
J. Fluid Mech. (2021), vol. 926, A24, doi:10.1017/jfm.2021.716

Parabolic velocity profile causes shape-selective
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Understanding particle drift in suspension flows is of the highest importance in numerous
engineering applications where particles need to be separated and filtered out from the
suspending fluid. Commonly known drift mechanisms such as the Magnus force, Saffman
force and Segré–Silberberg effect all arise only due to inertia of the fluid, with similar
effects on all non-spherical particle shapes. In this work, we present a new shape-selective
lateral drift mechanism, arising from particle inertia rather than fluid inertia, for ellipsoidal
particles in a parabolic velocity profile. We show that the new drift is caused by an
intermittent tumbling rotational motion in the local shear flow together with translational
inertia of the particle, while rotational inertia is negligible. We find that the drift is
maximal when particle inertial forces are of approximately the same order of magnitude as
viscous forces, and that both extremely light and extremely heavy particles have negligible
drift. Furthermore, since tumbling motion is not a stable rotational state for inertial oblate
spheroids (nor for spheres), this new drift only applies to prolate spheroids or tri-axial
ellipsoids. Finally, the drift is compared with the effect of gravity acting in the directions
parallel and normal to the flow. The new drift mechanism is stronger than gravitational
effects as long as gravity is less than a critical value. The critical gravity is highest (i.e.
the new drift mechanism dominates over gravitationally induced drift mechanisms) when
gravity acts parallel to the flow and the particles are small.
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1. Introduction

There are numerous practical examples where the understanding of the motion of heavy
particles suspended in lighter fluid is important. Typically, this will apply to any solid
particle in air, commonly called aerosols. In the atmosphere, aerosols scatter light and
thus also affect the global radiation budget (Holländer 1993). These particles also serve as
condensation nuclei for cloud formation and their motion inside the clouds is important
for understanding rain initiation (Balkovsky, Falkovich & Fouxon 2001; Falkovich, Fouxon
& Stepanov 2002) as well as snow crystal growth (Gavze, Pinsky & Khain 2012).

Closer to Earth, aerosols are typically associated with vehicle and industrial emissions
causing severe health problems (Morawska & Zhang 2002). Also asbestos fibres in
isolation materials in buildings can be directly linked to formation of lung cancer
(Miserocchi et al. 2008). When controlling and separating these particles from the
suspending fluid, as well as understanding the deposition in the airways, it is important to
find how these particles behave in channel flows. Especially important is to understand any
physical process causing lateral migration of particles as this will determine if particles,
for example, are concentrated in the middle of a channel or towards the walls.

Suspension flows are commonly modelled with spherical particles, due to the many
models available to calculate the motion (Crowe et al. 2012). For spherical particles it is
known that inertia of the surrounding fluid can cause three types of lateral motion. Firstly,
if the particle is not moving with the same velocity as the surrounding fluid, i.e. there is
a slip velocity, and the particle is rotating in a constant flow without gradients, there is
a lateral force on the particle called a Magnus force (Crowe et al. 2012). Secondly, if the
particle has a slip velocity and is rotating in a linear shear flow, there is a lateral force on
the particle called a Saffman force (Crowe et al. 2012). Thirdly, if the particle is suspended
in a regular pipe flow, the parabolic velocity profile causes itself a migration of particles
away from the centreline. As a particle move closer to the wall, the lateral migration force
is balanced by pressure that is built up between the particle and the wall, causing the
particle to find an equilibrium radial position in the channel. This effect is referred to as
the Segré–Silberberg effect (Segré & Silberberg 1961). All these effects are, however, only
present when fluid inertia is relevant. If fluid inertia is negligible, which typically is true
for aerosols, there is no lateral drift of spherical particles neither caused by a slip velocity
nor a quadratic velocity profile.

When it comes to modelling non-spherical particles, it is common to study ellipsoids,
and particularly ellipsoids with rotational symmetry called spheroids. In the absence of
fluid inertia, Lamb (1932) provided analytical expressions of the force on an ellipsoid in a
constant flow given the orientation of the particle and Jeffery (1922) provided analytical
expressions of the torque on an ellipsoid in a linear flow field. The force on a suspended
inertial ellipsoid can thus be determined by the instantaneous slip velocity and the torque
can be determined by local velocity gradients. The results by Jeffery (1922) have, however,
mainly been used to study particles that are not affected by particle inertia and therefore
will assume a rotation that gives zero torque. Lundell & Carlsson (2010) coupled the
torques by Jeffery (1922) to the equations of motion of the particle, and thus the rotational
motion of an inertial particle could be simulated assuming that the surrounding flow still
had zero inertia. This approach has been used in several studies using Lagrangian particle
tracking (LPT) methods in e.g. turbulent channel flow with included particle inertia (e.g.
Zhao et al. 2015).

In order to analyse the particle motion, it is convenient to make a Galilean transformation
to a system following the particle (see figure 1). The forces on the particle (and thus
its motion) can be investigated based on the flow relative to the particle in this system.
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Figure 1. Illustration of the Galilean transformation for a particle moving in a plane Poiseuille flow. After the
transformation, the particle experiences a flow that can be decomposed as shown. The effects of the different
flows are additive thanks to the linearity of the Stokes equations for very viscous flow.

Furthermore, the decomposition of the flow seen by the particle into four fundamental
flows (one of which is the parabolic velocity profile studied in the present work) is
illustrated. The superposition principle of creeping (Stokes) flow implies that the total
force on the particle is equal to the sum of the forces exerted by each flow alone. Thus, the
effects of curvature studied in the present paper can be added to the effects of shear and
homogeneous flow to study particles in all possible quadratic flows.

For the sake of discussion, we will now consider a plane laminar Poiseuille flow with a
quadratic velocity profile with suspended spheroidal particles and a dilute concentration.
If we were using a LPT method for determining the particle dynamics, which uses the
gradient of the velocity but no higher derivatives, we would find that the particles are
nicely following the straight streamlines and rotate according to the local shear given by
the distance from the centreline. The orientational dynamics of the particles will then be
fully determined by their behaviour in a simple shear flow. We can add both fluid and
particle inertias to the rotation owing to the recent effort in mapping out the orientational
behaviour of spheroids in simple shear flow (Rosén et al. 2016). Due to the symmetry
of the simple shear flow, there is no lateral drift of the spheroidal particles. Any drift
must thus be caused by higher-order derivatives of the local velocity field. Chwang (1975)
studied the spheroidal particle with neither particle nor fluid inertia in a quadratic flow
and found no lateral drift. It is still likely that inertia of the surrounding fluid will induce
a Segré–Silberberg effect also for the spheroidal particles due to the parabolic velocity
profile. In this work, we will show that the influence of particle inertia combined with a
quadratic velocity profile will cause a lateral drift even when fluid inertia is neglected. The
present results thus provide new fundamental knowledge about the migration of aerosols
in channel flows.
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Figure 2. Illustration of the flow problem; a prolate spheroidal particle is suspended in a quadratic velocity
profile; the position of the particle is given by the centre of mass xCM and the orientation is given by the
symmetry axis s and the Euler angles θ and φ.

The flow problem is defined in § 2 and the numerical method used is described in § 3.
The results are presented in § 4 and discussed in § 5. Two important aspects: consequences
for LPT simulations and the effect of gravity, are investigated in §§ 6 and 7, respectively.
Finally the conclusions are summarized in § 8.

2. Flow problem

A prolate spheroid with major semi-axis l is suspended in a quadratic background flow
according to figure 2. The unit vectors e1, e2 and e3 denote the flow direction, the velocity
gradient direction and the vorticity direction, respectively. The spatial coordinates are
given in dimensional form as x∗ = (x∗

1, x∗
2, x∗

3). In this work, we will mainly use the
non-dimensional coordinates scaled by the particle major semi-axis, i.e. x = x∗/l =
(x1, x2, x3). The non-dimensional coordinates of the particle centre of mass is denoted
by xCM .

The prolate spheroidal particle with major semi-axis l and equatorial radius l/rp, where
rp is the particle aspect ratio (length/width), is described through

x′2
1 + r2

px′2
2 + r2

px′2
3 = 1. (2.1)

The non-dimensional coordinates x′
1, x′

2 and x′
3 are scaled by the major semi-axis l and

refer to the body-fixed system spanned by unit vectors e′
1, e′

2 and e′
3. The orientation of

the particle is given by the direction of the unit vector along the symmetry axis s (note
that s = e′

1). We also express the orientation using the spherical coordinate angles θ and
φ such that s = (s1, s2, s3) = (sin θ cos φ, sin θ sin φ, cos θ) according to figure 2.

The (dimensional) background flow is given by u∗
bg(x) = (1/2)γ̇ ′l2x2

2e1, where (1/2)γ̇ ′
is the curvature of the velocity profile. The local shear rate at the particle position
thus becomes γ̇L(x∗

CM,2) = γ̇ ′|x∗
CM,2|. As a global time scale in this flow problem, we

choose γ̇ −1
G = [γ̇L(x∗

CM,2 = l)]−1 = (γ̇ ′l)−1. With these spatial and temporal scalings, the
non-dimensional form of the background flow becomes

ubg(x) = 1
2 x2

2e1. (2.2)

We assume that fluid inertia is neglected, i.e. that the local particle Reynolds number
Rep,L(xCM,2) = ρf γ̇

′l3|xCM,2|/μ is zero (ρf is the fluid density, μ is the fluid dynamic
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viscosity), so that the flow is governed by the incompressible Stokes equations

∇ · u = 0,

∇p = ∇2u,

}
(2.3)

where u is the fluid velocity and p is the pressure. These equations are
non-dimensionalized using characteristic length l, time (γ̇ ′l)−1 and pressure μγ̇ ′l. The
boundary conditions of the problem are that the background flow is obtained far away
from the particle, i.e.

lim
|x|→∞

(u(x, t) − ubg(x)) = 0, (2.4)

and that there is no slip of the fluid on the particle surface Γ , i.e.

u(x, t) = V + ω × (x − xCM), x ∈ Γ, (2.5)

where V is the (non-dimensional) velocity of the particle centre of mass located at xCM
and the (non-dimensional) particle angular velocity is ω. The motion of the particle is
determined by the non-dimensional equations of motion

F = Sttrans.ΦV̇ ,

M = Strot.[Iω̇ + ω × (Iω)],

}
(2.6)

where F is the non-dimensional force, M is the non-dimensional torque and I is the
non-dimensional inertial tensor, which are scaled by the characteristic force μγ̇ ′l3,
torque μγ̇ ′l4 and inertial tensor element ρpl5, respectively. Here, ρp is the density
of the spheroidal particle, and Φ = (4π/3)r−2

p is the non-dimensional volume of the
particle. In (2.6), Sttrans. and Strot. are the Stokes numbers characterizing the translational
and rotational inertia of the particle, respectively. When deriving the non-dimensional
equations of motion using the characteristic quantities mentioned above, these numbers
will have the same value, namely

Sttrans. = Strot. = StG := ρp

ρf
Rep,L(xCM,2 = 1) = ρpγ̇

′l3

μ
, (2.7)

where StG is called the global Stokes number. Later, in § 5.2, we will permit Sttrans.
and Strot. to have separate values, but initially they will have the same value and be set
according to (2.7).

Note that in order for the local Reynolds number Rep,L(xCM,2) to be negligible, while
the local Stokes number StL(xCM,2) := ρpγ̇

′l3|xCM,2|/μ is significant, the solid-to-fluid
density ratio must fulfil ρp/ρf � 1. Of course, this condition will cause the particle to
sediment in the presence of gravity. Initially in this study, we will neglect gravitational
effects, but these will be discussed in § 7.

3. Method

3.1. Boundary integral formulation
For StG > 0, the equations of motion (2.6) are solved using Matlab’s ordinary differential
equation solver ode113 with relative tolerance 10−8. The force F and torque M are
computed numerically from the position, orientation and velocity of the particle at every
time step using a boundary integral formulation based on Power & Miranda (1987) and
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Gonzalez (2009). In this formulation, the flow field in the fluid domain Df is expressed as
integrals over the particle surface Γ

u(x, t) = D[Γ, q](x) + V[xCM, F , M](x) + ubg(x), x ∈ Df . (3.1)

Here, the Stokes double layer potential D with density q is given by (Einstein’s summation
convention is used here, with all indices ranging over {1, 2, 3})

Di[Γ, q](x) =
∫

Γ

T ijk(x − y)qj(y)nk(y) dSy, T ijk(r) = −6
rirjrk

|r|5 . (3.2a,b)

The completion flow V is needed to represent the force and torque, and is given by

Vi[xCM, F , M](x) = 1
8π

(Cij(x − xCM)Fj + H ij(x − xCM)Mj),

Cij(r) = δij

|r| + rirj

|r|3 , H ij(r) = εijkrk

|r|3 ,

⎫⎪⎬
⎪⎭ (3.3)

where δij is the Kronecker delta and εijk is the alternating symbol.
By letting x go to Γ in (3.1) and using the no-slip condition together with a jump

property of D, one arrives at a boundary integral equation for q

−4πq(x) + D[Γ, q](x) + V[xCM, F , M](x) = V + ω × (x − xCM) − ubg(x), x ∈ Γ,

(3.4)

which is closed using the relations

F =
∫

Γ

q(y) dSy, M =
∫

Γ

q(y) × (y − xCM) dSy. (3.5a,b)

For details we refer to af Klinteberg & Tornberg (2016).
For StG = 0, which corresponds to a massless particle, the solution procedure is

different since we know from (2.6) that F = M = 0. In this case, (3.4) must instead
be solved for the velocities V and ω, for which relations similar to (3.5a,b) hold (see
af Klinteberg & Tornberg 2016).

Hence, the flow field produced by (3.1) is the solution to the Stokes equations (2.3),
given that the density q solves (3.4).

3.2. Discretization and quadrature by expansion
The boundary integral equation (3.4) is discretized using the Nyström method (Atkinson
1997, ch. 4), which enforces the equation at the grid points of the discretized particle
surface, shown in figure 3. We use the trapezoidal rule with equidistant points in the
periodic direction (along a circle of latitude) and an nθ -point Gauss–Legendre quadrature
rule in the non-periodic direction (along a meridian). This choice gives us spectral
accuracy for smooth and well-resolved integrands on the particle surface (af Klinteberg
& Tornberg 2016).

Applying the quadrature rule directly to the integral equation (3.4) is problematic for
two reasons. Firstly, the integration kernel of the double layer potential (3.2a,b) is singular
when the evaluation point x coincides with a point y on the boundary, and can therefore not
be handled by a quadrature rule for smooth functions. Moreover, when (3.1) is evaluated
in a point x which is close to the boundary, but not on it, the integration kernel of
(3.2a,b) is sharply peaked, which causes a significant loss of accuracy close to the particle
surface. We use a recent method called quadrature by expansion (QBX) to treat both of
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Figure 3. The spheroidal grid. Due to symmetry it is enough to store precomputed matrices for the nθ /2 grid
points along the first half-meridian, marked with circles.

yc

Df Df
c

r Γ

(a) (b)

Figure 4. (a) An expansion around a point c is valid within its ball of convergence of radius r and can be used
to evaluate the double layer potential at exactly one point yc on the boundary. (b) For every grid point on the
boundary we create an inner and an outer expansion centre.

these problems. The idea behind this method is described briefly below; for a detailed
description, we refer to af Klinteberg & Tornberg (2016).

QBX is based on the observation that the double layer potential D is a smooth function
away from the boundary. To avoid the problems close to the boundary, we can create a
local expansion of D around a point c away from the boundary. This expansion can be
used to evaluate D at exactly one point on the boundary, as shown in figure 4. To solve
the integral equation we thus need one expansion centre for every grid point. Since D
has different limits from the interior and the exterior, we use both an inner and an outer
expansion centre and compute the potential DQBX as an average to get the value on Γ .

There exist matrices Dj such that DQBX[Γ, q](xj) = DjQ for each grid point xj on the
surface, where Q is a vector containing the values of the density q in all grid points.
The matrices Dj depend only on the geometry of the spheroid and can be precomputed;
the result can be seen as a regular but target-specific quadrature rule. Due to rotational and
mirror symmetry, it is sufficient to store matrices for the nθ /2 grid points along the first
half meridian, shown in figure 3. The precomputation allows the method to be both fast
and accurate, since precomputation can be done once with high accuracy and the result is
reused in every time step.

3.3. Validation
The method has been validated against test cases for both inertial and massless particles,
in linear shear flow and the quadratic background flow considered here. The analytical
solutions in these cases are provided by Jeffery (1922) and Chwang (1975); the validation is
further described in Bagge (2016). Using the parameters given in Appendix A, the relative
errors are below 10−6 in all test cases.
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Figure 5. Trajectories of a particle with rp = 3 and StG = 50, initialized at rest with an oblique orientation at
xCM = (0, 1, 0); (a) trajectory of centre xCM ; (b) trajectory of endpoint s, ignoring translation of the centre;
(c) trajectory of endpoint including translation, i.e xCM + s.

4. Results

We start by considering a prolate spheroid of rp = 3 and StG = 50 initialized at rest at
position xCM = (0, 1, 0) with a slightly oblique orientation. The trajectories of the particle
translation and orientation are illustrated in figure 5. The orientation of the particle is
clearly drifting towards a rotation around its minor axis, an intermittent rotation that we
call tumbling. This is the same type of behaviour seen in a simple shear flow by Lundell &
Carlsson (2010). What is more striking is what is happening to the translational motion of
the particle. After an initial transient the particle ends up laterally drifting towards regions
of higher shear.

To quantify the observed drift, we consider a particle of rp = 3 that is initialized
at position xCM = (0, 1, 0) with velocity V = ubg(xCM), aligned in the flow-gradient
direction, i.e. at s = (0, 1, 0) with zero angular velocity. Note that at the given initial
position, the local and global Stokes numbers are the same, i.e. StG = StL(xCM,2 = 1).
The particle is then free to both rotate and translate up until t = 80. This is repeated for a
number of different StG in the range StG ∈ [0, 100]. The resulting trajectory of the particle
centre of mass is shown in figure 6. While the spheroid with no inertia (StG = 0) does
not show any lateral motion at all, as soon as there is particle inertia, the particle starts
to migrate in positive x2-direction, i.e. towards higher shear. Note, that the trajectories
are plotted as function of the global time scale even though the local relevant time scale is
changing (due to increasing local shear) with xCM,2. However, this effect is negligible since
the particle has not moved significantly in the x2-direction at t = 80. For all StG studied
here, the particle assumes its final state (a periodic rotation) quite quickly after an initial
transient while the particle is accelerating to the surrounding flow. The final average lateral
drift velocity Vdrift = 〈V2〉 for each StG is seen to be constant, and is estimated by fitting
a linear function to xCM,2(t) between times t = 20 and 80 as seen by the dashed lines in
figure 6. From the figure it is also evident that there is a critical Stokes number Stc ≈ 30
such that Vdrift has a maximum value when StG = Stc. At StG ≤ 30 (figure 6a) the drift
velocity Vdrift is increasing with StG while at StG ≥ 30 (figure 6b), Vdrift is decreasing
with StG.

Considering now a particle with different aspect ratios rp = 1, 2, 3, 4 at StG = 50 in
figure 7(a), we find that a spherical particle, as expected, has no lateral drift. As soon as
the particle gets a prolate shape, it gets a constant drift velocity, which at StG = 50 is
increasing with rp. In figure 7(b), the final drift velocity Vdrift is plotted as function of StG
for the different rp and we find that both the maximum Vdrift,max and the Stokes number
Stc where this occurs are indeed increasing with rp.

As previously mentioned, if we would release the particle at different heights xCM,2
in the flow, the particle would experience different shear rates and the relevant time
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Figure 6. Illustration of the inertial drift of a particle with rp = 3 at (a) StG ≤ 30 and (b) StG ≥ 30. Dashed
lines indicate average (fitted) slopes.
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Figure 7. Inertial drift velocity Vdrift as a function of aspect ratio rp; (a) position vs time; (b) Vdrift vs StG at
various rp.

scale would change. In this case the local StL = |xCM,2|StG depends on lateral position
in the flow, which in turn determines the drift velocity. To demonstrate this, we released
the particle of rp = 3 at two more locations xCM,2 = 1/2 and xCM,2 = 2. We can see in
figure 8(a) that Vdrift is only dependent on StL as all the curves collapse when the velocity
is plotted vs this parameter. Consequently, there will always be a particle position in
the channel xCM,2 = xCM,2,c where we have a maximum drift velocity, which is where
StL(xCM,2,c) = Stc. If we e.g. start at |xCM,2| < 1, we will always eventually reach this
position since the particle is drifting towards regions of higher shear. Eventually, the drift
will vanish as StL → ∞, which is demonstrated in figure 8(b) where the results of Vdrift at
very high StL are illustrated.

5. Discussion

The previous section has shown the results that particle inertia is sufficient to cause
a lateral drift of a particle in a quadratic velocity profile. The source of the resulting
translational and rotational motion will be discussed in this section.
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Figure 8. (a) The drift velocity Vdrift as a function of local StL(xCM,2) for different initial heights and rp = 3;
figure shows that Vdrift is only dependent on the local StL(xCM,2), with a maximum at StL(xCM,2,c) = Stc;
(b) the drift velocity Vdrift at very high values of StL.

5.1. Without inertia
Jeffery (1922) and Lamb (1932) present expressions for the force F 0 and torque M0
on a translating and rotating spheroidal particle in a quiescent fluid, while Chwang
(1975) derived expressions for the force F Chw and torque MChw on a non-translating
and non-rotating spheroidal particle in a paraboloidal velocity profile. One important
thing to note is that the results by Chwang (1975) were derived for a paraboloidal profile
uChw

bg (x) = (1/2)(x2
2 + x2

3)e1. By adjusting these results, we can express the force F par

and torque Mpar valid for the parabolic background velocity profile considered here
ubg(x) = (1/2)x2

2e1. This derivation is given in Appendix B (it turns out that the torque is
the same in both cases, Mpar = MChw).

Through the principle of superposition, the total force and torque on a moving and
rotating spheroidal particle in a parabolic velocity profile in the absence of fluid inertia
can be found by combining the adjusted results by Chwang (1975) with the expressions of
Jeffery (1922) and Lamb (1932), i.e. F = F 0 + F par and M = M0 + Mpar. If we want to
study the free motion of the spheroid with no particle inertia (Sttrans. = Strot. = 0 in (2.6)),
the resulting force F and torque M are set to zero.

5.1.1. Rotation without inertia
Let us now consider a particle that is oriented in the flow-gradient plane (θ = π/2). The
torque on a spheroidal particle rotating in the flow-gradient plane with angular velocity φ̇

in a quiescent fluid is given in non-dimensional form by Jeffery (1922) as

M0(φ̇) = −16π

3

r2
p + 1

K1r2
p + K2

φ̇e′
2, (5.1)

where

K1 =
∫ ∞

0

dβ

(1 + β)3/2(r−2
p + β)

, K2 =
∫ ∞

0

dβ

(1 + β)1/2(r−2
p + β)2

. (5.2a,b)
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The torque on a stationary particle with orientation φ and location xCM in a parabolic
velocity profile is given through the (non-dimensional) expression by Chwang (1975) as

Mpar(φ, xCM) = −32π

3
E3(1 − E2 cos2 φ)

−2E + (1 + E2) log[(1 + E)/(1 − E)]
xCM,2e′

2, (5.3)

where E =
√

1 − r−2
p is the eccentricity of the spheroid.

The total torque on the particle rotating arbitrarily in a parabolic velocity profile is
given by M = M0 + Mpar. The resulting expression is actually exactly equivalent to
the expression by Jeffery (1922) in a linear shear flow. The conclusion drawn already
by Chwang (1975) is thus that the quadratic terms in the background flow do not affect the
particle rotation. Consequently, the particle without rotational inertia (Strot. = 0), which
rotates according to the solution of M = 0, will just rotate according to the local shear
rate in an intermittent tumbling motion described by Jeffery (1922) as

φ̇(φ, xCM) = |xCM,2|
r2

p sin2 φ + cos2 φ

r2
p + 1

. (5.4)

The rotational period is given by

TJ = 2π

|xCM,2|(rp + r−1
p ). (5.5)

5.1.2. Translation
The force on a spheroidal particle moving with instantaneous velocity V and orientation
φ in a quiescent fluid is given by Lamb (1932) as

F 0(V , φ) = −16πK(φ)V , (5.6)

where the tensor K in the body-fixed coordinate system (equivalent to φ = 0) is given by

K(0) =
⎛
⎝(K0 + K1)

−1 0 0
0 (K0 + K2r−2

p )−1 0
0 0 (K0 + K2r−2

p )−1

⎞
⎠ , (5.7)

with

K0 =
∫ ∞

0

dβ

(1 + β)1/2(r−2
p + β)

. (5.8)

If φ /= 0, the tensor will simply be transformed according to K(φ) = R(φ)K(0)R−1(φ)

with the rotation matrix R.
The force on a stationary particle with orientation φ (between s and uCM) and location

xCM in a parabolic velocity profile is given through the adjusted expression by Chwang
(1975) (see Appendix B) as

F par(φ, xCM) = 8πE3 cos φ

3

3x2
CM,2 + 1 − E2 cos2 φ

−2E + (1 + E2) log[(1 + E)/(1 − E)]
e′

1

− 16πE3 sin φ

3

3x2
CM,2 + 1 − E2 cos2 φ

2E + (3E2 − 1) log[(1 + E)/(1 − E)]
e′

2. (5.9)

The total force on the particle arbitrarily translating and rotating in a parabolic velocity
profile is given by F = F 0 + F par. If the particle is oriented with an angle φ and free
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to translate in the absence of translational inertia (Sttrans. = 0), the velocity that satisfies
F = 0 is given by

V (φ, xCM) = 1
6 (3x2

CM,2 + 1 − E2 cos2 φ)e1. (5.10)

The particle has a velocity in the flow direction, which depends on the instantaneous angle
φ. If the particle is free to rotate without rotational inertia, it will perform an intermittent
tumbling motion according to (5.4). Consequently, this thus results in an intermittent
translational motion in the flow direction.

5.2. Adding inertia

5.2.1. Only rotational inertia
Although not easily achievable in practice, let us now consider the case where Strot. > 0
but translational inertia is neglected Sttrans. = 0. Since we know from the expressions
above that the translational motion is only in the flow direction in the absence of
translational inertia and the rotational motion is only dependent on the motion in the
gradient direction, the translation will not influence the particle rotation. With added
rotational inertia, the particle will thus behave exactly according to Lundell & Carlsson
(2010), where the instantaneous torque during the final rotational motion typically is
non-zero but fulfils

∫ T
0 Mdt = 0 for the rotational period T . At extremely large Strot. →

∞, the particle will rotate with a constant angular velocity φ̇ = −0.5|xCM,2| and period
TH = 4π/(|xCM,2|) as the particle inertial forces overcome viscous forces from the
surrounding fluid. A critical rotational Stokes number St0.5 was introduced by Lundell
& Carlsson (2010) to describe the transition. This number is defined as the Strot. where
the tumbling period is T = (TJ + TH)/2. With corrections given by Nilsen & Andersson
(2013), this number can be found through

St0.5 = 20[0.7 + 0.3[1 − ε2]5/8)]
Λ[K1 + ΛK2]

, (5.11)

with

ε = r2
p − 1

r2
p + 1

, Λ = 1 − ε

1 + ε
. (5.12a,b)

Lundell & Carlsson (2010) also found that the particle initially oriented out of the
flow-gradient plane always still drifted towards the tumbling motion due to the centrifugal
forces on the particle. The rate of this orbit drift was seen to be close to maximum when
Strot. = St0.5. Interestingly, the critical rotational Stokes number St0.5 for maximum orbit
drift seems to scale similarly with aspect ratio as the critical translational Stokes number
Stc for the lateral drift as illustrated in figure 9. This indicates that the maximum lateral
drift also arises in the transition when inertial forces overcome viscous damping.

The fact that the instantaneous torque on the particle is exactly represented by the
solutions by Jeffery (1922) is also confirmed by the Stokes flow simulations in the present
work. In figure 10, we plot the torque M3 on the particle as a function of orientation φ

and angular velocity φ̇. Furthermore, we superimpose the trajectories of the numerical
simulations from our results at higher StL = Strot. = Sttrans.. Here, we can clearly see how
the particle travels through regions of both positive and negative torque during a rotation
and approaching constant angular velocity φ̇ = −0.5|xCM,2| as StL increases. We find in
the numerical simulations also that the translational inertia has no effect on the rotation,
except for the fact that the lateral drift changes the local time scale (through the local shear
rate) and thus also the local Stokes number StL.
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Figure 9. The critical Stokes numbers Stc and St0.5 as functions of rp.
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Figure 10. Torque M3 given on a particle (rp = 3) in a quadratic flow at xCM,2 = 1 with no translational
velocity in a tumbling orbit (s3 = cos θ = 0) as function of orientation φ and angular velocity φ̇; the solid,
dashed and dotted lines show the superimposed path of a particle that is free to translate at StL = 0, 50 and
100, respectively.

5.2.2. Adding translational inertia
With no translational inertia, the particle moves with oscillating V1-velocity (V2 = 0)
corresponding to F = 0. The oscillation period corresponds to the oscillation period of φ.

With added rotational inertia (still no translational inertia) as we observed previously,
there will be a different oscillation period, but V1 is still given by the F = 0 solution, which
does not imply any lateral drift (V2 = 0). With added translational inertia (no rotational
inertia) the particle will be slow to react to the forces and the particle will typically
experience non-zero forces but eventually leading to a translational motion that fulfils∫ T

0 F dt = 0. This solution actually has V2 /= 0 and the particle will drift laterally.
With added rotational inertia, the oscillation period of the velocity will decrease as the

oscillation period of φ will decrease. The fact that the instantaneous force on the particle
is exactly represented by the analytical expressions of F = F 0 + F par is confirmed in
the present Stokes flow simulations. In figure 11, we illustrate the instantaneous forces
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Figure 11. Forces given on a particle (rp = 3) with fixed orientations of a tumbling orbit (s3 = cos θ = 0) as
functions of orientation φ and streamwise velocity V1; the solid, dashed and dotted lines show the superimposed
path of a particle that is free to translate at StL = 0, 50 and 100, respectively: (a) force component F1 parallel
to flow; (b) force component F2 normal to flow.

Strot. = 1 Strot. = 30 Strot. = 300

Sttrans. = 1 1.1 × 10−4 1.2 × 10−4 1.8 × 10−4

Sttrans. = 30 1.3 × 10−3 1.4 × 10−3 1.7 × 10−3

Sttrans. = 300 2.8 × 10−4 3.3 × 10−4 2.5 × 10−4

Table 1. The final lateral velocity Vdrift for different combinations of Sttrans. and Strot. for a particle with
rp = 3.

parallel (F1) and normal (F2) to the flow, for a given orientation φ and streamwise
velocity difference V1 − ubg,1(xCM,2). Superimposed, we again plot the trajectories of the
numerical Stokes flow simulations at higher StL = Strot. = Sttrans.. Here, we can again
observe how the particle travels through regions of positive and negative forces, and that
the velocity oscillations will decrease in amplitude and approach a constant velocity as StL
is increased.

To really conclude what is causing the drift, additional simulations were performed
where Sttrans. was varied independently from Strot.. The resulting drift velocities Vdrift after
the initial transient are summarized in table 1. It is found that Vdrift is mainly dependent
on the translational inertia of the particle. Even though the oscillation period changes, the
effect of Strot. at a constant Sttrans. is almost negligible.

It is also quite clear what will happen with oblate spheroids. Since the inertial oblate
spheroid will drift towards a rotation around its symmetry axis, there will be no ‘jerk’ in
the translational motion, the force will be the same regardless of rotational phase and the
particle will assume the velocity corresponding to zero force. There will thus not be any
lateral motion for oblate particles.

5.3. Additional remark
The present results of the numerical Stokes flow simulations have demonstrated that the
flow problem can be completely analysed analytically by integrating the equations of
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motion (2.6) using the force and torque expressions by Jeffery (1922) and Lamb (1932)
and the modified expressions by Chwang (1975) in (5.1)–(5.3) and (5.6)–(5.9). The QBX
method, however, can be utilized in the future for more complicated flow problems, e.g.
including complex geometries, where analytical solutions are difficult to obtain.

6. Consequences for simulations with Lagrangian particles

The fact that there is an additional force that arises from the second spatial derivative of
the velocity also has consequences for LPT methods. In these schemes, the force on the
particle is calculated by knowing the (dimensional) velocity difference ΔU∗ = u∗

CM −
V ∗ between the particle and the undisturbed fluid. Similarly, the torque is found only
through the orientation and the local velocity gradients, i.e. the first spatial derivatives of
the velocity. The second spatial derivative was seen here to only affect the translation and
not the rotation. So how can we evaluate if this contribution to the force is relevant?

Consider a particle in a Lagrangian frame centred on the particle with flow direction e1
and gradient direction e2 with constant curvature of the velocity profile given by γ̇ ′. The
particle experiences the velocity ΔU∗ and will thus have dimensional force contribution
according to Lamb (1932) as

F ∗
ΔU = 16πμlK(φ)ΔU∗. (6.1)

Since the Lagrangian frame is always centred on the particle, the force contribution due
to the second spatial derivative of the velocity will be equivalent to setting xCM,2 = 0 in
(5.9). The dimensional result thus becomes

F ∗
curv. = 16πμlγ̇ ′l2

1 − E2 cos2 φ

3

(
cos φ

e′
1

2A1
− sin φ

e′
2

A2

)

= 16πμlγ̇ ′l2
1 − E2 cos2 φ

3
K(φ)e1, (6.2)

where A1 = (−2E + (1 + E2) log[(1 + E)/(1 − E)])/E3 and A2 = (2E + (3E2 − 1)

log[(1 + E)/(1 − E)])/E3 are parameters determined by the particle geometry.
Furthermore, all geometry dependent parameters K , E, A1 and A2 are O(1) for moderate
aspect ratios. In order to neglect the contribution of the velocity curvature in an LPT
simulation when calculating the force, the condition |γ̇ ′|l2/|ΔU∗| � 1 should thus hold.

As a final remark, it is likely that there is a similar correction to the rotation by taking
into account the third spatial derivative of the velocity.

7. Effects of gravity

In order to determine to what extent the drift mechanism scrutinized above will be relevant
in a physically realizable system on Earth, it must be compared with the effect of gravity.
For inertial particles in Stokes flow, gravity can induce a sideways drift already under
the assumption of linear shear (without curvature), shown by Broday et al. (1998). This
drift appears since oblique particles sediment sideways and intermediate inertia gives
non-symmetric angular distributions.
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Figure 12. (a,b) Particle motion for a particle with rp = 3, StG = 30 and gravity parallel (a) and normal (b)
to the flow direction. In (c,d), the sideways drift, obtained from the slopes indicated with dashed lines in
(a,b), is shown as a function of non-dimensional gravity g for both directions of gravity. Magnifications of the
neighbourhood around g = 0 are shown as insets.

In figure 12, the effect of gravity is investigated. In (a) and (b), the particle motion is
shown at different levels of non-dimensional gravitational force

g = ρpΦG
μγ̇ ′ , (7.1)

where G is the physical (dimensional) gravitational acceleration, and the other parameters
are as introduced in § 2. The particle motion is shown for aspect ratio rp = 3 and Stokes
number StG = 30 (at which the curvature-induced drift is approximately maximal for this
aspect ratio). From the particle motions, the sideway drift can be determined as a function
of g, as shown in (c,d). Due to the curvature-induced drift, the net drift is not 0 for g = 0. In
fact, for aspect ratio rp = 3, the curvature-induced drift is seen to dominate for |g| < 0.014
with gravity normal to the flow direction and |g| < 0.72 for gravity parallel to the flow
direction. The critical gravities for other aspect ratios are shown in table 2.

The question which immediately follows is under what conditions |g| < 0.72 can be
obtained. Simultaneously, the Reynolds number

Resed = ρf Usedl
μ

, (7.2)
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lcrit,‖ [m] Resed
StG gcrit,‖ gcrit,⊥ for ρp = 1000 kg m−3 for ρp = 1000 kg m−3

rp for max drift parallel normal and G = 10 m s−2 at gcrit,‖

2 13 1.4 −0.012 8.3 × 10−6 4.3 × 10−5

3 30 0.72 −0.014 1.1 × 10−5 5.2 × 10−5

4 55 0.48 −0.014 1.5 × 10−5 6.3 × 10−5

5 88 0.33 −0.013 1.8 × 10−5 6.9 × 10−5

10 321 0.16 −0.0098 3.4 × 10−5 1.2 × 10−4

20 968 0.11 −0.0065 6.9 × 10−5 2.5 × 10−4

Table 2. Critical gravities and particle half-lengths for different aspect ratios rp at the Stokes number StG
inducing close to maximal drift. Columns 3–4 show the critical gravity (defined as the gravity yielding zero
drift velocity, cf. figure 12(c,d) with gravity acting parallel and normal to the flow direction, respectively.
Column 5 shows the particle half-length corresponding to g = gcrit,‖, ρp = 1000 kg m−3 and G = 10 m s−2 in
(7.5). Column 6 shows the corresponding Reynolds number due to sedimentation, from (7.6).

due to sedimentation must be small for the creeping condition to be satisfied. The
sedimentation velocity Used is estimated from the vertical force balance between buoyancy
and gravity (cf. (6.1)), assuming K to be of O(10) (this has been verified numerically)

(ρp − ρf )Φl3G ≈ 160πμlUsed. (7.3)

Assuming ρf � ρp and inserting the non-dimensional volume Φ = (4π/3)r−2
p of a

spheroid, as well as the definition (2.7) of StG, the above equations can be rearranged
to give

Resed ≈ ρpρf l3G
120μ2r2

p
, (7.4)

and

g = 4πρ2
p l3G

3r2
pμ

2StG
. (7.5)

Note that both g and Resed are functions of l3G. Solving (7.5) for l3G and inserting into
(7.4) yields

Resed ≈ ρf StGg
160πρp

. (7.6)

With the fluid taken as air at normal conditions (μ = 1.8 × 10−5 Pa s, ρf = 1.2 kg m−3)
and considering the case rp = 3, StG = 30, the relations (7.5) and (7.6) can be summarized
as in figure 13. In (a), the critical gravitational acceleration G (corresponding to g =
gcrit,‖ = 0.72) is shown as a function of l for different particle densities ρp. The critical
G is less than the approximately 10 m s−2 that we have on the surface of Earth, except
for small particles (e.g. l = 10 μm, ρp = 1000 kg m−3). For heavier and larger particles,
lower levels of gravity, such as on the international space station, are necessary for the
curvature-induced drift to dominate over gravity. In figure 13(b), Resed at the critical
gravity gcrit,‖ is shown as a function of ρp. Since Resed � 1 for all ρp shown, the creeping
flow condition is not violated for the conditions in (a).
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Figure 13. (a) Critical value of the gravitational acceleration G as a function of particle size l (cf. (7.5)
with g = gcrit,‖). The solid lines are rp = 3 and ρp = 100, 1000 and 10000 kg m−3 for blue, red and yellow,
respectively. The dash-dotted line is rp = 10, ρp = 1000 kg m−3. The new drift mechanism dominates below
the lines. The horizontal black line indicates G = 10 m s−2. (b) Resed at the critical gravity gcrit,‖ as a function
of ρp (cf. (7.6) with g = gcrit,‖). The lines are rp = 3 (blue) and rp = 10 (red).

8. Conclusions

In this work we have investigated a new shape-selective drift mechanism which applies to
inertial prolate ellipsoidal particles in a parabolic velocity profile. The results are derived
with the assumption that inertia of the fluid flow around the particle is negligible. The
work can thus be viewed as a direct continuation of the work by Chwang (1975) to account
for particle inertia.

It is found that non-sphericity, particle inertia and the quadratic profile contribute to a
lateral drift towards regions of higher shear. The particle inertial effects are governed by
the local Stokes number StL based on the local shear rate. In the absence of inertia (StL =
0), when the particle is aligned in the flow-gradient plane, it assumes an intermittent
tumbling motion where the angular velocity depends on the angle. This intermittent
rotation is determined only by the local shear rate and described in detail by Jeffery (1922).
This causes the particle in the parabolic profile to have an intermittent streamwise velocity
depending on the instantaneous orientation (Chwang 1975).

With higher StL, the particle behaves exactly as expected in a linear shear flow according
to the results by Lundell & Carlsson (2010). However, due to its translational inertia, the
particle is not quick enough to adapt to the non-zero forces during a particle rotation.
The final trajectory of the particle, when the impulse during a rotational period is zero,
describes a translational motion with a lateral drift. At very high StL, the particle will
approach a rotation with constant angular velocity and also a translation with constant
velocity, and the lateral drift vanishes.

If the particle is not initially oriented in the flow-gradient plane it will drift towards
such an orbit. Since the particle is seen to have angular dynamics which are identical to
a particle in simple shear, we know from Lundell & Carlsson (2010) that the maximum
orbit drift occurs at StL ≈ St0.5. The critical value of St0.5 is defined when particle inertia
overcomes viscous damping and can be found analytically, see (5.11). We find furthermore
that this critical number also predicts when we can expect the maximum lateral drift.
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Since the particle tends to migrate towards regions of larger shear, we know that a particle
released at a position where StL < St0.5 will reach both a position where StL ≈ St0.5 with
a maximum drift angle (angle between particle velocity and flow direction) and later have
a decreasing drift angle as the particle migrates further in the lateral direction.

The maximum lateral drift velocity was found to be dependent on the particle aspect
ratio, with higher drift for larger aspect ratio rp. However, since the intermittent tumbling
motion is essential to have this type of drift, inertial oblate particles and spheres (rp ≤ 1)
are not affected by this drift since they preferably rotate in a non-intermittent state.

Although the results were found through simulations of the Stokes flow using the
numerical QBX method, it is found that the forces and torques on the particle are exactly
represented by the analytical expressions by Lamb (1932) and the modified expressions
of Chwang (1975) (with modifications presented in Appendix B). This means that the
equations of translational and rotational motion can be directly integrated using these
expressions to arrive at the same conclusions as in the present work. The strength in the
QBX method lies mainly in the fact that we can additionally use the same method for
studying other flow problems where analytical solutions are more difficult to obtain, for
example having multiple particles and wall-bounded flow through complex geometries.

In LPT methods, the force on the particle is usually calculated using only the
instantaneous velocity difference ΔU∗ between the particle and the undisturbed fluid.
Here, it is demonstrated that there is also a contribution to the force from the curvature
of the velocity profile γ̇ ′, and that |γ̇ ′|l2/|ΔU∗| � 1 must hold for this contribution to be
negligible.

Finally, it is known from recent work (e.g. Einarsson et al. 2015a,b) that fluid inertial
effects are dominating over particle inertial effects for spheroidal particles of same density
as the surrounding fluid. The consequence is that we can only neglect fluid inertia, if the
local Stokes number StL is much larger than the local Reynolds number Rep,L � 1, i.e.
the solid-to-fluid density ratio must be large. In the presence of gravity this will cause the
particles to sediment, and we proceeded to investigate under what circumstances the new
drift would dominate over gravitational effects. We find that the new drift is more likely to
dominate when particles are small and light, and when the flow is vertical, i.e. parallel to
the direction of gravity. As an example, on Earth, particles of density 1000 kg m−3 moving
through air would need to be smaller than around 10 μm for the new drift to be able to
dominate over gravity.
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Appendix A. QBX parameters

The parameters used are given in table 3. Here, nφ and nθ are the number of grid points
on the spheroid in the periodic and non-periodic direction, respectively (as explained
in § 3.2); r/h controls the distance from each expansion centre to the particle surface
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nφ = 16
nθ = rpnφ

r/h = 0.6
κ = 30
p = 30

Tolerance for gmres = 10−12

Tolerance for ode113 = 10−8

Table 3. Parameters used for the QBX method.

(h = 2πlr−1
p /nφ); κ is the upsampling factor of the grid; p denotes the order of the

expansions. The Matlab functions gmres and ode113 are used for solving systems of linear
equations and ordinary differential equations, respectively. For a more detailed explanation
of these parameters, we refer to af Klinteberg & Tornberg (2016).

Appendix B. Derivation of the force in a parabolic velocity profile

Chwang (1975) uses a paraboloidal flow uChw
bg (x) = (1/2)(x2

2 + x2
3)e1, which leads to the

force F Chw = F 0 + F par
Chw, where F 0 is as in (5.6) and

F par
Chw(φ, xCM) = 8πE3 cos φ

3

3x2
CM,2 + 2 − E2 − E2 cos2 φ

−2E + (1 + E2) log[(1 + E)/(1 − E)]
e′

1

− 16πE3 sin φ

3

3x2
CM,2 + 2 − E2 − E2 cos2 φ

2E + (3E2 − 1) log[(1 + E)/(1 − E)]
e′

2. (B1)

By adjusting the derivation by Chwang (1975) to the parabolic flow ubg(x) = (1/2)x2
2e1

used in this paper, we find that the force is F = F 0 + F par as in § 5.1.2. The torque on
the particle is unaffected by the quadratic terms and is thus the same in the parabolic flow
ubg(x) and the paraboloidal flow uChw

bg (x), given by (5.3) in both cases.
Chwang (1975) found that a particle with Sttrans. = 0 moving in the paraboloidal flow

uChw
bg (x) will have the velocity

V Chw(φ, xCM) = 1
6 (3x2

CM,2 + 2 − E2 − E2 cos2 φ)e1. (B2)

In the parabolic flow ubgx the velocity V is instead given by (5.10). Note that the difference

V Chw − V = 1
6 (1 − E2)e1, (B3)

is independent of φ and xCM .
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