
Compositio Math. 142 (2006) 251–270
doi:10.1112/S0010437X05001752

Integrating Lie algebroids via stacks
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Abstract

Lie algebroids cannot always be integrated into Lie groupoids. We introduce a new
structure, ‘Weinstein groupoid’, which may be viewed as stacky groupoids. We use this
structure to present a solution to the integration problem of Lie algebroids. It turns
out that every Weinstein groupoid has a Lie algebroid and every Lie algebroid can be
integrated into such a groupoid.

1. Introduction

In this paper, we present a new viewpoint to integrate (finite-dimensional) Lie algebroids: unlike
(finite-dimensional) Lie algebras which always have their associated Lie groups, Lie algebroids do
not always have their associated Lie groupoids [AM84, AM85]. So the Lie algebroid version of Lie’s
third theorem poses the question indicated by the following chart.

Lie algebras
differentiation at identity �� Lie groups

integration
��

Lie algebroids
differentiation at identity �� ‘?’

integration
��

Pradines posed the above question in [Pra68] and constructed local Lie groupoids (formulated in
[CDW87, Kar86, van84]) as the integration object ‘?’. However, a global object for ‘?’ is still required:
not only would it give a conceptually better answer to the diagram above (Lie groups are global
objects), but it also has profound applications in Poisson geometry, such as Weinstein’s symplectic
groupoids [Wei87], Xu’s Morita equivalence of Poisson manifolds [Xu91b, Xu91a], symplectic real-
izations [Wei83], Picard groups [BW04] and the linearization problem of Poisson manifolds [CF04].

After Pradines’ local groupoids, progress towards special cases of the above integration problem
was made by [Daz90, Deb00, Mac87, Nis00, Wei89], among others. An important approach to finding
a global object is the use of path spaces. This idea is not new, see [Wei03] for a nice discussion.
We pay particular attention to the recent work of Crainic and Fernandes [CF03] and of Cattaneo
and Felder [CF01]. For a Lie algebroid A, they study the space of A-paths. They are able to give a
negative answer to the integrability problem: not every Lie algebroid can be integrated into a Lie
groupoid. From the space of A-paths they construct a topological groupoid and determine equivalent
conditions for this groupoid to be a Lie groupoid that integrates the given Lie algebroid A. So their
work shows that every Lie algebroid can be integrated into a topological groupoid, but in general
this topological groupoid does not have enough information to recover the Lie algebroid we start
with. As conjectured by Weinstein, one hopes that there are additional structures on this topological
groupoid, which allow us to recover the Lie algebroid. As the topological groupoid is a space of leaves,
one natural approach is via étale groupoids [Hae84]. It turns out that differentiable stacks discussed
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in recent papers [BX, Met03, Pro96] also provide a suitable structure to the above conjecture posed
by Weinstein.

We introduce the notion of Weinstein groupoid, which formalizes the additional structures to put
on this topological groupoid. By allowing Weinstein groupoids, we answer the integrability problem
positively – every Lie algebroid can be integrated into a Weinstein groupoid.

Definition 1.1 (Weinstein groupoid). A Weinstein groupoid over a manifold M consists of the
following data:

(i) an étale differentiable stack G (see § 3 for the definition);
(ii) (source and target) maps s̄, t̄: G → M , which are surjective submersions between differentiable

stacks;
(iii) (multiplication) a map m̄: G ×s̄,t̄ G → G, satisfying the following properties:

• t̄ ◦ m̄ = t̄ ◦ pr1, s̄ ◦ m̄ = s̄ ◦ pr2, where pri : G ×s̄,t̄ G → G is the ith projection G ×s̄,t̄ G → G;
• associativity up to a 2-morphism, i.e. there is a unique 2-morphism α between maps m̄ ◦

(m̄ × id) and m̄ ◦ (id × m̄);
(iv) (identity section) an injective immersion ē: M → G such that, up to 2-morphisms, the following

identities
m̄ ◦ ((ē ◦ t̄) × id) = id, m̄ ◦ (id × (ē ◦ s̄)) = id,

hold (in particular, by combining with the surjectivity of s̄ and t̄, one has s̄ ◦ ē = id, t̄ ◦ ē = id
on M);

(v) (inverse) an isomorphism of differentiable stacks ī: G → G such that, up to 2-morphisms, the
following identities

m̄ ◦ (̄i × id ◦ ∆) = ē ◦ s̄, m̄ ◦ (id × ī ◦ ∆) = ē ◦ t̄,

hold, where ∆ is the diagonal map: G → G × G.

Moreover, restricting to the identity section, the above 2-morphisms between maps are the id
2-morphisms. Namely, for example, the 2-morphism α induces the id 2-morphism between the
following two maps:

m̄ ◦ ((m̄ ◦ (ē × ē ◦ δ)) × ē ◦ δ) = m̄ ◦ (ē × (m̄ ◦ (ē × ē ◦ δ)) ◦ δ),

where δ is the diagonal map: M → M × M .

The terminology involving stacks in the above definition will be explained in detail in § 3. For
now, to get a general idea of these statements, one can take stacks simply to be manifolds.

Our main result is the following theorem.

Theorem 1.2 (Lie’s third theorem). With each Weinstein groupoid one can associate a Lie alge-
broid. For every Lie algebroid A, there are naturally two Weinstein groupoids G(A) and H(A) with
Lie algebroid A.

We can apply our result to the classical integrability problem, which studies exactly when a Lie
algebroid can be integrated into a Lie groupoid.

Theorem 1.3. A Lie algebroid A is integrable in the classical sense if and only if H(A) is repre-
sentable, i.e. it is an honest (smooth) manifold. In this case H(A) is the source-simply connected
Lie groupoid of A (it is also called the Weinstein groupoid of A in [CF03]).

We can also relate our work to the previous work on the integration of Lie algebroids via the
following two theorems.
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Theorem 1.4. Given a Weinstein groupoid G, there is an associated local Lie groupoid Gloc

(canonical up to isomorphisms near the identity section) that has the same Lie algebroid as G.

Theorem 1.5. The orbit spaces of H(A) and G(A) as topological spaces are both isomorphic to
the topological groupoid of A constructed in [CF03].

2. Path spaces

We define the A0-path space, which is very similar to the A-paths defined in [CF03] (it is, in fact,
a submanifold of the A-path space).

Definition 2.1. Given a Lie algebroid A
π−→ M (A is assumed to be a Hausdorff manifold) with

anchor ρ : A → TM , a C1 map a: I = [0, 1] → A is an A0-path if it satisfies the equation

ρ(a(t)) =
d

dt
(π ◦ a(t)),

with boundary conditions a(0) = 0, a(1) = 0, ȧ(0) = 0, ȧ(1) = 0. We often denote the base path
π ◦ a(t) in M by γ(t). We denote by P0A the set of all A0-paths of A. It is a topological space with
topology given by uniform convergence of maps. Omitting the boundary condition above, we get
the definition of A-paths, and we denote the space of A-paths by PaA.

We can equip P0A with the structure of a smooth (Banach) manifold modeled by PR
n =

C1(I, Rn) with norm ‖f‖2 = sup{|f |2 + |f ′|2}. P0A is defined by equations on PA, so it inherits the
structure of a Banach manifold from PA. See [CF03] and [Zhu04] for details.

Definition 2.2. Let a(ε, t) be a family of A0-paths of class C2 in ε and assume that their base
paths γ(ε, t) have fixed end points. Let ∇ be a connection on A with torsion T∇ defined as

T∇(α, β) = ∇ρ(β)α −∇ρ(α)β + [α, β].

Then the solution b = b(ε, t) of the differential equation

∂tb − ∂εa = T∇(a, b), b(ε, 0) = 0 (1)

does not depend on the choice of connection ∇. Furthermore, b(·, t) is an A-path for every fixed t,
i.e. ρ(b(ε, t)) = (d/dε)γ(ε, t). If the solution b satisfies b(ε, 1) = 0, for all ε, then a0 and a1 are said
to be equivalent and we write a0 ∼ a1.

Remark 1.

(i) Here, T∇(a, b) is not quite well defined. We need to extend a and b by sections of A, α and
β, such that a(t) = α(γ(t), t) and the same for b. Then T∇(a, b)|γ(t) := T∇(α, β)|γ(t) at every
point on the base path. However, the choice of extending sections does not affect the result.

(ii) A homotopy of A-paths [CF03] is defined by replacing A0 by A in the definition above. A similar
result as above holds for A-paths [CF03]. So the above statement holds viewing A0-paths as
A-paths.

This flow of A0-paths a(ε, t) generates a foliation F . The A0-path space is a Banach submanifold
of the A-path space and F is the restricted foliation of the foliation defined in [CF03, § 4]. For
any foliation, there is an associated monodromy groupoid [MM03] (or fundamental groupoid as in
[CW99]): the arrows are paths within a leaf up to homotopies with fixed end points inside the leaf.
For any regular foliation on a smooth manifold its monodromy groupoid is a Lie groupoid in the
sense of [CF03]. In our case, it is an infinite-dimensional groupoid equipped with a Banach manifold
structure. Here, we slightly generalized the definition of Lie groupoids to the category of Banach
manifolds by requiring the same conditions, but in the sense of Banach manifolds. Denote the
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monodromy groupoid of F by Mon(P0A)
sM

⇒
tM

P0A. In a very similar way [MM03], one can also define

the holonomy groupoid Hol(F) of F : the arrows are equivalence classes of paths with the same
holonomy.

To obtain a finite-dimensional description we take an open cover {Ui}i∈I of P0A such that in
each chart Ui one can choose a transversal Pi of the foliation F . We can assume I is countable as
P0A is second countable. By [CF03, Proposition 4.8], each Pi is a smooth manifold of dimension
equal to that of A. Let P =

∐
Pi, which is a smooth immersed submanifold of P0A. We can choose

{Ui} and transversal {Pi} to satisfy the following conditions.

(i) If Ui contains the constant path 0x for some x ∈ M , then Ui has the transversal Pi containing
all constant paths 0y in Ui for y ∈ M .

(ii) If a(t) ∈ Pi for some i, then a(1 − t) ∈ Pj for some j.

It is possible to meet the above two conditions: for (i) we refer readers to [CF03, Proposition 4.8].
There the result is for PaA. For P0A, one has to use a smooth reparametrization τ with the
properties:

(i) τ(t) = 1 for all t � 1 and τ(t) = 0 for all t � 0;
(ii) τ ′(t) > 0 for all t ∈ (0, 1).

Then aτ (t) := τ(t)′a(τ(t)) is in P0A for all a ∈ PaA. φτ : a �→ aτ defines an injective bounded
linear map from PaA → P0A. Therefore, we can adapt the construction for PaA to our case by
using φτ . For (ii), we define a map inv : P0A → P0A by inv(a(t)) = a(1 − t). Obviously inv is an
isomorphism. In particular, it is open. So we can add inv(Ui) and inv(Pi) to the collection of open
sets and transversals. The new collection will have the desired property.

The restriction Mon(P0A)|P of Mon(P0A) to P is a finite-dimensional étale Lie groupoid (i.e.
the source (hence, the target) map is a local diffeomorphism) [MRW87], which we denote by Γ ⇒ P .
For a different transversal P ′ the restriction of Mon(P0A) to P ′ is another finite-dimensional étale
Lie groupoid. All of these groupoids are related by ‘Morita equivalence’. One can do the same to

Hol(P0A) and obtain a finite-dimensional étale Lie groupoid, which we denote by Γh
s1
⇒
t1

P . Although

these groupoids are Morita equivalent to each other, they are in general not Morita equivalent to
the groupoids induced from Mon(P0A).

We will build a Weinstein groupoid of A based on this path space P0A. One can interpret the
‘identity section’ as an embedding obtained from taking constant paths 0x, for all x ∈ M ;
the ‘inverse’ of a path a(t) as a(1 − t); the ‘source and target maps’ s and t as taking the end
points of the base path γ(t). According to the two conditions above, these maps are also well
defined on the finite-dimensional space P . As reparametrizations and projections are bounded
linear operators in Banach space C∞(I, Rn), the maps defined above are smooth maps in P0A,
hence in P .

To define the multiplication, notice that for two A-paths a1, a0 in P0A such that the base paths
satisfy γ0(1) = γ1(0), one can define a ‘concatenation’ [CF03]:

a1 � a0 =

{
2a0(2t), 0 � t � 1

2

2a1(2t − 1), 1
2 < t � 1.

Concatenation is a bounded linear operator in the local charts, hence is a smooth map. However,
it is not associative. Moreover, it is not well defined on P . If we quotient out by the equivalence
relation induced by F , concatenation is associative and well defined. However, after quotienting out
by the equivalence, we may no longer end up with a smooth manifold. To overcome the difficulty,
our solution is to pass to the world of differentiable stacks.
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3. Differentiable stacks and Lie groupoids

The notion of stacks has been extensively studied in algebraic geometry for the past few decades
(see, for example, [DM69, Vis89, LM00, BEFFGK]). Stacks can also be defined over other categories,
such as the category of topological spaces and the category of smooth manifolds (see, for example,
[AGV72, Pro96, Vis02, BX, Met03]). In this section we collect certain facts about stacks in the
differentiable category that will be used in next sections. Detailed treatments of these can be found
in the literature (see, for example, [Pro96, BX, Met03]). Some recent application of differentiable
stacks can be found in [BX03].

3.1 Definitions
Let C be the category of differentiable manifolds (second countable but not necessarily Hausdorff).
A stack over C is a category fibred in groupoids satisfying two conditions: ‘isomorphism is a sheaf’,
and ‘descent datum is effective’, see [BX] and [Met03] for the complete definition.

A manifold is a stack over C. We call such stacks representable. Morphisms between stacks are
just functors between fibred categories. A morphism f : X → Y is a representable submersion if
for any morphism M → Y from a manifold M , the fiber product X ×Y M is representable and the
induced morphism X×YM → M is a submersion (between manifolds). If, in addition, X×YM → M
is surjective, then f is called a representable surjective submersion [BX].

A differentiable stack is a stack X over C together with a representable surjective submersion
π : X → X from a Hausdorff smooth manifold X (called an atlas). A manifold is a differentiable
stack by identifying it with its functor of points. For a Lie group G, the category of principal
G-bundles is an example of a differentiable stack.

Properties of morphisms between differentiable stacks can be defined by considering pullbacks to
atlases. In this way one can define what it means for a morphism to be smooth, étale, an immersion,
a closed immersion and an injective immersion; see, for instance, [BX] and [Met03]. To check
whether a morphism has these properties it suffices to check on a particular atlas. Compositions of
representable (surjective) submersions are still representable (surjective) submersion. Representable
(surjective) submersions are stable under base-change.

A differentiable stack X is called étale if it has an atlas π : X → X such that π is étale.

3.2 Stacks and groupoids
One can go between differentiable stacks and Lie groupoids. For a differentiable stack X with
an atlas X0 → X , there is a Lie groupoid X1 := X0 ×X X0 ⇒ X0 with the two maps being
projections. This groupoid is called a groupoid presentation of X . An étale differentiable stack can
be presented by an étale groupoid. Given a Lie groupoid G = (G1 ⇒ G0), the category of principal
G bundles BG is a differentiable stack with an atlas G0 → BG such that G1 = G0 ×BG G0.
See [Vis89, Pro96, BX, Met03] for details.

There are some ambiguities: Different atlases give different groupoids, and two Lie groupoids
may represent the same stack. The following result clarifies this.

Proposition 3.1 (see [Pro96, BX, Met03]). Two Lie groupoids present isomorphic differential
stacks if and only if they are Morita equivalent.

In other words, differentiable stacks correspond to Morita equivalence classes of Lie groupoids.
Also, smooth 1-morphisms between differentiable stacks correspond to Hilsum–Skandalis (HS) mor-
phisms given by one-side principal bibundles of the groupoids, see [Pro96] for details. 2-morphisms
of differentiable stacks correspond to 2-morphisms of Lie groupoids (see [Pro96] and [Met03] for a
definition).
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3.3 Fibre products and submersions
It is convenient to use invariant maps to produce maps between stacks. In this section we state some
results concerning invariant maps and fiber products which will be used later in the construction of
the Weinstein groupoids. The proofs are standard and can be found in [Zhu04].

Lemma 3.2. Given a Lie groupoid G := (G1 ⇒ G0) and a manifold M , any G-invariant map
f : G0 → M induces a morphism between differentiable stacks f̄ : BG → M such that f = f̄ ◦ φ,
where φ : G0 → BG is the covering map of atlases.

Definition 3.3 ((Surjective) submersions). A morphism f : X → Y of differentiable stacks is called
a submersion if for any atlas M → X , the composition M → X → Y satisfies the following: for any
atlas N → Y the induced morphism M ×Y N → N is a submersion. A surjective submersion is a
submersion that is also an epimorphism.

Note that this definition is different from that in [Met03]. A representable submersion is a
submersion, but the converse is not true.

Proposition 3.4 (Fibred products). Let Z be a manifold and f : X → Z and g : Y → Z be
morphisms of differentiable stacks. If either f or g is a submersion, then X ×Z Y is a differentiable
stack. Moreover, let X → X , Y → Y be atlases for X and Y, respectively. Then X ×Z Y → X ×Z Y
is an atlas for X ×Z Y. Moreover, put X1 = X ×X X and Y1 = Y ×Y Y , then X ×Z Y is presented
by the groupoid (X1 ×Z Y1 ⇒ X ×Z Y ).

Lemma 3.5. If a G-invariant map f : G0 → M is a submersion, then the induced map f̄ : BG → M
is a submersion of differentiable stacks.

It is not hard to see that the construction of stacks in the category of smooth manifolds can
be extended to the category of Banach manifolds, yielding the notion of Banach stacks. Many
properties of differentiable stacks, including those discussed here, are also shared by Banach stacks.
Also, the 2-category of differentiable stacks can be obtained from the 2-category of Banach stacks by
restricting the base category.

4. The Weinstein groupoids of Lie algebroids

4.1 The construction
Recall that in § 2.1, given a Lie algebroid A, we constructed an étale groupoid Γ ⇒ P . We obtain an
étale differential stack G(A) presented by Γ ⇒ P . For a different transversal P ′, the restriction Γ′ =
Mon(P0A)|P ′ is Morita equivalent to Γ through the finite-dimensional bibundle s−1

M (P ) ∩ t−1
M (P ′).

So they represent isomorphic differential stacks. Therefore, we might base our discussion on Γ ⇒ P .
As Mon(P0A) ⇒ P0A is Morita equivalent to Γ ⇒ P through the Banach bibundle s−1

M (P ), G(A)
can also be presented by Mon(P0A) as a Banach stack.

In this section, we construct two Weinstein groupoids G(A) and H(A) for every Lie algebroid A
and prove Theorem 1.3.

We begin with G(A). We first define the inverse, identity section, source and target maps on the
level of groupoids.

Definition 4.1. Define the following.

• i : (Γ ⇒ P ) → (Γ ⇒ P ) by g = [a(ε, t)] �→ [a(ε, 1− t)], where [·] denotes the homotopy class in
Mon(P0A).

• e : M → (Γ ⇒ P ) by x �→ 10x , where 10x denotes the identity homotopy of the constant
path 0x.
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• s : (Γ ⇒ P ) → M by g = [a(ε, t)] �→ γ(0, 0)(= γ(ε, 0),∀ε), where γ is the base path of a.

• t : (Γ ⇒ P ) → M by g = [a(ε, t)] �→ γ(0, 1)(= γ(ε, 1),∀ε).

These maps can be defined similarly on Mon(P0A) ⇒ P0A. These maps are all bounded linear
maps in the local charts of Mon(P0A). Therefore, they are smooth homomorphisms between Lie
groupoids. Hence, they defined smooth morphisms between differentiable stacks. We denote the
maps corresponding to i, e, s and t on the stack level by ī, ē, s̄ and t̄, respectively.

Lemma 4.2. The maps s̄ and t̄ are surjective submersions. The map ē : M → G(A) is an injective
immersion. The map ī is an isomorphism.

Proof. As any path through x in M can be lifted to a path in P passing through any given preimage
of x, s and t restricted to P are Γ-invariant and submersions. According to Lemmas 3.2 and 3.5,
the induced maps s̄ and t̄ are submersions.

Denote by e0 the restricted map of e on the level of objects: e0 : M → P . Note that e0 fits into
the following diagram (which is not commutative).

M ×G(A) P P

M G(A)

�pr2

�

pr1

�

π

�ē
�

�
�

�
���

e0 (2)

Consider x = (f : U → M) ∈ M , ē(x) = U ×e0◦f,G0 G1 as a G-torsor, and e0(x) = (e0 ◦ f :
U → G0) ∈ G0. Consider also y = (g : U → G0) ∈ G0, π(y) = U ×g,G0 G1. A typical object of
Mi ×G G0 is (x, η, y) where η is a morphism of G-torsors from ē(x) to π(y) over idU of U . Then by
the equivariancy of η, we have a map φ: U → G1, such that e0 ◦ f = g ·φ. Therefore, we have a map
α : M ×G(A) G0 → G1 given by α(x, η, y) = φ, such that

e0 ◦ pr1 = pr2 · α.

As π is étale, so is pr1. Moreover, as e0 is an embedding, pr2 must be an immersion. This shows
that ē is an immersion for one atlas, hence ē is an immersion.

As s ◦ e = t ◦ e = id on the level of groupoids, the same identity passes to identity on the level
of differentiable stacks. As s̄ ◦ ē = t̄ ◦ ē = id, it is easy to see that ē must be monomorphic and s̄
(and t̄) must be epimorphic.

The map i is an isomorphism of groupoids, hence it induces an isomorphism at the level of
stacks.

Now we define the multiplication in the infinite-dimensional presentation. First we extend ‘con-
catenation’ to Mon(P0A). Consider two elements g1, g0 ∈ Mon(P0A) whose base paths on M are
connected at the end points. Suppose gi is represented by ai(ε, t). Define

g1 � g0 = [a1(ε, t) �t a0(ε, t)],

where �t means concatenation with respect to the parameter t and the [·] denotes the equivalence
class of homotopies.

Note that s ◦ sM = s ◦ tM and t ◦ sM = t ◦ tM are surjective submersions by reasoning similar
to that in the above, where tM and sM are source and target maps of Mon(P0A) ⇒ P0A. Hence,
by Proposition 3.4,

Mon(P0A) ×s◦sM ,M,t◦tM
Mon(P0A) ⇒ P0A
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with source and target maps sM × sM and tM × tM is a Lie groupoid and it presents the stack
G ×s̄,M,t̄ G.

Finally, let m be the following smooth homomorphism between Lie groupoids.

Mon(P0A) ×
s◦sM ,M,t◦tM

Mon(P0A)

sM×sM

��

tM×tM

��

� �� Mon(P0A)

sM

��

tM

��
P0A × P0A

� �� P0A

Multiplication is less obvious for the étale presentation Γ ⇒ P . We will have to define the
multiplication through a HS morphism.

Viewing P as a submanifold of P0A, let E = s−1
M (P ) ∩ t−1

M (m(P ×M P )) ⊂ Mon(P0A). As sM

and tM are surjective submersions and m(P ×M P ) ∼= P ×M P is a submanifold of P0A, E is a
smooth manifold. As P is a transversal, tM : E → m(P ×M P ) is étale. Moreover, dim m(P ×M P ) =
2dim P − dimM . So E is finite dimensional. Further, note that m : P0A × P0A → P0A is injective
and its ‘inverse’ m−1 defined on the image of m is given by

m−1 : b(t) �→ (b(2t1), b(1 − 2t2)), t1 ∈ [0, 1
2 ], t2 ∈ [12 , 1],

which is bounded linear in a local chart. Let π1 = m−1 ◦ tM : E → P ×M P and π2 = sM : E → P .
Then it is routine to check that the bibundle (E, π1, π2) gives a HS morphism from Γ×M Γ ⇒ P×M P
to Γ ⇒ P . It is not hard to verify that on the level of stacks (E, π1, π2) and m give two 1-morphisms
differed by a 2-morphism. Thus, after modifying E by this 2-morphism, we get another HS morphism
(Em, π′

1, π
′
2), which presents the same map as m. Moreover, Em

∼= E as bibundles.
Therefore, we have the following definition.

Definition 4.3. Define m̄ : G(A) ×s̄,t̄ G(A) → G(A) to be the smooth morphism between étale
stacks presented by (Em, π′

1, π
′
2).

Remark 2. If we use Mon(P0A) as the presentation, m̄ is also presented by m.

Lemma 4.4. The multiplication m̄ : G(A) × G(A) → G(A) is a smooth morphism between étale
stacks and is associative up to a 2-morphism. That is, the diagram

G(A) ×
s,t

G(A) ×
s,t

G(A) G(A) ×
s,t

G(A)

G(A) ×
s,t

G(A) G(A)

�id×m̄

�
m̄×id

�

m̄

�m̄

is 2-commutative, i.e. there exists a 2-morphism α : m̄ ◦ (m̄ × id) → m̄ ◦ (id × m̄).

Before the proof, we give a general remark about 2-morphisms.

Remark 3. For two groupoid homomorphisms f and g between G and H, a 2-morphism between the
induced maps on the level of stacks represented by f to g is just a smooth map α : G0 → H1 such that
α(γx) = g(γ)α(x)f(γ)−1, where x ∈ G0 and γ ∈ G1. This in particular gives us f(x) = g(x) · α(x).
So it is easy to see that not every two morphisms can be connected by a 2-morphism and when
they do, the 2-morphism may not be unique (for example, this happens when the isotropy group is
non-trivial and abelian).
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Proof. We will establish the 2-morphism on the level of Banach stacks. Note that a smooth morphism
in the category of Banach manifolds between finite-dimensional manifolds is a smooth morphism in
the category of finite-dimensional smooth manifolds. Therefore, the 2-morphism we will establish
gives a 2-morphism for the étale stacks.

Take the Banach presentation Mon(P0A), then m̄ can simply be presented as a homomorphism
between groupoids as in (4.1). According to Remark 3, we now construct a 2-morphism α : P0A×M

P0A ×M P0A → Mon(P0A) in the following diagram.

Mon(P0A)×
M

Mon(P0A)×
M

Mon(P0A) m◦(m×id)

m◦(id×m)
��

sM×sM×sM

��

tM×tM×tM

��

Mon(P0A)

sM

��

tM

��
P0A ×M P0A ×M P0A �� P0A

Let α(a1, a2, a3) be the natural rescaling between a1 � (a2 � a3) and (a1 � a2) � a3. Namely,
α(a1, a2, a3) is the homotopy class represented by

a(ε, t) = ((1 − ε) + εσ′(t))a((1 − ε)t + εσ(t)), (3)

where σ(t) is a smooth reparametrization such that σ(1/4) = 1/2, σ(1/2) = 3/4. In local charts,
α is a bounded linear operator. Therefore, it is a smooth morphism between Banach spaces. More-
over, for x ∈ P0A ×M P0A ×M P0A and g ∈ Mon(P0A) ×M Mon(P0A) ×M Mon(P0A), α(g · x) =
m ◦ (id × m)(g) · α(x) · (m ◦ (m × id))−1(g). In fact, it is not hard to see m ◦ (m × id)(x) =
m ◦ (id × m)(x) · α(x). Counting homotopy inside and noting that we quotient out the homotopies
of homotopies, the former equation is also true. Therefore, α serves as the desired 2-morphism.

One might be curious about whether there are further obstructions to associativity. There are
six ways to multiply four elements in G(A). Put

F1 = m̄ ◦ m̄ × id ◦ m̄ × id × id,

F2 = m̄ ◦ id × m̄ ◦ m̄ × id × id,

F3 = m̄ ◦ m̄ × id ◦ id × id × m̄,

F4 = m̄ ◦ id × m̄ ◦ id × id × m̄,

F5 = m̄ ◦ id × m̄ ◦ id × m̄ × id,

F6 = m̄ ◦ m̄ × id ◦ id × m̄ × id.

These morphisms fit into the following commutative cube.

G(A)×
M

G(A)×
M

G(A)
m̄×id

�������

id×m̄

��

G(A)×
M

G(A)×
M

G(A)×
M

G(A)

id×id×m̄
�������������������������

m̄×id×id
�������

id×m̄×id

��

G(A)×
M

G(A)

m̄

��

G(A)×
M

G(A)×
M

G(A)

id×m̄
�������������������������

m̄×id

��

G(A)×
M

G(A)
m̄

�����������

G(A)×
M

G(A)×
M

G(A)

id×m̄
���������������������������������

m̄×id

�����������
G(A)

G(A)×
M

G(A)

m̄
���������������������������������
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There is a 2-morphism on each face of the cube to connect Fi and Fi+1 (F7 = F1), constructed
as in the last lemma. Let αi : Fi → Fi+1. Will the composition α6 ◦ α6 ◦ · · · ◦ α1 be the identity
2-morphism? If so, given any two different ways of multiplying four (hence any number of) elements,
different methods to obtain 2-morphisms between them will give rise to the same 2-morphism. As
2-morphisms between two 1-morphisms are not unique if our differential stacks are not honest
manifolds, it is necessary to study the existence of further obstructions.

Proposition 4.5. There is no further obstruction to associativity of m̄ in G(A).

Proof. In the presentation Mon(P0A) of G(A), the αi constructed above can be explicitly expressed
as a smooth morphism: P0A ×M P0A ×M P0A ×M P0A → Mon(P0A). More precisely, accord-
ing to the lemma above, αi(a1, a2, a3, a4) is the natural rescaling between Fi(a1, a2, a3, a4) and
Fi+1(a1, a2, a3, a4). Here, by abuse of notation, we also denote the homomorphism on the groupoid
level by Fi. It is not hard to see that α6 ◦α5 ◦ · · · ◦α1 is represented by a rescaling that is homotopic
to the identity homotopy between A0-paths.

Therefore, the composed 2-morphism is actually identity as Mon(P0A) is made up by the
homotopy of homotopy of A0-paths. We also note that identity morphism in the category of
Banach manifolds between two finite-dimensional manifolds is identity morphism in the
category of finite-dimensional smooth manifolds. Therefore, there is no further obstructions even
for 2-morphisms of étale stacks.

Now to show G(A) is a Weinstein groupoid, it remains to show that the identities in items (4)
and (5) in Definition 1.1 hold and the 2-morphisms in these identities are identity 2-morphisms
when restricted to M . Note that for any A0-path a(t), we have

a(t) �t 1γ(0) ∼ a(t), a(1 − t) �t a(t) ∼ γ(0),

where γ is the base path of a(t). Using Remark 3(i), we can see that on the groupoid level m ◦
((e ◦ t) × id) and id only differ by a 2-morphism, and the same for the pairs m ◦ (i × id) and e ◦ s,
s ◦ m and s ◦ pr1. Therefore the corresponding identities hold on the level of differentiable stacks.
Transform them to stacks and the rest of the identities also follow. Moreover, the 2-morphisms
(in all presentations of G(A) we have described above) are formed by rescalings. When they restrict
to constant paths in M , they are just id.

Summing up what we have discussed above, G(A) with all the structures we have given is a
Weinstein groupoid over M .

We further comment that one can construct another natural Weinstein groupoid H(A) associated

with A exactly in the same way as G(A) by the Lie groupoid Hol(P0A) or Γh
s1
⇒
t1

P as they are

Morita equivalent by a similar reason as their monodromy counterparts. One can establish the
identity section, the inverse, etc., even the multiplication in exactly the same way. One only has
to note that in the construction of the multiplication, the 2-morphism in the associativity diagram
is the holonomy class (instead of homotopy class) of the reparametrization (3). One can do so
because homotopic paths have the same holonomy. Moreover, by the same reason, there is no
further obstructions to the multiplication on H(A).

Finally, we want to comment about the Hausdorffness of the source fibres (hence, the target
fibres by the inverse) of G(A) and H(A).

Definition 4.6. An étale differentiable stack X is Hausdorff if and only if the diagonal map

∆ : X → X ×X ,

is a closed immersion.
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Remark 4. In the case when X is a manifold, the diagonal map being a closed immersion is equivalent
to its image being closed. Hence, this notion coincides with the usual Hausdorffness for manifolds.

Unlike the case of Lie groupoids, the source fibre of G(A) or H(A) is not, in general, Hausdorff.
(see Example 1). The obstruction lies inside the foliation F defined in § 2.1.

Proposition 4.7. The source fibre of G(A) is Hausdorff if and only if the leaves of the foliation F
are closed. The same is true for H(A).

Proof. We prove this for G(A). The proof for H(A) is similar. Let P be the étale atlas we have
chosen. Then the source fibre s̄−1(x) = x×M,s̄ G(A) is a differentiable stack presented by s−1(x) by
Proposition 3.4. Consider the following diagram.

s̄−1(x) ×s̄−1(x)×s̄−1(x) s−1(x) × s−1(x) δ ��

��

s−1(x) × s−1(x)

��
s̄−1(x) ∆ �� s̄−1(x) × s̄−1(x)

As Γ = P ×G(A) P , it is not hard to check that s̄−1(x) ×s̄−1(x)×s̄−1(x) s−1(x) × s−1(x) is isomorphic
to Γ|s−1(x) and δ is just s1 × t1, where s1 and t1 are the source and target maps of Γ. Obviously
s1× t1 is an immersion as Γ is an étale groupoid. Moreover, the image of δ is closed by the following
argument: take a convergent sequence (ai

0(t), a
i
1(t)) of A0-path with the limit (a0(t), a1(t)). Suppose

that (ai
0(t), a

i
1(t)) is inside the image of δ, i.e. ai

0(t) ∼ ai
1(t). Let ā denote the inverse path of a,

we have āi
0(t) � ai

1(t) ∼ 1x, i.e. they stay in the same leaf of the foliation F . Hence, the limit path
ā0(t) � a1(t) ∼ 1x (i.e. (a0(t), a1(t)) is also inside the image of δ) if and only if the leaves of F are
closed.

Example 1 (Non-Hausdorff source fibres). Let M be S2 × S2 with 2-form Ω = (ω, µω). Let the Lie
algebroid A over M be TM × R with Lie bracket

[(V, f), (W,g)] = ([V,W ], LV (g) − LW (h) + Ω(V,W )),

and anchor the projection onto TM (see [CW99, ch. 16] or [AM84]). Let (a(ε, t), u(ε, t)) be
an A0-homotopy, where the first component is in TM and the second component is in the
trivial bundle R. The condition of being an A0-path here is equivalent to a = (d/dt)γ and boundary
conditions, where γ is the base path. Moreover, the first component of (1) is the usual A0-homotopy
equation for TM , which simply induces the homotopy of the base paths. The second component of
(1) is

∂tv − ∂εu = Ω(a, b),
where b in (1) is (b, v) above. Hence, b = (d/dε)γ. Integrating the above equation and using the
boundary condition of v, we have∫ 1

0
u(0, t) dt −

∫ 1

0
u(1, t) dt =

∫
γ
Ω.

Let the period group Λ of Ω at a point x ∈ M be

Λx =
∫

γ
Ω, [γ] ∈ π2(M,x).

As M is simply connected, one can actually show that (γ(0, t), u(0, t)) ∼ (γ(1, t), u(1, t)) if and only
if γ(0, t) and γ(1, t) have the same end points and

∫ 1
0 (u0 − u1) dt ∈ Λ. Then, in the case when µ is

irrational, Λx is dense in R for all x. Hence, there exist sequences ui
0 → u0 and ui

1 → u1 such that∫ 1
0 (ui

0 − ui
1) ∈ Λ but the limit

∫ 1
0 (u0 − u1) /∈ Λ. Hence the leaves of the foliation F are not closed.
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In particular the G(A) and H(A) are not Lie groupoids. In the case when µ is rational, Λ is discrete.
In fact, the Lie algebroid TM × R is isomorphic to the Lie algebroid associated to M viewed as a
Jacobi manifold. As in [CZ04], G(A) and H(A) are both the Lie groupoid (S3 ⊗ S3) ⊗ (S3 ⊗ S3),
where ⊗ denotes the tensor product of S1 bundles. Therefore, by varying µ ∈ R we obtain a series
of Weinstein groupoids which are only Lie groupoids for a measure 0 set in R.

4.2 The Integrability of Lie algebroids
The integrability of A and the representability of G(A) are not exactly the same, due to the presence
of isotropy groups. However, as holonomy groupoids are always effective [MM03], we will show that
the integrability of A is equivalent to the representability of H(A).

Definition 4.8 (Orbit spaces). Let X be a differentiable stack presented by a Lie groupoid X =
(X1 ⇒ X0). The orbit space of X is defined as the topological quotient X0/X1. Throughout the
paper, when we mention the orbit space is a smooth manifold, we mean it has the natural smooth
manifold structure induced from X0 (i.e. the projection X0 → X0/X1 is smooth).

Proof. We have to show the topological quotient is independent of choice of presentations. Suppose
that there is another presentation Y that is Morita equivalent to X through (E, JX , JY ). Let Ox

be the orbit of X1 in X0 through point x. By the fact that both groupoid actions are free and
transitive fiber-wise, JY ◦ J−1

X (Ox) is another orbit Oy of Y . In this way, there is a one-to-one
correspondence between orbits of X and Y . Hence, Y0/Y1 understood as the space of orbits is the
same as X0/X1.

Theorem 4.9. A Lie algebroid A is integrable in the classical sense, i.e. there is a Lie groupoid
whose Lie algebroid is A, if and only if the orbit space of G(A) is a smooth manifold. Moreover, in
this case the orbit space of G(A) is the unique source-simply connected Lie groupoid integrating A.

Proof. First, let Mon(PaA) be the monodromy groupoid of the foliation introduced by homotopy
of A-paths in § 2.1. We will show that Mon(PaA) is Morita equivalent to Mon(P0A). Note that
P0A is a submanifold of PaA, so there is another groupoid Mon(PaA)|PoA over P0A. We claim it
is the same as Mon(P0A). Namely, an A-homotopy a(ε, t) between two A0 paths a0 and a1 can be
homotopic to an A0-homotopy ã(ε, t) between a0 and a1. The idea is to divide ã into three parts.

(i) First deform a0 to aτ
0 through a0(ε, t) which is defined as (1 − ε + ετ ′(t))a0((1 − ε)t + ετ(t)),

where τ is the reparametrization induced in § 2.1.
(ii) Then deform aτ

0 to aτ
1 through a(ε, t)τ .

(iii) Lastly, connect aτ
1 to a1 through a1(ε, t), which is defined as a1((1−ε)τ ′(t)+ε)a1(εt+(1−ε)τ(t)).

Then connect those three pieces by a similar method in the construction of concatenation
(although it might be only piecewise smooth at the joints). Obviously, ã is a homotopy through
A0-paths and it is homotopic to a rescaling (over ε) of a(ε, t) through the concatenation of
a0((1−λ)ε, t), (λ+(1−λ)τ ′(t))a(ε, λ+(1−λ)τ ′(t)) and a1((1−λ)ε+λ, t). Eventually, we can
smooth out everything to make the homotopy and the homotopy of homotopy both smooth so
that they are as desired.

Then, it is routine to check that Mon(PaA)|P0A is Morita equivalent to Mon(PaA) through t−1
a (P0A),

where ta is the target Mon(PaA).
So the orbit space of G(A) can be realized as PaA/Mon(PaA). According to the main re-

sult in [CF03], PaA/Mon(PaA) is a smooth manifold if and only if A is integrable and, if so,
PaA/Mon(PaA) is the unique source-simply connected Lie groupoid integrating A.

Proof of Theorem 1.3. First of all, by the same argument given in the proof above, one can see that
Hol(P0A) = Hol(PaA)|P0A. Hence, Hol(P0A) is Morita equivalent to Hol(PaA).
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Moreover, if the orbit space of a holonomy groupoid is a manifold then it is Morita equivalent
to the holonomy groupoid itself (see [MM03]).

Hence, a differentiable stack X = BG presented by a holonomy groupoid G is representable if
and only if the orbit space G0/G1 is a smooth manifold. One direction is obvious because G0/G1 ⇒
G0/G1 is Morita equivalent to G = (G1 ⇒ G0) if the orbit space is a manifold. The converse
direction is not hard to establish by examining the Morita equivalence diagram of G and X ⇒ X .
The Morita bibundle has to be G0 as X is a manifold. Therefore, G0 is a principal G bundle
over X . This implies that G0/G1 is the manifold X .

Note that, in general, the orbit spaces of monodromy groupoids and holonomy groupoids of a
foliation are the same. By Theorem 4.9 and argument above, we conclude that A is integrable if and
only if H(A) is representable and in this case, H(A) is PaA/Hol(PaA), the unique source-simply
connected Lie groupoid integrating A.

Combining the proofs of Theorems 4.9 and 1.3, Theorem 1.5 follows naturally.
So far we have constructed G(A) and H(A) for every Lie algebroid A and verified that they are

Weinstein groupoids. Basically, we have done half of Theorem 1.2. For the other half of the proof,
we first introduce some properties of Weinstein groupoids. Before doing so, we give an example.

Example 2 (BZ2). BZ2 is a Weinstein group (i.e. its base space is a point) integrating the trivial Lie
algebra 0. The étale differentiable stack BZ2 is presented by Z2 ⇒ pt (here pt represents a point).
We establish all of the structure maps on this presentation.

The source and target maps are just projections from BZ2 to a point. The multiplication m is
defined by

m : (Z2 ⇒ pt) × (Z2 ⇒ pt) → (Z2 ⇒ pt), by m(a, b) = a · b,
where a, b ∈ Z2. As Z2 is commutative, the multiplication is a groupoid homomorphism (hence gives
rise to a stack homomorphism). It is easy to see that m◦ (m× id) = m◦ (id×m), i.e. we can choose
the 2-morphism α inside the associativity diagram to be id.

The identity section e is defined by

e : (pt ⇒ pt) → (Z2 ⇒ pt), by e(pt) = 1,

where 1 is the identity element in the trivial group pt and Z2. The inverse i is defined by

i : (Z2 ⇒ pt) → (Z2 ⇒ pt), by i(a) = a−1,

where a ∈ Z2. It is a groupoid homomorphism because Z2 is commutative.
It is routine to check whether these maps satisfy the axioms of Weinstein groupoids. The local

Lie groupoid associated with BZ2 is just a point. Therefore, the Lie algebra of BZ2 is 0. Moreover,
note that we have only used the commutativity of Z2. So for any discrete commutative group G,
BG is a Weinstein group with Lie algebra 0.

Example 3 (Z2 ∗ BZ2). This is an example where Proposition 4.5 does not hold. Consider the
groupoid Γ = (Z2 × Z2 ⇒ Z2). It is an action groupoid with trivial Z2-action on Z2. We claim
that the presented étale differential stack BΓ is a Weinstein group. We establish all of the structure
maps on the presentation Γ.

The source and target maps are projections to a point. The multiplication m : Γ × Γ → Γ is
defined by

m((g1, a1), (g2, a2)) = (g1g2, a1a2).

It is a groupoid morphism because Z2 (the second copy) is commutative. We have m ◦ (m × id) =
m ◦ (id × m). However, we can construct a non-trivial 2-morphism α : Γ0(= Z2) × Γ0 × Γ0 → Γ1
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defined by
α(g1, g2, g3) = (g1 · g2 · g3, g1 · g2 · g3).

As the Z2 action on Z2 is trivial, we have m ◦ (m × id) = m ◦ (id × m) · α.
The identity section e is defined by

e : (pt ⇒ pt) → Γ, by e(pt) = (1, 1),

where 1 is the identity element in Z2. The inverse i is defined by

i : Γ → Γ, by i(g, a) = (g−1, a−1).

It is a groupoid morphism because Z2 (the second copy) is commutative.
It is not hard to check whether BΓ with these structures maps is a Weinstein group. However, it

does not satisfy the further obstruction of the associativity described in Proposition 4.5, we found
failure. Let Fi be the six different ways of composing four elements as defined in Proposition 4.5,
then the 2-morphisms αi (basically coming from α) satisfy

Fi+1 = Fi · αi, i = 1, . . . , 6(F7 = F1).

However, αi(1, 1, 1,−1) = (−1,−1) for all i except that α2 = id. Therefore, α6 ◦ α5 ◦ · · · ◦ α1(1, 1,
1,−1) = (−1,−1), which is not id(1, 1, 1,−1) = (−1, 1).

5. Weinstein groupoids and local groupoids

In this section, we examine the relation between abstract Weinstein groupoids and local groupoids.
Let us first show a useful lemma.

Lemma 5.1. Given any étale atlas G0 of G, there exists an open covering {Ml} of M such that the
immersion ē : M → G can be lifted to embeddings el : Ml → G0. On the overlap Ml ∩ Mj , there
exist an isomorphism ϕlj : ej(Mj ∩ Ml) → el(Mj ∩ Ml), such that ϕlj ◦ ej = el and the ϕlj satisfy
cocycle conditions.

Proof. Let (Ee, JM , JG) be the HS bibundle presenting the immersion ē : M → G. As a right
G-principal bundle over M , Ee is locally trivial, i.e. we can pick an open covering {Ml} so that JM

has a section τl : Ml → Ee when restricted to Ml. As ēl := ē|Ml
is an immersion (the composition

of immersions Ml → M and ē is still an immersion), it is not hard to see that pr2 : Ml ×G G0 → G0

transformed by base change G0 → G is an immersion. Note that el = JGτl : Ml → G0 fits inside a
similar diagram as (2).

Ml ×G G0 G0

Ml G

�pr2

�

pr1

�

π

�ēl
�

�
�

�
��

el

Following a similar argument as in the proof of Lemma 4.2, we can find a map α : Ml ×G G → G1

such that
el ◦ pr1 = pr2 · α.

As π is étale, so is pr1. Therefore el is an immersion.
As an immersion is locally an embedding, we can choose an open covering Mik of {Ml} so

that el|Mik
is actually an embedding. To simplify the notation, we can choose a finer covering

{Ml} at the beginning and make el an embedding. Moreover, using the fact that G acts on Ee

264

https://doi.org/10.1112/S0010437X05001752 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001752


Integrating Lie algebroids via stacks

transitively (fiberwise), it is not hard to find a local bisection glj of G1 := G0 ×G G0, such that
el · glj = ej . Then ϕlj = ·g−1

lj satisfies that ϕlj ◦ ej = el. As el are embeddings, φlj naturally satisfy
the cocycle condition.

Before the proof of Theorem 1.4, we need a local statement.

Theorem 5.2. For every Weinstein groupoid G, there exists an open covering {Ml} of M such that
one can associate a local Lie groupoid Ul over each open set Ml.

Proof. Let G be presented by G = (G1 ⇒ G0), and {Ml} be an open covering as in Lemma 5.1.
Let (Em, J1, J2) be the HS bibundle from G1 ×M G1 ⇒ G0 ×M G0 to G, which presents the stack
morphism m̄ : G ×M G → G. Note that M is the identity section, i.e.

Ml ×M Ml(= Ml)
���

m̄=id �� Ml

��
G ×M G m̄ �� G

Translate this commutative diagram into groupoids. Then the composition of HS morphisms

Ml ×M Ml(= Ml) ��

����

G1 ×M G1

����

G1

����

Em

J2

���
��

��
��

�
J1

������������

Ml ×M Ml
el×el �� G0 ×M G0 G0

(4)

is the same (up to a 2-morphism) as el : Ml → G0. Therefore, composing the HS maps in (4) gives
a HS bibundle J−1

1 ((el × el)(Ml ×M Ml)), which is isomorphic (as a HS bibundle) to Ml ×G0 G1,
which represents the embedding el. Therefore, one can easily find a global section

σl : Ml → Ml ×G0 G1
∼= J−1

1 ((el × el)(Ml ×M Ml)) ⊂ Em

defined by x �→ (x, 1el(x)). Furthermore, we have J2 ◦ σl(Ml) = el(Ml). As G is an étale groupoid,
Em is an étale principal bundle over G0 ×M G0. Hence, J1 is a local diffeomorphism. Therefore, one
can choose two open neighborhoods Vl ⊂ Ul of Ml in G0 such that there exists a unique section σ′

l

extending σl over (Ml = Ml ×M Ml ⊂)Vl ×Ml
Vl in Em and the image of J2 ◦σ′

l is Ul. The restriction
of σ′

l on Ml is exactly σl. As Ul ⇒ Ul acts freely and transitively fiberwise on σ′
l(Vl ×Ml

Vl) from the
right, σ′

l(Vl ×Ml
Vl) can serve as a HS bibundle from Vl ×Ml

Vl to Ul. (Here, we view manifolds as
groupoids.) In fact, it is the same as the morphism

ml := J2 ◦ σ′
l : Vl ×Ml

Vl → Ul.

By a similar method, we can define the inverse as follows. By (3), (4) and (5) in Definition 1.1,
we have ī ◦ ēl = ēl, so the following diagram commutes.

Ml

�

��

m̄=id �� Ml

��
G ī �� G

Suppose (Ei, J1, J2) is the HS bibundle representing ī. Translate the above diagram into groupoids,
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we have the composition of the following HS morphisms:

Ml
��

����

G1

����

G1

����

Ei

J2

		�
��

��
��

�
J1



��
��

��
��

Ml
el �� G0 G0

(5)

is the same (up to a 2-morphism) as el : Ml → G0. Therefore, composing the HS maps in (5) gives
a HS bibundle J−1

1 (el(Ml)) that is isomorphic (as a HS bibundle) to Ml ×G0 G1, which represents
the embedding el. Therefore, one can easily find a global section

τl : Ml → Ml ×G0 G1
∼= J−1

1 (el(Ml)) ⊂ Ei

defined by x �→ (x, 1el(x)). Furthermore, we have J2 ◦ σl(Ml) = el(Ml). As G is an étale groupoid,
Ei is an étale principal bundle over G0. Hence, J1 is a local diffeomorphism. Therefore, one can
choose an open neighborhood of Ml in G0, which we might assume as Ul as well, such that there
exists a unique section τ ′

l extending τl over (Ml ⊂)Ul in Ei and the image of J2 ◦ τ ′
l is in Ul.

The restriction of τ ′
l on Ml is exactly τl. So we can define

il := J2 ◦ τ ′
l : Ul → Ul.

As M is a manifold, examining the groupoid picture of maps s̄ and t̄, one finds that they actually
come from two maps s and t from G0 to M . Hence, we define source and target maps of Ul as the
restriction of s and t on Ul and denote them by sl and tl, respectively.

The 2-associative diagram of m̄ tells us that ml ◦ (ml × id) and ml ◦ (id × ml) differ in the
following way: there exists a smooth map from an open subset of Vl ×Ml

Vl ×Ml
Vl, over which both

of the above maps are defined, to G1 such that

ml ◦ (ml × id) = ml ◦ (id × ml) · α.

As the 2-morphism in the associative diagram restricting to M is id, we have

α(x, x, x) = 1el(x).

As G is étale and α is smooth, the image of α is inside the identity section of G1. Therefore, ml is
associative.

It is not hard to verify other groupoid properties in a similar way by translating corresponding
properties on G to Ul. Therefore, Ul with maps defined above is a local Lie groupoid over Ml.

To prove the global result, we need the following proposition.

Proposition 5.3. Given Ul and Uj constructed as above (one can shrink them if necessary), there
exists an isomorphism of local Lie groupoids ϕ̃lj : Uj → Ul extending the isomorphism ϕlj in
Lemma 5.1. Moreover, ϕ̃lj also satisfy cocycle conditions.

Proof. As we restrict the discussion on Ml ∩ Mj , we may assume that Ml = Mj . According to
Lemma 5.1, there is a local bisection glj of G1 such that el · glj = ej . Extend the bisection glj to Ul

(we denote the extension still by glj , and shrink Vk and Uk if necessary for k = l, j) so that

(Vl ×Ml
Vl) · (glj × glj) = Vj ×Mj Vj and Ul · glj = Uj .

Note that as G1 is étale, the source map is an local isomorphism. Therefore, by choosing small
enough neighborhoods of Ml, the extension of glj is unique. Let ϕ̃lj = ·g−1

lj . Then it is naturally an
extension of ϕlj . Moreover, by uniqueness of the extension, ϕ̃lj satisfy cocycle conditions as ϕlj do.
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Now we show that ϕ̃lj = ·glj is a morphism of local groupoids. It is not hard to see that ·glj

preserves source, target and identity embeddings. So we only have to show that

il · glj = ij , ml · glj = mj .

For this purpose, we have to recall the construction of these two maps. il is defined as J2 ◦ τ ′
l .

As there is a global section of J1 over Ul in Ei, we have J−1
1 (Ul) ∼= Ul ×il,G0 G1 as G torsors.

Under this isomorphism, we can write τ ′
l as

τ ′
l (x) = (x, 1el(x)).

The G action on Ul ×il,G0 G1 gives (x, 1el(x)) · glj = (x, glj). Moreover, we have

J2((x, glj)) = J2(x, 1ej(x)) = sG(glj),

where sG is the source map of G. Combining all these, we have shown that il · glj = ij. The other
identity for multiplications follows in a similar way.

Proof of Theorem 1.4. Now it is easy to construct Gloc as in the statement of the theorem. Note
that the set of {Ul} with isomorphisms ϕlj which satisfy cocycle conditions serve as a chart system.
Therefore, after gluing them together, we arrive at a global object Gloc. As ϕlj are isomorphisms of
local Lie groupoids, the local groupoid structures also glue together. Therefore, Gloc is a local Lie
groupoid.

If we choose two different open covering {Ml} and {M ′
l} of M for the same étale atlas G0 of G,

we arrive at two systems of local groupoids {Ul} and {U ′
l}. As {Ml} and {M ′

l} are compatible chart
systems for M , combining them and using Proposition 5.3, {Ul} and {U ′

l} are also compatible
chart systems. Therefore, they glue into the same global object up to isomorphisms near the identity
section.

If we choose two different étale atlases G′
0 and G′′

0 of G, we can take their refinement G0 =
G′

0×G G′′
0 and we can take a fine enough open covering {Ml} so that it embeds into all three atlases.

As G0 → G′
0 is an étale covering, we can choose Ul in G′

0 small enough so that they still embed
into G0. So the groupoid constructed from the presentation G0 with the covering Ul is the same as
the groupoid constructed from the presentation G′

0 with the covering Ul. The same is true for G′′
0

and G0. Therefore, our local groupoid Gloc is canonical.
We finish the proof of the Lie algebroid part in the next section.

6. Weinstein groupoids and Lie algebroids

In this section, we define the Lie algebroid of a Weinstein groupoid G. An obvious choice is to define
the Lie algebroid of G as the Lie algebroid of the local Lie groupoid Gloc.We give an equivalent
definition in a more direct way.

Definition 6.1. Given a Weinstein groupoid G over M , there is a canonically associated Lie alge-
broid A over M .

Proof. We just have to examine the second part of proof of Theorem 1.4 more carefully. Choose
an étale groupoid presentation G of G and an open covering Ml as in Lemma 5.1. According to
Theorem 1.4, we have a local groupoid Ul and its Lie algebroid Al over each Ml. Differentiating
the ϕ̃lj in Proposition 5.3, we can achieve algebroid isomorphisms T ϕ̃lj, which also satisfy cocycle
conditions. Therefore, using these data, we can glue the Al into a vector bundle A. Moreover, as
the T ϕ̃lj are Lie algebroid isomorphisms, we can also glue the Lie algebroid structures. Therefore,
A is a Lie algebroid.

Following the same arguments as in the proof of Theorem 1.4, we can show uniqueness. If we
choose a different presentation G′ and a different open covering Ml, we can choose the refinement
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of these two systems and will arrive at a Lie algebroid which is glued from a refinement of both
systems. Therefore, it is isomorphic to both Lie algebroids constructed from these two systems.
Hence, the construction is canonical.

Then it is easy to see that the following proposition holds.

Proposition 6.2. Given a Weinstein groupoid G, it has the same Lie algebroid as its associated
local Lie groupoid Gloc.

Together with the Weinstein groupoid G(A) that we have constructed in § 4, we are now ready
to complete the proof of Theorem 1.2.

Proof of the second half of Theorem 1.2. We take the étale presentation P of G(A) and H(A) as we
constructed in § 2.1. Let us recall how we construct local groupoids from G(A) and H(A).

In our case, the HS morphism corresponding to m̄ is

(E := t−1
M (m(P ×M P )) ∩ s−1

M (P ),m−1 ◦ tM , sM ).

The section σ : M → E is given by x �→ 10x . Therefore, if we choose two small enough open
neighborhoods V ⊂ U of M in P , the bibundle representing the multiplication mV is a section σ′

over V ×M V of the map m−1 ◦ tM in E.
As the foliation F intersects each transversal slice only once, we can choose an open neighborhood

O of M inside P0A so that the leaves of the restricted foliation F|O intersect U only once. We denote
the homotopy induced by F|O as ∼O and the holonomy induced by FO by ∼hol

O . Then there is a
unique element a ∈ U such that a ∼O a1 � a2. There exists a unique arrow g : a1 � a2 � a in
Mon(P0A) near the identity arrows at 10x as the leaf of F|O is locally contractible.

Then we can choose the section σ′ near σ to be

σ′ : (a1, a2) �→ g.

So the multiplication mV on U is

mV (a1, a2) = a(∼O a1 � a2).

As the leaves of F intersect U only once, a has to be the unique element in U such that
a ∼hol

O a1 � a2. It is not hard to verify that both Weinstein groupoids give the same local Lie
groupoid structure on U .

Moreover, U = O/ ∼O is exactly the local groupoid constructed in [CF03, § 5], which has Lie
algebroid A. Therefore, G(A) and H(A) have the same local Lie groupoid and their Lie algebroids
are both A.
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