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INCIDENCE SYSTEMS ASSOCIATED WITH 
NON-PLANAR NEARFIELDS 

ELWYN H. DAVIS 

1. Introduction. In [2] Sandler studied generalizations of projective 
planes called pseudo planes. These structures gave rise to ternary operations 
for which addition and multiplication are loop operations. Our aim in this 
paper is to investigate the pseudo planes for which the operations of addition 
and multiplication give rise to nearfields. The pseudo planes for which this is 
true will be called 7r-systems in this paper, and a list of postulates for such 
systems is given in § 2. In that section some results on collineations of 7r-systems 
are given which are stronger than analogous results for general pseudo planes. 

The key result is contained in Theorem 3.2, which gives a certain uniformity 
to lines of non-zero slope. This leads to the result that any collineation of a 
7r-system coordinatized by a non-planar nearfield either interchanges X and F 
or fixes them. This is a very desirable result in the study of collineations of 
projective planes, and it is helpful in this case also. 

Section 4 contains a formulation of the collineations of a 7r-system 
coordinatized by a non-planar nearfield. These are identical with the 
collineations of projective planes coordinatized by planar nearfields given by 
André in [1]. 

In [3], Zemmer gave a construction of a class of non-planar nearfields. 
Two classes of non-planar nearfields are given in § 4, one of which properly 
contains the nearfields of Zemmer. It is hoped that these nearfields will be 
helpful in the study of sharply doubly and sharply triply transitive groups. 

2. 7r-systems. 

Definition 2.1. A ir-sy stent consists of a set, 7r, whose elements are called 
points, and certain subsets of 7r, called lines, subject to the following: 

(i) If P , Q G 7T, P 7e Q, there is a unique line containing both P and Qy 

denoted PQ) 
(ii) If m and n are distinct lines, then there is at most one point in m C\ n\ 

(iii) There are four points, no three of which are in the same line; 
(iv) Lines form four disjoint non-empty classes; 

(a) 1-lines all intersect in a common point, F, they are intersected by 
all lines, and all but one line on F is a 1-line. 
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(b) 2-lines all intersect in a common point, X ^ F, they are intersected 
by all lines, and all but one line on X is a 2-line; 
(c) lœ is the line containing X and F, and it is intersected by all lines, 
(d) 3-lines. 

Definition 2.2 (Sandler). A set, 7r, of points and lines, together with an 
incidence relation, I, will be called a pseudo plane if there are two distinct 
points Piy P 2 G T, and two distinct lines Li, L2 G w such that Pi I L2, P i I Li, 
P 2 I Li, and such that 

(1) For any point P such that P I Lx or P I L2 and any point Q G 7r, there 
is a unique line L G -K with P I L and ( M L . 
(2) For any line L such that P\ I L or P 2 I L and any line M G ?r, there is 
a unique point P G IT with P I L and P 1 M. 
(3) There are four points in 7r, no three of which are incident with the same 
line. 

Let 7T be a 7r-system. For P a point and L a line, define P I L if and only 
if P 6 L. Let P i = Y, P2 = X, Lx = lm, and L2 be any 1-line. With this 
identification, we can see that every 7r-system is a pseudo plane. Postulate 
(1) for pseudo planes is satisfied by virtue of postulate (i) for 7r-systems. 
Postulate (3) for pseudo planes is identical with postulate (iii) for 7r-systems. 
If L is a line such that P i I L or P 2 I L, then L is either a 1-line, a 2-line, or 
/œ. In any case, L intersects all lines, and so postulate (2) for pseudo planes 
is satisfied. 

Before examining 7r-systems in the light of nearfields, we will give some 
properties of general 7r-systems. 

Definition 2.3. A collineation of a 7r-system is a one-to-one mapping, say 
a, of points onto points, and lines onto lines such that P G m if and only if 
Pa G nia. a is called central with centre Q and axis n if a fixes every line on 
Q and every point on n. Such a collineation is also called a perspectivity. 

LEMMA 2.1. A collineation which fixes every point on each of two distinct lines 
is the identity. 

Proof. Let a be a collineation which fixes every point on the two distinct 
lines m and n. Let P be a point not on m or n. 

Case 1. m is not a 3-line. Let U and V be distinct points of n, which are 
also distinct from m C\n. Let UP and VP intersect m in R and S, respectively. 
U, V, R, and 5 are fixed by a, and so UR and VS are fixed lines. Thus P 
is fixed by a, as P = (UR) Pi (FS). Hence a is the identity. 

Case 2. n is not a 3-line. Interchange the roles of m and n in Case 1. 
Case 3. w and w are 3-lines. First, we will show that X and F are fixed by a. 

Let P be either X or F, and let P and S be points on n, R 9e P ^ S. Let 
U = mC\ (PR) and F = m H (PS). The points P , 5, £7, and V are fixed 
by a, and so P = (UR) (^ (VS) is fixed. 
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Now let P be a point not on m, n, or /œ. Then R = m C\ (XP) and 
5 = mC\ (YP) are fixed by a, and so P = (RX) H (SY) is fixed by a. 
Since /œ = Z F , lœ is fixed by a. Let P G Zœ, X j£ P j£ Y. Let k be any line 
on P , ^ lœ. There are points R and S on &, P , S g /œ. Hence & = P S is 
fixed. Thus P — lœ C\ k is fixed by a. Therefore a is the identity. 

The following two results are stronger than similar ones for general pseudo 
planes which are found in [2]. 

LEMMA 2.2. Let a be a collineation of the ir-system, T, which fixes every point 
on the line m, and the two points P, Q & m. 

(i) If m is not a 3-line, then a is the identity. 
(ii) If P, Q & lœ, then a is the identity. 

(iii) If at least one of P or Q is X or Y, then a is the identity. 

Proof. Case 1. m is not a 3-line. Let P (? ra, and R $ PQ. Then RP and 
RQ intersect m. Let U and V be the intersection points, respectively. Then 
PU and VQ are fixed lines, and so R = (PU) H (VQ) is fixed by a. Thus 
a fixes every point not on PQ. Let n be any line on P, n ^ PQ. Then a fixes 
all points on n, and so by Lemma 2.1, a is the identity. 

Case 2. P, Q (£ lœ. If m is not a 3-line, Case 1 sufiices. Let m be a. 3-line, 
and p = PY and q = QY. Then m C\ p and m C\ q are fixed. Thus, P F and 
Ç F are fixed lines. Hence Y is fixed by a. Let T be a point on PQ, P 9^ T ^ Q, 
T j£ F . L e t r = mC\ (TY). Then V is fixed by a, and so T = (PQ) H (T'Y) 
is fixed. Thus a is the identity, by Lemma 2.1, since points on m and PQ 
are fixed. 

Case 3. At least one of P or <2 is X or F, and call it P. If m is not a 3-line, 
Case 1 suffices. Let m be a 3-line. Let ^ be any line on Q which intersects 
m. Then na = n. Let R ^ n, R ^ Q. Then P P intersects w a t a point which 
is fixed. Hence PR is fixed. Thus, R = n C\ (PR) is fixed. Therefore again, 
by Lemma 2.1, a is the identity. 

LEMMA 2.3. A central collineation, a, is completely determined by its centre, 
C, axis, m, and the mapping, P —•> Pa, of any point P not on m different from 
C such that Pa G CP. 

Proof. Let a\ and a2 be collineations with centres, C, axes, m, and Pa\ = Pa2 

for P 9^ C, P Q m, and P«i Ç PC. Then aia2
_1 fixes P , has centre, C, and 

axis, m. 
Let P G m, R ^ C, and P g CP. Let Q G ^ ^ with P ^ Q ^ R. Œla2~

l 

fixes P and R, and so it fixes RP. aio^ -1 has centre, C, and so it fixes QC. 
Thus, Q = (QC) r\ (PR) is fixed by aia2~

l. Thus all points on m and PR 
are fixed by aia2~

1. Thus, by Lemma 2.1, aia2~* is the identity. Hence a\ = a2. 

3. Nearfields and 7r-systems. Sandler has shown in [2] that a pseudo 
plane may be coordinatized; a ternary, T, defined; and binary operations, 
+ and • defined on the coordinatizing set in a manner analogous to that used 
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with projective planes. If R is the coordinatizing set, then (R, + ) is a loop 
with ident i ty 0. If R' = R - {0}, then (R', •) is a loop with ident i ty 1. T h e 
point Y has coordinate oo, all o ther points on lœ have coordinates (m), wi th 
X having (0). Points not on lœ have coordinates (a, b). 1-lines have equat ions 
x = c, 2-lines have equat ions y = c, 3-lines have equat ions y = T(x, m, k). 

Definition 3.1. A nearfield is a triple (R, + , •) for which 
(1) (R, + ) is an abelian group with ident i ty 0, 
(2) (R', •) is a group with ident i ty 1, 
(3) 0 • a = a • 0 = 0 for all a Ç R, and 
(4) a • (b + c) = a • b + a • c. 

A nearfield is called planar if each equat ion of the form + b, 
a j * 1, b £ R, has a unique solution. Otherwise it is called non-planar. T h e 
kern of i?, kern(i^) = {a\(x + y) - a = x • a + y - a, x, y £ R}, the centre of 
JR, Z(i?) = ja | x - a = a • x, x Ç i?}. 

W e will say t h a t a 7r-system, T, is coordinatized by a nearfield if i£ is the 
coordinatizing set; + and • are the b inary operat ions defined by the te rnary , 
T; T(a, b, c) = ba + c; and (R, + , •) is a nearfield. T h e line whose equat ion 
is E will be denoted (E). When no confusion is possible, we will use ab for 
a • b. 

T H E O R E M 3.1. The following are groups of collineations of a ir-system 
coordinatized by a nearfield, (R, + , •)• 

(1) T = {ra>&}, the set of translations. 

Tay> (%J y) ~* (x + a, J + b) (y = mx + k) - * (3; = mx — ma + k + b) 

(x) —» (x) (x = k) —> (x = k + #) 

00 ->oo / c o - > C 

(2) 4̂ = {a}, the set of automorphisms, where a is an automorphism of 

a: (#» 30 ~» C***'» y « 0 Cv = mx + k) —> (y = (ma')x + ka) 

(x) —> (xa') (x = k) —> (x = ka') 

(3) 5 = {/xa}, £/ze se£ of stretchings. For a in the kern of R, a 9^ 0, define 
fjia as follows: 

Ma- (%, y) —» (pea, ya) (y = mx + k) —> (3/ = wx + jfea) 

(x) —> (x) (x = k) —> (x = &a) 

00 - + 0 0 / a , - » / « , . 

(4) M = {wa>6}, the set of multiplications, for a 9*0 9* b. 

ma,b> (%, y) —» (ax, by) (y = mx + k) —> (3/ = bmarlx + bk) 

(x) —» (bxa*1) (x = &) —» (x = afe) 

00 -> 00 L -> L . 
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(5) L = {ma,i} and N = (wiffl). 
(6) Z, the set consisting of the identity and the mapping p, where p is defined 

as follows: 

p: (x, y) —> (y, x) (y = mx + k) —> (y = m~lx — m~lk) for w ^ 0 
(m) —» (m~1) for ra p̂  0 (y = &) —* (x = k) 

oo -> (0) (x = k) -> (y = k) 

(0)-»oo /„->/«, 

Proof. Since each mapping is one-to-one and onto the points and lines of 
w, it suffices to show that each set is a group, and each mapping preserves 
incidence. 

(1) The only incidence that needs to be checked is (u, v) £ (y = mx + k). 

(u, v)ra,b = (u + a, v + b), and 
(y = mx + &)ra,6 = (y = mx — ma + k + b). 

v = mu + &, and so 

m{u + a) — wa + & + b = raw + ma — ma + k + b 

= ww + k + b = v + b. 

Thus O, y)ra,& Ç (y = mx + &)ra,6. 
It is easily seen that the inverse of ra,6 is r-a,-b, and so 

(*, ;y)TC)dT_a,_6 = (x + c, y + d)r-a,-h 

= (x + c — a, y + d — &) 

= (x, y)rc-a,d-h' 
Thus T is a group. 

(2) Again, we need only check (u, v) Ç (y = wx + &). 

(ma')(uar) + &a' = (raw + k)a = va!'. 

Thus (u, v)a is on the line (y = mx + k)a. The group nature of A is clear. 
(3) Checking (w, v) £ (y = mx + k), we have fl = mu + & implies that 

m(ua) + ka = (mu)a + ka = (mu + k)a = m since a G kern(i^). Thus ;ua 
is a collineation. 

It is known [3] that the kern of a nearfield is a division ring, and so the 
non-zero elements form a multiplicative group. It is easily seen that the 
inverse of na is M&, where ah = 1. 

(*, :yW& = (*c, yc)jK6 = ((*c)&, (yc)6) = (x(cb),y(cb)) = MC&. 

Thus 5 is a group. 
(4) Checking (w, u) (E (3; = wx + k), we have i; = mu + £ implies that 

(bma~l)(au) + bk = bmu + bk = b(mu + k) = &u. Thus raa>& is a collineation. 
ikf is shown to be a group exactly as in (3). In fact, raa,&rac>d = maCjM. 
(5) The fact that L and N are groups is immediate. 
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(6) Let (u, v) Ç (y = mx + k), m 9^ 0. (u, v)p = (v, u), and 

(3> = mx + &)p = Cy = w_1x — m~1k). 

Since z> = mu + &, m-1^ — m~1k = w. Thus p is a collineation. Clearly, 
p2 = / , the identity, and so Z is a group. 

It is a routine calculation to see that each group in Theorem 3.1 commutes 
with the other groups in that theorem, except Z with L and N. ZL = NZ. 

We will now consider only the 7r-systems which can be coordinatized by 
non-planar nearfields. Let (R, + , •) be a non-planar nearfield, and x = rx + t, 
r 9£ 1, be an equation which fails to have a solution. It follows that t 9e- 0. 

THEOREM 3.2. If (a, 6) $ (y = nx + k), n 9^ 0, then there is a line containing 
(a, b) which does not intersect (y = nx + k). 

Proof. We will first show that if b 9£ 0, then there is a line on (0, b) which 
does not intersect (y = x). Suppose the contrary. Then for every m 9^ 1, 
the equation x = mx + b must have a solution. Thus, the equation 
ib~lx = tb~l(mx + b) = tb~lmx + t must have a solution. In particular, let 
m = bt~lrtb~l. 

tb~lx = tb~l(bt-lrtb~l)x + * 
= r(tb~lx) + t 

has a solution. That is, 2 = rs + / has a solution, which is a contradiction 
to the choice of r and t. 

Next, let a 9^ b. We will show that there is a line on (a, fr) which does not 
intersect (y = x). By the above, there is a line, £, on (0, b — a) which does 
not intersect (y = x). The translation ra,a sends (0, b — a) to (a, &), and 
(y = x) to (3/ = x). Thus pra,a is the required line. 

Now, \etb 7e a -{- c. We will show that there is a line on (a, fr) which does 
not intersect (y = x + c). Since b 9^ a + c, by the preceding paragraph, 
there is a line, g, on (a, b — c) which does not intersect (y = x). The translation 
To,c sends (a, b — c) to (a, &) and (j = x) to (y = x + c). Thus the line 
qjQ,c is the required line. 

Finally, let (a, 6) g (y = nx + k), n 9^ 0. Then b 9e na + k. Thus by the 
preceding paragraph, there is a line, w, on (wa, b) not intersecting the line 
(y = x + &). Let d = w 1 . The collineation, md,\ sends (wa, &) to (a, £), 
and (y = x + k) to (y = nx + k). Thus wmd,i is the required line on (a, 6) 
which fails to intersect (y — nx + k). 

THEOREM 3.3. Every collineation of a ir-system coordinatized by a non-planar 
nearfield fixes lœ. 

Proof. Let T be coordinatized by a non-planar nearfield, and let a be a 
collineation of 71-. 
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First, we will show that the set 

5 = {Mines} U{2-lines} U {lœ} 

is fixed by a. Let m 6 5, and suppose that ma = n, a 3-line. Let (a, 6) g w. 
By Theorem 3.2, there is a line, >̂, on (a, ô) such that p C\n = 0. Thus, 
^a"1 C\ na~1 = £a - 1 P\ m = 0. This is contrary to the fact that 1-lines, 
2-lines, and lœ intersect every line. Thus ma = n is not a 3-line, and Sa — S. 

Consequently, a maps 3-lines to 3-lines. 
By the above, if lœa = m ^ lœ, then m is either a 1-line or a 2-line, and 

(3/ = x)a is a 3-line. Thus m C\ (y = #)a = (l)a = (a, ô) for some a and 6. 
Now Xa 9^ (a,b), and Y a ^ (a, 6). At least one of X and Y is mapped onto 
a point, (c, d), by a since lœa ^ /œ. Now, (c, d) ^ (a, 6), and (c, d) G m. 
Thus (c, d) £ (y = x)a. Every line on X or F intersects (y = x), and so 
every line on (c, d) intersects (y = x)a. This is contrary to Theorem 3.2. 
Thus lœa = lœ. 

COROLLARY 3.1. If a is a collineation of a w-system coordinatized by a non-
planar nearfield, then a either fixes X and Y or interchanges X and Y. 

4. Determination of the collineation group. In this section we will 
determine all collineations of a 7r-system coordinatized by a non-planar 
nearfield. In fact, as is the case with projective planes coordinatized by planar 
nearfields [1], it will be shown that any collineation can be written as a 
product of those collineations determined in Theorem 3.1. The following 
notation will be used: C is the set of all collineations; P is the set of all 
perspectivities; Q is the set of all projections, that is, products of elements 
of P ; D is the set of all collineations fixing (0, 0), (0), (1,1), and 00. 

Let a be a non-identity collineation which fixes X. Then by Corollary 3.1, 
a fixes F. Let m be a 3-line. Then by Lemma 2.2, m is not fixed pointwise by a. 

We will first determine P. Let a £ P, a 5* I. a either fixes X and Y or 
interchanges them. 

Case 1. a fixes X and Y. By the above remark, the axis of a must be lœ, 
a 1-line, or a 2-line. 

(a) The axis of a is lœ. The centre may or may not be on lm. If the centre 
of a is on /œ, then (0, 0)a = (a, b) 9e (0,0). Such a perspectivity will be 
shown to be a translation in Lemma 4.1. 

If the centre of a is not on /œ, let it be (a, b). /3 = TajbaT-a,-b has axis lœ 

and centre (0,0). Thus we may assume that (a, b) = (0,0). Such a 
perspectivity will be shown to be a stretching in Lemma 4.2. 

(b) The axis of a is not lm. Then it is either a 1-line or a 2-line. If the centre 
is not (0) or 00, it must be on the axis by Lemma 2.2. If the centre is not 
(0) or 00, let (y = x + k) be a line on the centre. Then, 

(y = x + k)a = (y — x + k), 
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and lœa = Zœ, and so (l)a = (1). This means that a = / , by Lemma 2.2. 
Thus the centre of a is (0) or oo . 

Furthermore, if the axis is not on (0, 0), let (a, b) be a point on the axis. 
Then, ft = ra>baT-a-b has axis on (0,0) and centre (0) or oo. Such 
perspectivities will be determined in Lemma 4.3. 

Case 2. a interchanges (0) and oo. Then the axis must be a 3-line. If the 
centre of a is a point, (a, b), then (x = a) and (y = b) are fixed lines. Since 
Içxfii — /oo, then (0) and oo are fixed. This is a contradiction. Thus the centre of 
a is on lœ. As in the preceding cases, we may assume that the axis is on (0, 0). 
Such perspectivities will be determined in Lemma 4.4. 

LEMMA 4.1. Let a have axis lœ and centre on lœJ then a is given by 

(x, y) —» (x + a, y + b). 

Proof. Let (0, 0)a = (a, b), and a have centre (m). Then 

(y = mx)a = (y = mx), 

and so (a, b) € (y = mx). Thus, & = ma. ra>b has axis lœ and sends (0, 0) 
to (a, b). Also, 

(3/ = mx + k)rttib = (y = mx — ma + k + b) = (y = mx + k). 

Therefore (m) is the centre of ra>&. Thus, by Lemma 2.3, a = ra>b. 
A similar argument holds if the centre of a is co. 

LEMMA 4.2. Le/ « have axis lœ and centre (0, 0). Then a = JJLSJ for some 
s G kern(R) - {0}. 

Proof. Since the centre of a is (0, 0), for every m 9^ 0, 

(y = mx)a — (y — mx). 

Thus, (1, l)a = (5, s) for some s ^ 0. Also, (a, a)a = (a', a'), and so a 
induces a mapping, a —> a', on i£. We will show that a' = as, and 
5 6 kem(R) - {0}. 

Let b, c G Rj (&, &)a = (&', &')> and the line (3; = bx) is fixed by a. 
(x = l)a = (x = s), and so 

(1, b)a = [(x = 1) H (3/ = &*)]« = (x = 1)« H (y = &*)a 

= (x = 5) H (y = ox) 

= ( 5 , 6 5 ) . 
Thus &' = fo. 

Hence (6 + c, & + c)a = ((& + c)s, (6 + c)s), but we also have 

(y = x + c)a = (y = x + cs), 

and so (b + c)r = bs + cs. Thus, (0 + c)s = bs + cs. 

LEMMA 4.3. Le/ a have its axis on (0, 0) and fix (0); /Âew a is given by 
(x, y) —> (ax, 3O or (x, y) —> (x, ay) /or some a £ i£'. 
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Proof. By the discussion preceding Lemma 4 .1 , a has centre (0) or GO. 

Case 1. a has centre (0). By Lemma 2.3, the axis of a must be (x = 0) . 
We have (y = l)a = (y = 1), and so (1, l ) a = (a, 1) for some a ^ 0. T h e 
mapping ma,i has centre (0), axis (x = 0) , and sends (1 ,1 ) to (a, 1). T h u s 
OL = rna,i by Lemma 2.3. 

Case 2. a has centreoo. By an argument similar to t h a t in Case 1, a = Wi)fl. 

LEMMA 4.4. Let a interchange (0) and oo, a?zd Z â̂ e ite axis 0?z (0, 0) , then 
for some a G R', a is given by (x, y) —> (a~1y, ax). 

Proof. By the discussion preceding Lemma 4 .1 , a has axis (y = ax) for 
some a ^ 0. (1, #) G (y = a x)> a n d (1, a) a = (1, a) = (a', 1') for some 
permuta t ion sending (0) and oo are interchanged. 

Let b = a~l. T h e mapping matbp sends (x, y) to (a - 1 ^, ax) , and interchanges 
(0) and oo. If (u, v) £ (y = ax), then ma>&p: (u, v) = (u, au) —» («, aw). 
T h u s the axis of ma>&p is (y = ax) . 

Now consider a~lmathp. This product fixes every point on (y = ax) , and 
(0) and oo. Hence by Lemma 2.2, a~lma,hp = L Thus , (x, y) —> {a~ly, ax). 

We now have the following result on P. 

T H E O R E M 4 .1 . If a £ P, a = TCtda'r-c-d, where a' is given by one of the 
following: 

(1) (x,y) -» (x + a, y + b); 
(2) (x, y) -> (xs, ys),s e kem(R) - {0}; 
(3) (x,y) —> (ax,y), a ^ 0; 
(4) (x,y) -> (x, ay) , a ^ 0; 
(5) (x, y) —> (a~ly, ax), a ^ 0; 

and Tc,d is some translation, possibly the identity. 

W e now turn to a determinat ion of C. 

L E M M A 4.5. Let a G D; then a induces an automorphism, a', on (R, + , •) 
such that (x, y)a = (xa',yaf). 

Proof. Since (0, 0)a = ( 0 , 0 ) , (1, l ) a = (1, 1), and lœa = lœ, we have 
( l ) a = (1). Since (0)a = (0) and coa = oo, we have (x, y)a = (xaf,ya") 
for some permuta t ions a! and a " of R. 

(y = x)a = (y = x) , and so (x, x)a = (xa', xa") G (y = x ) . T h u s xa' — 
xa" for all x. Hence c/ = a". Thus , (x, y)a = {xa', yaf). 

Firs t we will show t h a t (db)a! = (aaf)(baf). 

(b, ab) = (x = b) P\ (y = ax) 

= (x = o ) H [ ( 0 , 0 ) ( l , a ) ] 

= (x = b) r\ [(0, 0 ) ( ( x = 1) H (y = a ) ) ] . 

Applying a to this we obtain 

(baf, (ab)a') = (x = 6a') H [(0, 0 ) ( (x = 1) H (y = a</))] 

= (ba\ (aa ') (&«')). 
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Thus (ab)a' = (aa')(ba'). 
Now we will show that (a + b)a' = aa! + ha!. 

(a, a + b) = (x = a) C\ (y = x + b) 
= (x = a ) n [ ( 0 , i ) ( l ) ] . 

Applying a to this, we obtain, 

(aa', {a + b)af) = (x = aaf) C\ [(0, ba')(l)] 
= (aaf, aa' + baf). 

Therefore (a + b)a' = aa' + ba, and thus, a ' i s an automorphism of (R, + , •)• 

Notice that by Lemma 4.5, A = D. We will use A instead of D in the 
determination of C. 

THEOREM 4.2. If a £ C, then a = y(3Ta,b or a = y/3rajbp, where (3 g M and 

Proof. Case 1. Let a: (0, 0) -> (a, 6), (1, 1) -> (c, a7), (0) -> (0), and 
oo -> oo. Then «r_a,_6: (0, 0) -» (a, ft) - • (0, 0) and 

(1, 1) -> (c,d) -» (c - a, d - 6). 

Now, (y = x)a is a 3-line, and soc — a^O^d — b. Thus let (3 = rac_a>d_6. 
Then, a r - a , - ^ 1 : (0, 0) -> (0, 0) -> (0, 0), and 

(1, l)-+(c-a,d-b)->(l, 1). 

Therefore, if we let y = ar_a>_&/3-1, then 7 G i , and a = 7/3ra>&. 
Case 2. Let a: (0, 0) -> (ô, a), (1, 1) -> (d, c), (0) ->oo, ' and 00 -> (0). 

Then ap = 7/3ra>6 as in Case 1. Thus a = y(3Ta,bp since p2 = I. 
Therefore, by Theorem 4.2 and the commutativity of the groups in 

Theorem 3.1, we have the following result. 

THEOREM 4.3. If a G C, then a is given by one of the following: 
(1) (x, y) -> (a\xa!) + b, c{yaf) + d), a ^ 0 7* c; 
(2) (x, y) -» O O ' ) + 6, c{xa') + d), a 9* 0 j* c; 

and a! is an automorphism of (R, + , •). 

5. Classes of non-planar nearfields. In this section we will give the 
constructions of two classes of non-planar nearfields. 

Construction 5.1. Let F be a field of characteristic 0; 7 an index set; X*, 
i G 7, indeterminates over F\ F[Xt] the ring of polynomials in the X* over 
F; and F(\t) the field of quotients of F[Xt]. Let Tjf j Ç I, be mappings from 
F(\i) to itself such that a(Xi)Tj = a(\u Xj + 1), the rational function 
obtained by replacing Xj with Xj + 1. Let ôJf j £ I, be mappings from F(Xt) 
to Z, the ring of integers, such that if p(\t), q(Xi) G F[Xt] with 

«(x<) = ^(xO/g(xO, 
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then (a(\i))ôj = degree of p(\i) m \j — degree of g(Xt) in Xy. We will say 
j G où(\i) if Xj appears in a(\t) with a non-zero coefficient. Define 0 o /3 = 0 
for ail /?, and for a 9e 0, 

Let (TV, + , o ) = (F(\t), + , o ) . 
The following facts about the ôt and Tt are easily verified and used without 

mention in the following theorem. 
(1) (aP)ôt = (a)5, + (0)0,; 
(2) (a)«, = (a7\)«<; 
(3) (a)«, = (aT^ôjîori^j; 
(4) r ; T^ = r z r ; - for all i a n d j ; 
(5) Each Ti is an automorphism of (N, + , o). 

THEOREM 5.1. (N, + , o) is a non-planar nearfield. 

Proof. First, we will show that (iV, + , o) is a nearfield. Let a ^ 0; then 

a o (a'1 I I Tr{a)ôi) = acr1 = 1. 

Thus non-zero elements of N have inverses with respect to o. 

( « o f l o T = (a(/3 I I 7Y«>*0) o 7 
= a(/3 I I 7Y«>a07 n r/«^nr» (a )^)*» 
= a(/3 I I TtW)y I I TjWj+W** 

= atfiyllTjW'j) Il7Y«>** 

= a o ( / 3 o 7 ) , 
a o (]8 + 7) = «(^ + 7) I l 77«>«* 

= a^U 77">a< + yU 77«>*0 
= a os n r^*o + a (7 n zv«>»o 
= aO/3 + a 0 7. 

Thus (iV, + , o) is a nearfield. 
Next we will show that each of the equations x = X^ox + 1 has no 

solution. Suppose that there is a solution p(\i)/q(\i), with (p(\i), g(X*)) = 1 
in F[\i], for the equation x = XjO x + 1. Then 

£(X,)/<z(X<) = X,(p(X„ X, + l)/g(X„ \j + 1)) + 1. 

Thus, we have 

£(X,)ff(X<, X,- + 1) = X^(X„ X; + l)g(X,) + q(\i)q(\u X,- + 1). 

Therefore, q(\i) divides q(\u X̂  + 1), which implies that 

2(X<) = g(X*, Xy + 1). 

Upon applying 7^ to this equation, we obtain q(\u X;- + 1) = q(\i, Xj + 2). 
Thus q(\i) = q(\i, X; + 2). Continuing this process, for each n, we have 
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qÇki) = q(\u \j + n). Thus the equation, q(\i) = q(Xu 0 + x)> obtained 
by setting X̂- = 0 has infinitely many solutions. So j G q(\i). Thus, 
pO^i) = ^jpO^u ^j + 1) + qO^i) must hold. This is impossible since 

(\jP(\t, X, + 1) + q(\i))ôj = (P(Xi))ôj + 1 5* (P(\i))ôj-

Hence we have a contradiction, and thus x = X;- o x + 1 has no solution. 
The non-planar nearfields constructed by Zemmer [3] are the nearfields 

of Construction 5.1 with the cardinality of / , card(Z) = 1. Now we will show 
that the class of nearfields of Construction 5.1 contains at least one nearfield 
which is not isomorphic to any of those in [3]. 

THEOREM 5.2. Let (iV, + , o) be a nearfield constructed as in Construction 5.1. 
The centre Z(N) of N is F. 

Proof. Certainly if a G F, then a G Z(N). 
Suppose that there is an a(X*) G Z(N) — F. Then there is a X« appearing 

in a(Xi) whose coefficients are not all zero. First, we will suppose that 
(a(X,))«i ^ 0. 

(t) <*(\i) o\t = \toa(\i), 

(*) a ( X 0 O (X, - (a)dt) = (Xt - (a)ôt)oa(\t). 

From these equations, we obtain 

( t t ) Xia(X0 + (a)dta(\i) = X^(X„ X, + 1), 

(**) a(\t)\t = \ta(\u \ t + 1) - (a)dfit(\it \ t + 1). 

Combining (ff) and (**), we obtain 

X|a(Xif X, + 1) - (a)ôM*i, ** + 1) + (a)8fit(\t) = X^(X„ X, + 1). 

Thus, (a)ôta(\u \ t + 1) = (a)ôfÇi(\i), and so we have a(Xu \ t + 1) = a(\t). 
Let a(\t) = p(\i)/qQ<i) with (p(\t), q(\t)) = 1. Then q(\t) divides 

qO^u ^t + 1) and p(\i) divides p(\iy Xt + 1) since 

p(\i9 X, + l)g(X.) = p(\i)q(\i, \ t + 1). 

Thus, as in the proof of Theorem 5.1, p(\i), q(X*) G FÇXf), where i G / — {/}. 
This is contrary to the choice of X*. Hence a(Xz) G F. 

Now we will suppose that (a(\i))8t = 0. Considering (f), we have 
«(Xi)Xï = X*a(X*, \ t + 1). Thus, in this case also, a(\t) = a(\u \ t + 1), 
which as above implies that a(\i) G F. 

Isomorphic nearfields must have isomorphic centres. Thus let (F(\), + , o) 
be a nearfield as constructed in [3], and let Q be the set of rational numbers. 
Let card(7) = c, the cardinality of the real numbers. Suppose that there is 
a field, F, such that {F(\), + , o) is isomorphic to (Q(\i), + , o), i £ I. 
Then Z(F(\)) = F and Z((?(X,)) = Q by Theorem 5.2. Thus F = Q. But, 
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card(<2(X)) is less than card(Q(X*)) = c. Hence no isomorphism is possible. 
Thus, no nearfield as constructed by Zemmer is isomorphic to (Q(\i), + , o), 

ie i. 
Construction 5.2. Let F be a field of characteristic 0; X an indeterminate 

over F; 

M=\if4>i(\)ti\4>i(\)e F(\)\; 
\ i=k J 

Z *<(X)*4 + E *«(X)*' = E (*«(X) + *,(X))*'; 
and 

( Ë *.(x)*') • ( £ *<(x)*') = £ ( £ *,(x)*«-,(x + i)V. 

Let (X 0*(X)/*)5 = degree of numerator of 0*(X) — degree of denominator 
of <K(X), where <fe(X) is the first non-zero $i(X). Let 

(E*<(x)*')r = 2>,(x + i)/*. 

For a, & £ M define a o 0 = a(fiT^s) if a ^ 0. For a = 0, a o 0 = 0. 

THEOREM 5.3. (M, + , o) is a non-planar nearfield. 

Proof. It is routine to see that (M, + , •) is a nearfield. We will give only 
the proof that multiplicative inverses of non-zero elements exist. 

Let a = Z^=& <£z(X)r ?£ 0, with <fe(X) ?* 0. We will use induction on i to 
find t-k+i(\) such that (E<MX)r)(L<A-*+z(X)r*+*) = L 

Let ^_fc(X) = 0,-x(X - *). Then 

&(x)*ty-*(x)r* = ^ ( x ) ^ -Hx - fc)r* 
= ^(X)0fe-

1(X) 
= 1. 

Let <A_*+i(X) = - ^ - ^ X - &)4>*+i(X - * ) i M X + 1). Then 

^(x)^-,+i(x)r^1 + 0*+1(x)^V-*(x)r* = o. 

Suppose that \l/-k+i(\) have been determined for 0 ^ i < n such that 

0fc(x)/V-*+*(x)r*+< + . . . + «t+tM^ty-iMr* = o. 
Let 

^_&+n(x) = -«rKx - *)[**+i(x - *)*_*+*-!(x + l) + . . . 
+ 0.+n(X - É)^-»(X + »)]. 

It is routine to see that X) ^_A+i(X)^ suffices. 
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Now we will turn to the o operation. Let a, /3, 7 Ç M — {0}. 

(a o/3)o 7 = a(PT^8) 0 7 

= [a(/3r^5)][7r(«^ r (a )5))5] 

= [aG8r<«>«)][7r<«>*+<««] 

= a ( / 3 ( 7 r ^ ô ) ) r ^ 5 

= a ( / 3 o 7 ) 7 ^ 5 

= a O ( 1 8 0 7 ) . 

Thus o is an associative operation. 
Let a ^ 0, a o ( Û : - 1 ) ^ - ^ 5 = a(a-i)r-<«>5:r<«>8 = 1. Thus (W, o) is a group. 
ao ( /3 + 7) = a O j 8 + û!07 is clear since T is an automorphism of 

(M, + , •)• Thus (M, + , 0 ) is a nearfield. 
The equation x = X o x + X has no solution. Suppose it does and let it be 

£ 0,(X)/f. Then 

Thus *0(X) = 4>o(X + 1) + X. There is no such 0O(X), [3]. Thus (Af, + , o) 
is non-planar. 
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