsampling option to ensure that it
uses a random subsample of the training data prior to growing
trees.

The robustness of the classifier model is mainly limited by the
available training data of candidates with known class label (e.g.
Brink et al. 2013; Scalzo et al. 2017). The labelled data from the ear-
lier supernova survey was unfortunately not useful in this regard,
because it was predominantly obtained in bad seeing conditions. A
new training set was generated by randomly selecting 1 000 SMSS

ehttps://github.com/dmlc/xgboost.

Table 1. Explored and chosen (bold) XGBoost Hyperparameters.
Note that the results did not vary strongly with parameter
changes

Hyperparameters Values

learning_rate 0.1, 0.3, 0.5, 0.7, 0.9

max_depth 3, 6, 12, 18

n_estimators 10, 50, 150, 300

colsample_bytree 0.1, 0.3, 0.5, 0.7, 0.9

lambda 1, 1.5, 3

alpha 5, 10, 15, 30

DR3 images in i-band, excluding low galactic latitudes of | b |<
15◦. These data represent a large range of observational conditions
and image quality from the survey. In this data set, we searched for
transient candidates and used the original RF classifier to filter the
list of millions of candidates. We then eyeballed candidates with
RBscore > 40, and labelled them as real or bogus, where the latter
category includes bad subtractions, cosmic ray hits and warm pix-
els. We also added to the real set known asteroids, variable stars,
quasars and a small number of candidates projected onto galax-
ies from the 6dFGS and 2MASS XSC catalogues, as these may
appear like typical host galaxies of kilonovae. Finally, we added to
the bogus set a random subset of candidates with RBscore < 30,
provided they were not associated with known objects of those
types mentioned above that may be genuinely variable; this sam-
ple mostly includes subtraction artefacts such as residual features
around bright stars, bad pixels and cosmic rays. The real-labelled
class has much fewer instances than the bogus-labelled class, with
a number ratio close to 1:10.

For training the XGBoost classifier with the similar input fea-
tures used in Scalzo et al. (2017), we split the sample into training
and testing sets of 43 593 and 71 307 candidates, respectively. One
issue is that our binary classification does not have a balanced
number of instances in the training set. This requires the use of
a stratified sampling strategy to learn the features of each class
equally. Next, the classifier has a list of hyperparameters that
require fine-tuning in order to derive the best-possible model.
We select test values of hyperparameters from a set of points in
a coarse grid (see Table 1). We focused on hyperparameters that
tend to have a high impact on the classification, such as control
overfitting, learning rate, and complexity of the trees. Briefly the
parameters are:

• learning_rate: step size shrinkage used in update to prevent
over-fitting,

• max_depth: maximum depth of a tree,
• n_estimators: the number of trees in our ensemble,
• colsample_bytree: the subsample ratio of columns when

constructing each tree,
• lambda: L2 regularisation term on weights,
• alpha: L1 regularisation term on weights.

The final parameters were chosen as the model with the low-
est classification error, i.e. with both high completeness and high
purity (see bold figures in Table 1).

3.2. Validation sample

To enable an accurate and unbiased assessment of classifier purity
(Section 3.3), we need to define a ‘validation sample’—a random
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Table 2. Sample selection criteria for purity test

Sample Selection criteria N

Raw No filtering 4 500

Known detector damages 4 490

Cleaned Residual CR hits+ flagged pixels 3 519

sample 1 Subtraction artefacts 2 255

BrightStar-labelled sources 2 176

Var-labelled sources 2 102

Cleaned Quasar-labelled sources 2 100

sample 2 Star-labelled sources 1 745

Asteroid-labelled sources 332

sample of objects with the weight factors based on the observed
magnitude and RB scores. In the general case of an unweighted
random sample, high RB scores are less common than low ones.
Also, it is required to keep reasonable statistics for the rare, bright
objects. We note that the distribution of classes in the validation
set is unbalanced and neither reflects those in the training set per-
fectly nor those expected during the real transient search. The
role of the validation set is to lead the parameters of the classi-
fier towards best performance on real data. Hence, the distribution
of classes in the validation set should ideally reflect that of the
classes in the test set, so that the performance metrics will be sim-
ilar on both sets. In other words, the validation set should reflect
the expected data imbalance. The imbalance in our validation set
thus leads to suboptimal performance. In Section 4 we test its
performance in a real transient search during the O3 run.

From a set of 149 DR3 i-band images, we obtained 11 790
sources with RBscore larger than 30 without any further filtering,
and we selected 4 500 candidates for further visual inspection in
a manner that sampled the range of source parameters. We label
the sources irrespective of whether they have an automatic label or
not. Table 2 summarises the steps we used to select pure transient
candidates by removing known image artefacts (cleaned sample 1)
and preselected categories (cleaned sample 2). Sample 1 can evalu-
ate basic system performance, while sample 2 represents transient
candidates that remain unexplained after automatic association
with a known variable source and need to be presented for human
vetting when hunting for real kilonovae.

Our main interest is in classifying either isolated (with no
apparent host galaxy) or supernova-like transients with high com-
pleteness. To measure the classifier completeness (see Section 3.4),
we initially used a total of 5 194 asteroid detections that were iden-
tified by SkyBot and 443 detections for 26 supernovae (16 SN Ia,
7 SN II, 1 SN IIn, 1 SN Ibc, and 1 SN Ic) that had been followed-
up or discovered by the SkyMapper Transient Survey (Scalzo et al.
2017; Möller et al. 2019).

We additionally use the Open Supernova Catalogue
(Guillochon et al. 2017) to collect spectroscopically confirmed
SNe with distances less than 250 Mpc. In order to match known
SNe against DR3, we take a broad date range of ±30d from the
SN discovery date as our reference epoch. With this selection cut,
there are 429 i-band images of 318 SNe, where the position and
epoch were matched with sources in the SMSS DR3 catalogue
within 5 arcsec. Some of those DR3 sources are the host galaxies
of SNe, or otherwise chance superpositions of unrelated sources.
After running the image set through the AlertSDP pipeline, we
recover 153 detections for 117 SNe which lie in the magnitude

Figure 4. Thumbnail images of two supernovae in the SMSS DR3 i-band data set,
showing the new, reference, and subtraction image from left to right (size: 1 arcmin×
1 arcmin). Top: Type II SN 2019ejj at d= 13Mpc, i= 17.1. Bottom: Type Ia-91T SN
2019ur at d= 250Mpc, i= 18.8.

range between 15.5 and 20.5 in i band. Since the SMSS is focused
on covering the entirety of the Southern Sky rather than fre-
quently repeating a given area, most of the SNe only appear in
a single exposure. By type, this sample contains 69 Type I SN
(64 Ia, 2 Ib, 2 Ic, 1 Ib/Ic), 45 Type II SN (36 II, 4 IIP, 2 IIb, 3
IIn), and 3 unclassified ones, in a variety of host galaxies. Thus,
our completeness test with the Open Supernova Catalog sample
will be less affected by host galaxy selection effects than that
of the SMT SNe sample. Figure 4 shows thumbnail images of
representative SN examples in different redshift ranges. We
assume that this validation sample contains a more representative
sample of contaminants, but also represents the outcome of the
pipeline more accurately than the training data used in the model
development stage.

3.3. Purity test

As our two classifiers have different strengths, a combination of
them can lead to better performance. XGBoost is much better at
recognising bad subtractions with negative pixel values, whereas
RF works better at recognising that CR hits and warm pixels are
not real objects. While this may be the result of different train-
ing, we define a new metric here, Tscore, that combines the two
machine learning models (known as an ensemble of classifiers; see
Chapter 34 in Dietterich 2000 for instance), using the simple rule:

Tscore= RBscore+XGBscore
2

,

which gives both classifiers a similar weight.
For any threshold t, we define classifier purity:

Purity= TP
TP+ FP

,

where TP is the number of true transients with any scores greater
than t, and FP is the number of false positives that were incorrectly
considered as real. Varying the threshold of a binary classifier
usually trades off better completeness against better purity. In
Figure 5, we show curves of completeness vs purity in our cleaned
samples as a function of threshold and compare our two classifiers
as well as the combined Tscore. In cleaned sample 1, XGBscore
is an improvement over RBscore at every completeness > 90%;
for further applications, we choose a threshold of t = 30, which
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Figure 5. Purity vs completeness curves for the two cleaned samples described in Section 3.2. We compare the performance of three ensemble scores: RBscore (grey filled circle),
XGBscore (grey open circle), and our newmetric, Tscore (black filled triangle). The text in the panels refers to purity (P) and completeness (C) scores at a threshold of t= 30, which
we adopt for our transient search.

Figure 6. Completeness test with asteroid (left), SMT SN (middle), and DR3 SN (right) samples as a function of magnitude. We compare the three different ensemble scores:
RBscore (grey filled circle), XGBscore (grey open circle), and Tscore (black filled triangle). The same axis ranges are used in each panel.

delivers 92% purity and 97% completeness. However, at higher
purity the originally used RBscore appears more complete. Our
newmetric then combines the advantages of both and is in all parts
of the curve at least as good as either the RB or XGB classifier. In
cleaned sample 2 (right panel of Figure 5) all transient candidates
explained by known objects have been removed and only those in
need of human inspection are left over; here, a threshold of t = 30
is still a good choice and provides a purity above 80% with 99%
completeness. Based on this, we choose the ensemble-based Tscore
classifier with a threshold of t = 30 as our final classifier. Other
wide-field surveys have obtained similar results on real-bogus clas-
sification by using convolutional neural networks (e.g. Duev et al.
2019; Killestein et al. 2021).

3.4. Completeness test

Next, we check the completeness of Tscore classifier for real-bogus
classification. For any threshold t on the score, we obtain the
completeness or recovery rate as a function of magnitude, using

Completeness= TP
TP+ FN

,

where TP is the number of true positives in the test set that were
correctly classified as real and FN is the number of false negatives
(= positives misclassified as bogus). Figure 6 shows how the clas-
sifier performs as a function of magnitude for the two cases of
asteroids and supernovae. In both cases, there is a clear trend for
brighter transients to have a higher recovery rate at a given thresh-
old. The high recovery rate of asteroids can be explained by the
fact that they are over-represented in our training set compared
to SN-like transients. Asteroids also appear mostly as isolated
sources and are only rarely blended with galaxies, while super-
novae and kilonovae are mostly blended with their host galaxy.
With a threshold of t = 30, we attain 99.5% completeness for both
asteroid (TP=5 170, FN=24) and supernova (TP=441, FN=2)
classifications. While the SN sample has 443 detection images,
these are from only 26 host galaxies and hence its statistical sig-
nificance is smaller than it may seem. Moreover, there is reason to
expect variations in completeness as a function of SN magnitude
(at the time of detection), SN offset from the host galaxy nucleus,
morphological type of the host galaxy, and redshift.

To overcome this weakness, we test the completeness also for
the DR3 SNe sample, which has fewer images but more (117 vs
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Table 3. Summary of preliminary BNS detection alerts in O3. For GW190425, we list updated information from Abbott et al. (2020b)

Preliminary area Pclass preliminary (updated)

Superevent 50% 90% DL FAR BNS NSBH Terrestrial This

(ID) (deg2) (deg2) (Mpc) (yr−1) (%) (%) (%) work Notes

GW190425 8 284 159+69
−71 1 per 69 000 100 – –

√
Abbott et al. (2020b)

S190426c 472 1 932 377± 100 1 per 1.63 49 (24) 13 (6) 14 (58) Too distant to detect

S190510g 575 3 462 277± 92 1 per 3.59 98 (42) 0 (0) 2 (58)
√

Cloudy weather

S190901ap 4 176 13 613 241± 79 1 per 4.51 86 14 0 Poor localisation

S190910h 8 066 24 226 230± 88 1 per 0.88 61 0 39 Poor localisation

S191213g 259 1 393 201± 81 1 per 0.89 77 0 23 Near the Sun

S191220af 580 5 238 125± 28 1 per 79.96 >99 0 <1
√

Retracted

S200213t 150 2 587 210± 80 1 per 1.79 63 0 37 Marginal FAR

GW170817 28 40+8
−14 1 per 80 000 100 – – Abbott et al. (2017a)

26) host galaxies. Using t = 30 again, we find high completeness
(∼ 97%; TP=148, FN=5) to the lowest magnitudes, comparable to
other recently reported results (Killestein et al. 2021, with ∼97%).
We checked the fives failures of the classifier and noticed that in
three cases the FNs are superimposed on the host nucleus within
< 1 arcsec offset, so that the classificationmay be affected by resid-
ual features from poor subtraction. The two SNe outside the nuclei
of their hosts are OGLE 16etd, a classical SN II found close to max-
imum light in a crowded region, and SN 2018aau, an apparently
hostless SN Ia detected ∼ 2 weeks after maximum. The latter has
two observations, one classified as TP and another one as FN. The
classification scores of a given transient candidate can indeed vary
with seeing conditions and star density in the field, which affect
image subtraction.

4. Application in the LIGO/Virgo O3 run

Our follow-up programme was dedicated to the rapid search for
kilonova counterparts to BNS mergers beyond GW170817 that
would be observed by LIGO/Virgo observatories in O3. To trigger
the SkyMapper observations, the estimated mass of one compo-
nent of the compact binary system is required to be consistent
with a neutron star (via the HasNS probability in the GCN notice).
Table 3 summarises BNS candidates that have been reported in the
LIGO/Virgo O3 public alerts, including events retracted later. For
comparison, we list the properties of GW170817 detected in the
O2 campaign in the last row of Table 3.

SkyMapper responded to three of these triggers, S190425z,
S190510g and S191220af. The other triggers were ignored because
of poor localisation or proximity to the Sun. The most promis-
ing event in all of O3 was S190425z, also called GW190425,
where SkyMapper managed to obtain a data set of typical sky
coverage. While we responded to the event in real time (see
Section 4.1), we also reprocessed the data with the latest version
of the AlertSDP to evaluate the real-world performance of the
pipeline (see Section 4.2).

4.1. The search for an EM counterpart to S190425z/GW190425

On 2019 April 25 08:18:05.017 (UT), the LIGO Livingston obser-
vatory alone identified a GW chirp signal with a false alarm rate

of one per 69 000 yr and a signal-to-noise ratio (SNR) of 12.9
(Abbott et al. 2020b). The LIGO Hanford facility was offline
when the event was detected and the Virgo facility did not con-
tribute to its detection due to a low SNR=2.5. This signal has
strong evidence for the mass of one or both components to be
consistent with a neutron star (HasNS= 100%; BNS= 100%). It
also shows a clear time–frequency map with the characteristic
upwardly sweeping chirp pattern expected for an inspiralling BNS
system, which is what had been seen in GW170817 (see Figure 1
of Abbott et al. 2017a). The latest inferred position of this event
was poorly localised in the sky, with a 90% credible sky area cov-
ering 8 284 deg2, but the distance inferred from the GW signal
was 159+69

−71Mpc (see Abbott et al. 2020b for details). Unlike the
case of GW170817, where the position constraints were ∼ 250×
tighter, this situation makes it difficult to find faint EM counter-
parts quickly. While the extremely wide-field Zwicky Transient
Facility (ZTF) did search ∼ 8 000 deg2 and reported two poten-
tial candidates, they needed two nights of observing to cover the
area (Coughlin et al. 2019). Some searches even reached sufficient
depth to detect GW170817-like kilonovae, although their areal
coverage was incomplete (Hosseinzadeh et al. 2019).

The first optical detection by SkyMapper was made from the
prioritised list of target fields that were observed about 6 h after
the merger. We let the search mode (Section 2.2) run on a rel-
atively small fraction of the southern localisation region (∼ 125
square degrees), acknowledging a small probability of finding the
associated EM counterpart, as the area covered only ∼ 1% of the
initial BAYESTARmap and ∼ 3% of its integrated probability. We
found two transient candidates that had two detections separated
by about 10 min, but neither of them had visible host galaxies.
After the discovery of two candidates by the Zwicky Transient
Facility (ZTF) survey, we moved onto a new phase to help deter-
mine whether either transient might be related to the GW signal.
In Section 4.2, we perform a simple experiment to test our new
software implementation with the SkyMapper observations of the
BNS merger GW190425.

As part of our Target-of-Opportunity programme at the ANU
2.3m Telescope, we obtained a series of early spectra of the poten-
tial counterpart ZTF19aarykkb (Coughlin et al. 2019). We used
the WiFeS instrument (Dopita et al. 2007), whose integral-field
nature allows us to obtain spectra of both the transient and the
host galaxy simultaneously. These could identify a kilonova from
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Table 4. Transient Selection for GW190425

Selection criteria N

No filtering 41 497

Tscore> 30 6 619

All flagged pixels 4 345

Subtraction artefacts 4 131

BrightStar-labelled sources 3 067

Var-labelled sources 2 694

Quasar-labelled sources 2 689

Star-labelled sources 825

Asteroid-labelled sources 359

Candidates detected twice 9

its spectral features being atypical for better known transient types
(e.g. cataclysmic variable stars or supernovae) and would also pro-
vide constraints on the environment of the transient as a birth or
merger place for the progenitor binary (e.g. Levan et al. 2017). We
obtained our first 850 s exposure starting at 2019 April 25 17:40:40
UT, followed by 5× 1 200 s spectra, using the R∼ 3 000 gratings,
B3000+R3000, covering the wavelength range of 320–990 nm.
The WiFeS spectra showed the bright ZTF candidate (r= 18.63
mag) having spectral features similar to those of a young Type II
supernova (Chang et al. 2019b).

A number of additional EM candidates were discovered by
other facilities (e.g. Hosseinzadeh et al. 2019). At the location
(RA=17:02:19.2, Dec=-12:29:08.2) of the Swift UVOT candidate
by Breeveld et al. (2019) we did not see any transient down to
an i= 20 at the two epochs: 2019 April 25 14:17:00 and 2019
April 25 14:25:53 UT (Chang et al. 2019c). Later work suggested
the Swift detection was likley to be an ultraviolet flare on an M
dwarf star (Lipunov et al. 2019; Bloom et al. 2019). As discussed
by previous studies, M dwarf flares are the most common tran-
sient phenomenon that may confuse searches for kilonova candi-
dates from GW events (e.g. van Roestel et al. 2019; Chang et al.
2020).

4.2. SkyMapper search results for GW190425

To get a realistic view of the current performance of the
SkyMapper transient facility, we reran the initial search mode data
from the first night of the GW190425 event in O3 through the
AlertSDP as described above. Each target field in the ∼ 125 square
degrees of the localisation region was visited twice, separated by
about 10 min. We applied the same filtering scheme for the selec-
tion of transient candidates as introduced in Section 3. Table 4
shows how each filtering step reduced the number of candidates
from 41 497 to 359, which is a >100-fold reduction in the number
of candidates requiring human inspection. Before the vetting pro-
cess, this number was reduced even further to 9 candidates (1 in
∼ 5 000) by considering only those with two detections. Each of
the remaining candidates could be one of the following categories:
(i) an isolated transient in a position which was not reported
before, (ii) a galaxy with a SN at the time of observation, (iii) an
as-yet unidentified variable object that has historical detections,
or (iv) a bogus detection. We note that there was one known SN

that was not detected in our search, because it was fainter than
our detection limit (i= 20.4). Five of the sources were clear bogus
detections caused by poor image subtraction. The remaining four
candidates are persistent point sources in SMSS DR3 and seen to
vary by 0.2–0.7 mag over the 5-year span of data in DR3. Thus, we
conclude that none of them were related to GW190425.

5. Summary and outlook to O4

In this paper, we describe the capability of the SkyMapper facility
for rapid-response EM observations of GW events. Developed as
a new branch of the SkyMapper pipeline, the AlertSDP provides
a prompt response to GW alerts with low-latency data process-
ing and a web interface for follow-up. With a hybrid combination
of ensemble-based classifiers, we achieve a high completeness
(∼ 98%) and purity (∼ 91%) in real-bogus classification; this is
measured with a sample of 4 500 random transient candidates in
the purity test, and over 5 000 asteroids as well as 143 supernovae
in the completeness test. We performed the same analysis on the
real SkyMapper data for LIGO/Virgo event S190425z/GW190425,
confirming its efficiency to reduce contaminants.

When the observing run O4 starts with the GW detector net-
work of the LIGO/Virgo/Kagra (LVK) collaboration, the predicted
rate of BNS merger detections is 10+52

−10 per year, their predicted
median luminosity distance is 170+6.3

−4.8Mpc, and their predicted
median 90% sky localisation area is 33+4.9

−5.3 deg
2 (all values given

as 5%–95% confidence intervals; Abbott et al. 2020a). A 100-s i-
band exposure with SkyMapper can discover an GW170817-like
kilonova at four times the distance of GW170817. Future SMSS
data releases will have deeper co-added reference images with up
to 600 s exposures per sky pixel in each band, which may allow
complete detection of transient candidates to i≈ 21 mag and pro-
vide good coverage beyond the LVK median horizon of 170 Mpc.
The AlertSDP should identify all transients in a ∼ 100deg2 search
area within 4 h from the start of observations. In the future, we
expect to reduce this latency by speeding up the data processing.
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