TAUBERIAN- AND CONVEXITY THEOREMS FOR CERTAIN (N, p, q)-MEANS

RÜDIGER KIESEL AND ULRICH STADTMÜLLER

Abstract

The summability fields of generalized Nörlund means ($N, p^{* \alpha}, p$), $\alpha \in$ \mathbf{N}, are increasing with α and are contained in that of the corresponding power series method (P, p). Particular cases are the Cesàro- and Euler-means with corresponding power series methods of Abel and Borel. In this paper we generalize a convexity theorem, which is well-known for the Cesàro means and which was recently shown for the Euler means to a large class of generalized Nörlund means.

1. Introduction. We consider throughout complex sequences $\left(s_{n}\right)$ and discuss the relations of certain summability methods.

We say a sequence (s_{n}) of complex numbers is summable to s by the
(i) Cesàro-method of order $\alpha>-1$, briefly $s_{n} \rightarrow s\left(C_{\alpha}\right)$, if

$$
\frac{1}{\binom{n+\alpha}{n}} \sum_{k=0}^{n}\binom{n-k+\alpha-1}{n-k} s_{k} \rightarrow s \quad(n \rightarrow \infty) ;
$$

(ii) Euler-method of order $0<p \leq 1$, briefly $s_{n} \rightarrow s\left(E_{p}\right)$, if

$$
\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} s_{k} \rightarrow s \quad(n \rightarrow \infty)
$$

(iii) Abel-method, briefly $s_{n} \rightarrow s(A)$, if

$$
f(t)=(1-t) \sum_{n=0}^{\infty} s_{n} t^{n} \quad \text { exists for } 0<t<1 \text { and } f(t) \rightarrow s(t \rightarrow 1-)
$$

(iv) Borel-method, briefly $s_{n} \rightarrow s(B)$, if

$$
g(t)=e^{-t} \sum_{n=0}^{\infty} \frac{s_{n}}{n!} n^{n} \quad \text { exists for } t \in \mathbb{R} \text { and } g(t) \rightarrow s(t \rightarrow \infty)
$$

The Cesàro- and Abel-method resp. the Euler- and Borel-method are known to be closely related, see [9, 17, 19].

Especially the following Abelian inclusions are well known, see e.g. [9; Theorems 43, $55,118,128]$

$$
\begin{aligned}
& \text { for }-1<\alpha \leq \beta: s_{n} \rightarrow s\left(C_{\alpha}\right) \Rightarrow s_{n} \rightarrow s\left(C_{\beta}\right) \Rightarrow s_{n} \rightarrow s(A), \\
& \text { for } 0<p \leq q \leq 1: s_{n} \rightarrow s\left(E_{q}\right) \Rightarrow s_{n} \rightarrow s\left(E_{p}\right) \Rightarrow s_{n} \rightarrow s(B) .
\end{aligned}
$$

The following converse or Tauberian theorem for the Cesàro-Abel-case goes back to Littlewood [14] ($\alpha, \beta \in \mathbb{N}$), and Anderson [1] ($\alpha, \beta \geq-1$).

[^0]Theorem TC 1. (i) Let $-1<\alpha<\beta$ then $s_{n} \rightarrow s(A)$ and $s_{n}=O(1)\left(C_{\alpha}\right)$ imply $s_{n} \rightarrow s\left(C_{\beta}\right)$.
(ii) For $-1<\alpha<\delta \leq \beta$ we have the so-called convexity-theorem $s_{n} \rightarrow s\left(C_{\beta}\right)$ and $s_{n}=O(1)\left(C_{\alpha}\right)$ imply $s_{n} \rightarrow s\left(C_{\delta}\right)$.

Quite recently Boos and Tietz [4] proved that the situation is completely analogous for the Euler-Borel-case.

THEOREM TC 2. (i) Let $0<p<q \leq 1$ then $s_{n} \rightarrow s(B)$ and $s_{n}=O(1)\left(E_{q}\right)$ imply $s_{n} \rightarrow s\left(E_{p}\right)$.
(ii) For $0<p \leq r<q \leq 1$ we have the convexity-theorem $s_{n} \rightarrow s\left(E_{p}\right)$ and $s_{n}=O(1)\left(E_{q}\right)$ imply $s_{n} \rightarrow s\left(E_{r}\right)$.

Obviously part (ii) is in both cases a trivial consequence of the Abelian inclusion and part (i).

The aim of this paper is to show that the above results are special cases of a more general setting.

For the following assume that $\left(p_{n}\right)$ is a sequence of reals with the following properties:

$$
\begin{gather*}
p_{0}>0, p_{n} \geq 0, n \in \mathbb{N}, \text { such that the power series } \\
p(t)=\sum_{n=0}^{\infty} p_{n} t^{n} \text { has radius of convergence } R>0 . \tag{1.1}
\end{gather*}
$$

Since we can use $p_{n} R^{n}$ as weights in case $0<R<\infty$, we only have to deal with the two cases $R=1$ and $R=\infty$.

Furthermore we define the α-th convolution $p_{n}^{* \alpha}$ of a sequence $\left(p_{n}\right)$ by

$$
p_{n}^{* 1}:=p_{n}, \quad n=0,1,2, \ldots \quad \text { and } \quad p_{n}^{*(\alpha+1)}:=\sum_{k=0}^{n} p_{n-k}^{* \alpha} p_{k}
$$

We now generalize the summability methods used in Theorems TC1 and TC2. To this end we need a further sequence (q_{n}) of nonnegative reals, also satisfying (1.1), in general with a different radius of convergence R_{q} for the associated power series.

We then say, that a sequence $\left(s_{n}\right)$ is summable to s by the
(i) power series method of summability (P, p), briefly $s_{n} \rightarrow s(P, p)$, if

$$
\begin{equation*}
p_{s}(t)=\sum_{n=0}^{\infty} s_{n} p_{n} t^{n} \text { converges for }|t|<R \text { and if } \sigma_{p}(t)=\frac{p_{s}(t)}{p(t)} \rightarrow s \text { as } t \rightarrow R- \tag{1.2}
\end{equation*}
$$

(In case $R=1$ we have the so-called $\left(J_{p}\right)$-methods, in case $R=\infty$ the (B_{p})-methods).
(ii) general Nörlund-means $\left(N, p^{* \alpha}, q^{* \beta}\right) ; \alpha, \beta \in \mathbb{N}$, briefly $s_{n} \rightarrow s\left(N, p^{* \alpha}, q^{* \beta}\right)$, if

$$
\begin{align*}
& \frac{1}{r_{n}} \sum_{k=0}^{n} p_{n-k}^{* \alpha} q_{k}^{* \beta} s_{k} \rightarrow s(n \rightarrow \infty), \text { where we suppose that } \tag{1.3}\\
& r_{n}:=\left(p^{* \alpha} * q^{* \beta}\right)_{n}=\sum_{k=0}^{n} p_{n-k}^{* *} q_{k}^{* \beta}>0 \quad \text { for } n=0,1, \ldots
\end{align*}
$$

We require all methods to be regular. By Theorem 5 in [9], we have regularity for a power series method if and only if
(A) $P_{n}=\sum_{k=0}^{n} p_{k} \rightarrow \infty,(n \rightarrow \infty)$, in case $R=1$, and
(B) $p(t)$ is not a polynomial, i.e. $p_{n} \neq 0$ for infinitely many n in case $R=\infty$.

By Theorem 3 in [9] the general Nörlund mean $\left(N, p^{* \alpha}, q^{* \beta}\right)$ is regular if and only if

$$
\begin{equation*}
\frac{p_{n-k}^{* \alpha}}{r_{n}} \rightarrow 0 \quad \text { for any fixed } k \tag{1.5}
\end{equation*}
$$

REMARK 1. Important special cases are
(i) The Cesàro-Abel-methods:

$$
p_{n}=1:(P, p)=(A),\left(N, p^{* \alpha}, p\right)=\left(C_{\alpha}\right) \quad \alpha \in \mathbb{N} .
$$

(ii) The generalized Abel-method $(\delta>0)$:

$$
p_{n}=\binom{n-1+\delta}{n}:(P, p)=\left(A_{\delta-1}\right),\left(N, p^{* \alpha}, \mathbf{1}\right)=\left(C_{\alpha \delta}\right), \quad \alpha \in \mathbb{N} .
$$

(iii) The Euler-Borel-methods:

$$
p_{n}=1 / n!:(P, p)=(B),\left(N, p^{* \alpha}, p\right)=\left(E_{\frac{1}{1+\alpha}}\right), \quad \alpha \in \mathbb{N} .
$$

(We use the notation 1 for the sequence $(1,1, \ldots)$).
We now generalize the above results to our general setting, provided some regularity assumptions are satisfied.
2. Main results. In [10], Proposition 1, R. Kiesel showed that for $\alpha \leq \beta, \alpha, \beta \in \mathbb{N}$ the following inclusions hold true:

$$
s_{n} \rightarrow s\left(N, p^{* \alpha}, p\right) \Rightarrow s_{n} \rightarrow s\left(N, p^{* \beta}, p\right) \Rightarrow s_{n} \rightarrow s(P, p)
$$

provided that for all $\gamma \in \mathbb{N}$ the methods ($N, p^{* \gamma}, p$) are regular (for the second inclusion only the regularity of the (P, p)-method is needed.) This is especially the case, if one of the following conditions is satisfied.
(A) $p_{n} \sim n^{\sigma} L(n), \sigma \geq 0, n^{\sigma} L(n)$ is nondecreasing and $L($.) is slowly varying, see [3] §1.2 for the definition;
(B) $p_{n} \sim \exp \{-g(n)\}$, where $g \in C_{2}[0, \infty)$, with $g^{\prime \prime}(x) \downarrow 0, x^{2} g^{\prime \prime}(x) \uparrow \infty$ $(x \rightarrow \infty)$.

Using the sequence of "maximal weights" $\left(\Delta_{n}\right)$ defined by

$$
\begin{equation*}
\Delta_{n}=\inf _{0<t<R} p(t) t^{-n} \tag{2.2}
\end{equation*}
$$

we have in the above cases the following relationship

$$
\begin{equation*}
\Delta_{n}=\sqrt{2 \pi} \phi(n) p_{n}(n \rightarrow \infty) \tag{2.3}
\end{equation*}
$$

where $\phi($.$) is a suitable, positive function.$
For $(x \rightarrow \infty)$ we have in case (A) that $\sqrt{2 \pi} \phi(x) \sim \Gamma(\sigma+1)\left(\frac{\sigma+1}{e}\right)^{-\sigma-1} x$ and in case (B) that $\phi(x) \sim\left(g^{\prime \prime}(x)\right)^{-\frac{1}{2}}$.

Following [2, 3 §2.11] we call a function $\psi:(0, \infty) \rightarrow(0, \infty)$ self-neglecting if ψ satisfies $\psi(x)=o(x)(x \rightarrow \infty)$, and if $\psi(x+t \psi(x)) / \psi(x) \rightarrow 1(x \rightarrow \infty)$ locally uniformly in $t \in \mathbb{R}$.

Observe that $g^{\prime \prime}(x)^{-\frac{1}{2}}$ is self-neglecting because of (2.1) and since for $e . g . t \geq 0$

$$
\begin{aligned}
& \left(\frac{g^{\prime \prime}\left(x+\operatorname{tg}^{\prime \prime}(x)^{-1 / 2}\right)}{g^{\prime \prime}(x)}\right)^{-\frac{1}{2}} \geq 1, \text { and } \\
\left(\frac{g^{\prime \prime}\left(x+t g^{\prime \prime}(x)^{-1 / 2}\right)}{g^{\prime \prime}(x)}\right)^{-\frac{1}{2}} & =\left(\frac{\left(x+t g^{\prime \prime}(x)^{-1 / 2}\right)^{2} g^{\prime \prime}\left(x+t g^{\prime \prime}(x)^{-1 / 2}\right)}{x^{2} g^{\prime \prime}(x)}\right)^{-\frac{1}{2}}\left(1+\frac{t}{\sqrt{x^{2} g^{\prime \prime}(x)}}\right) \\
& \leq 1+\frac{t}{\sqrt{x^{2} g^{\prime \prime}(x)}} \rightarrow 1(x \rightarrow \infty), \text { locally uniformly in } t .
\end{aligned}
$$

Because of this locally uniform convergence $\phi($.$) is self-neglecting, too.$
We can now state our main theorem
Theorem 1. Let $\alpha, \beta, \gamma, \delta \in \mathbb{N}$ with $\alpha<\delta \leq \beta$ and assume that $\left(p_{n}\right)$ satisfies (2.1). Then
(i) $s_{n} \rightarrow s\left(P, p^{* \gamma}\right)$ and $s_{n}=O(1)\left(N, p^{* \alpha}, p^{* \gamma}\right)$ imply $s_{n} \rightarrow s\left(N, p^{* \beta}, p^{* \gamma}\right)$.
(ii) $s_{n} \rightarrow s\left(N, p^{* \beta}, p^{* \gamma}\right)$ and $s_{n}=O(1)\left(N, p^{* \alpha}, p^{* \gamma}\right)$ imply $s_{n} \rightarrow s\left(N, p^{* \delta}, p^{* \gamma}\right)$.

Remark 2. In case $p_{n} \equiv 1, \gamma=1$ resp. $p_{n}=1 / n!, \gamma=1$ Theorem 1 is Theorem TC1 resp. TC2 in the discrete index case.

In our paradigms Abel-and Borel-method we have the following relations of the methods (see [5]):
(i) Abel-case: $\left(A_{\alpha-1}\right)=\left(P,\binom{n+\alpha-1}{n}\right)=\left(P, \mathbf{1}^{* \alpha}\right), \alpha>0$, then for $\mu>\lambda>-1$:

$$
s_{n} \rightarrow s\left(A_{\mu}\right) \Rightarrow s_{n} \rightarrow s\left(A_{\lambda}\right) .
$$

(ii) Borel-case: Since $p_{n}^{* \alpha}=\alpha^{n} / n$!, we have

$$
(B)=(P, 1 / n!) \approx\left(P,\left(\left(\alpha^{n}\right) / n!\right)\right)=\left(P,(1 / n!)^{* \alpha}\right)
$$

(Where we use \approx to note that two methods are equivalent.)
So the question arises what the relation of $\left(P, p^{* \alpha}\right)$ and $\left(P, p^{* \beta}\right)$ resp. $\left(N, p, p^{* \alpha}\right)$ and $\left(N, p, p^{* \beta}\right)$ in the general case is. Unfortunately we can only present answers to the question under additional assumptions.

Proposition 1. Suppose $\alpha, \beta \in \mathbb{N}$ and the sequence $\left(p_{n}\right)$ satisfies (1.1) with $R=1$ or $R=\infty$ and $p_{n}^{* \alpha}>0$. If we have furthermore that $\mu_{n}=\left(p_{n}^{* \beta}\right) /\left(p_{n}^{* \alpha}\right)$ is a totally monotone sequence, i.e.

$$
\begin{equation*}
\mu_{n}=\int_{0}^{R} t^{n} d \chi(t)<\infty \tag{2.4}
\end{equation*}
$$

for all $n=0,1, \ldots$ with some (bounded) nondecreasingfunction χ, then we have

$$
s_{n} \rightarrow s\left(P, p^{* \alpha}\right) \text { implies } s_{n} \rightarrow s\left(P, p^{* \beta}\right)
$$

This result can also be obtained using a theorem of Borwein in [5], but we are able to present a somewhat easier proof. An answer to the question of inclusion in case of the ($N, p, p^{* \alpha}$)-means, was already given by Das [8], but again only under restricting additional assumptions.

Proposition 2. Let $\alpha, \beta \in \mathbb{N}$ and $\left(p_{n}\right)$ a sequence of strictly positive reals. If

$$
\begin{equation*}
\frac{p_{n+1}}{p_{n}} \uparrow 1 \quad(n \rightarrow \infty) \tag{2.5}
\end{equation*}
$$

and if additionally either

$$
\frac{p_{n}^{* \beta}}{p_{n}^{* \alpha}} \geq \frac{p_{n+1}^{* \beta}}{p_{n+1}^{* \alpha}} \quad \text { and } \quad\left(N, p, p^{* \beta}\right) \text { is regular },
$$

or

$$
\frac{p_{n}^{* \beta}}{p_{n}^{* \alpha}} \leq \frac{p_{n+1}^{* \beta}}{p_{n+1}^{* \alpha}} \quad \text { and } \frac{p_{n}^{* \beta} p_{n}^{* \alpha+1}}{p_{n}^{* \beta+1} p_{n}^{* \alpha}}=O(1) \quad \text { and } \quad\left(N, p, p^{* \alpha}\right) \text { is regular },
$$

then ($N, p, p^{* \alpha}$) convergence implies ($N, p, p^{* \beta}$)-convergence.
3. Auxiliary results. First we discuss the asymptotic properties of the (N, p, q) means.

Lemma 1. Assume that $\left(p_{n}\right)$ satisfies (2.1).
(i) In case (A), i.e. $p_{n}=n^{\sigma} L(n)$, we have

$$
p_{n}^{* 2} \sim \begin{cases}n^{2 \sigma+1} L^{2}(n) B(\sigma+1, \sigma+1), & \text { if } \sigma>-1, \\ L^{*}(n) n^{-1}, & \text { if } \sigma=-1,\end{cases}
$$

with $B(.,$.$) denoting the beta-integral and L^{*}($.$) some slowly varying function.$
(ii) In case (B), we have for any $\alpha \in \mathbb{N}$

$$
\begin{equation*}
p_{n}^{* \alpha} \sim \sqrt{(2 \pi)^{\alpha-1} / \alpha} \phi(n / \alpha)^{\alpha-1} \exp \{-\alpha g(n / \alpha)\} \quad(n \rightarrow \infty) \tag{3.1}
\end{equation*}
$$

$\phi($.$) as in (2.3).$
Proof. (i) is a slight generalisation of Theorem 42 in [9] and Theorem 2.3.1 in Chapter 5 of [20]. (ii) For $\alpha=2$ the result is contained in Proposition 3 of [10]. We use induction on α for the general case. By Definition we have

$$
p_{n}^{*(\alpha+1)}=\sum_{\nu=0}^{n} p_{\nu}^{* \alpha} p_{n-\nu}
$$

We define a function

$$
\begin{equation*}
\varepsilon(x)=x\left(x^{2} g^{\prime \prime}(x)\right)^{-1 / 4} \tag{3.2}
\end{equation*}
$$

Then we can show that the essential part of the sum occurs for $\nu \in M(n)$ with

$$
M(n):=\left\{\nu:\left|\nu-\frac{\alpha n}{\alpha+1}\right| \leq \varepsilon\left(\frac{\alpha n}{\alpha+1}\right)\right\}
$$

(Use techniques similar to those in the proof of Lemma 2 in [6], see also related calculations in [12, 13].)

By the induction hypotheses we find

$$
p_{n}^{*(\alpha+1)} \sim \sum_{\nu \in M(n)} \sqrt{(2 \pi)^{\alpha-1} / \alpha} \phi(\nu / \alpha)^{\alpha-1} \exp \{-\alpha g(\nu / \alpha)\} \exp \{-g(n-\nu)\}
$$

We now use the asymptotics for p_{n} and the Taylor-expansion $(\theta, \vartheta \in(0,1))$:

$$
\begin{aligned}
p_{n}^{*(\alpha+1)} \sim & \sum_{\nu \in M(n)} \sqrt{\frac{1}{\alpha}\left(\frac{2 \pi}{g^{\prime \prime}\left(\frac{\nu}{\alpha}\right)}\right)^{\alpha-1}} \exp \left\{-\alpha\left(g\left(\frac{n}{\alpha+1}\right)+g^{\prime}\left(\frac{n}{\alpha+1}\right)\left(\frac{\nu}{\alpha}-\frac{n}{\alpha+1}\right)\right.\right. \\
& \left.+\frac{1}{2} g^{\prime \prime}\left(\frac{n}{\alpha+1}+\theta\left(\frac{\nu}{\alpha}-\frac{n}{\alpha+1}\right)\right)\left(\frac{\nu}{\alpha}-\frac{n}{\alpha+1}\right)^{2}\right) \\
& -g\left(\frac{n}{\alpha+1}\right)-g^{\prime}\left(\frac{n}{\alpha+1}\right)\left(n-\nu-\frac{n}{\alpha+1}\right) \\
& \left.-\frac{1}{2} g^{\prime \prime}\left(\frac{n}{\alpha+1}+\vartheta\left(n-\nu-\frac{n}{\alpha+1}\right)\right)\left(n-\nu-\frac{n}{\alpha+1}\right)^{2}\right\}
\end{aligned}
$$

Now we use the basic inequality (13) in [6], namely

$$
\left|\frac{g^{\prime \prime}(t)}{g^{\prime \prime}(x)}-1\right| \leq 4 \frac{|t-x|}{x} \text { for all sufficiently large } t, x, \quad \text { if }|t-x| \leq x / 4
$$

which is satisfied in our range $M(n)$, and the fact that $\varepsilon(n) / n \rightarrow 0$ as $n \rightarrow \infty$ to obtain

$$
\begin{aligned}
p_{n}^{*(\alpha+1)} \sim & \sqrt{\frac{1}{\alpha}\left(\frac{2 \pi}{g^{\prime \prime}\left(\frac{n}{\alpha+1}\right)}\right)^{\alpha-1}} \times \exp \left\{-(\alpha+1) g\left(\frac{n}{\alpha+1}\right)\right\} \\
& \times \sum_{\nu \in M(n)} \exp \left\{-\frac{(\alpha+1)}{2 \alpha} g^{\prime \prime}\left(\frac{n}{\alpha+1}\right)\left(\nu-\frac{n \alpha}{\alpha+1}\right)^{2}\right\}(1+o(1)) \\
\sim & \sqrt{\frac{(2 \pi)^{\alpha}}{\alpha+1} \phi\left(\frac{n}{\alpha+1}\right)^{\alpha} \exp \left\{-(\alpha+1) g\left(\frac{n}{\alpha+1}\right)\right\}} .
\end{aligned}
$$

For the last step use the approximation of the sum with the integral of a Gaussian density with variance $\alpha /\left((\alpha+1) g^{\prime \prime}(n /(\alpha+1))\right)$.

Corollary. If $\left(p_{n}\right)$ satisfies $(2.1(B))$ and $\alpha, \beta \in \mathbb{N}$, then we have for the entry $a_{n, k}$ of the $\left(N, p^{* \alpha}, p^{* \beta}\right)$-matrix the asymptotic relation

$$
a_{n, k} \sim \sqrt{\frac{\alpha+\beta}{2 \pi \alpha \beta}} \phi\left(\frac{n}{\alpha+\beta}\right)^{-1} \exp \left\{-\frac{\alpha+\beta}{2 \alpha \beta}\left(\frac{k-\frac{n \beta}{\alpha+\beta}}{\phi\left(\frac{n}{\alpha+\beta}\right)}\right)^{2}\right\}
$$

if $\left|k-\frac{n \beta}{\alpha+\beta}\right| \leq \varepsilon(n)$ with $\varepsilon($.$) as in (3.2) and furthermore$

$$
\sum_{\left|k-\frac{n \beta}{\alpha+\beta}\right|>\varepsilon(n)} a_{n, k} \rightarrow 0 \quad(n \rightarrow \infty) .
$$

Proof. If $\left|k-\frac{n \beta}{\alpha+\beta}\right| \leq \varepsilon(n)$ then $(\theta, \xi \in(0,1))$

$$
\begin{aligned}
\frac{p_{n-k}^{* \alpha} p_{k}^{* \beta}}{p_{n}^{*(\alpha+\beta)}} \sim & \frac{\exp \left\{-\alpha g\left(\frac{n-k}{\alpha}\right)-\beta g\left(\frac{k}{\beta}\right)\right\}}{\exp \left\{-(\alpha+\beta) g\left(\frac{n}{\alpha+\beta}\right)\right\}} \sqrt{\frac{(2 \pi)^{\alpha-1}(2 \pi)^{\beta-1} g^{\prime \prime}\left(\frac{n}{\alpha+\beta}\right)^{\alpha+\beta-1}(\alpha+\beta)}{(2 \pi)^{\alpha+\beta-1} g^{\prime \prime}\left(\frac{n-k}{\alpha}\right)^{\alpha-1} g^{\prime \prime}\left(\frac{k}{\beta}\right)^{\beta-1} \alpha \beta}} \\
\sim & \exp \left\{-\alpha\left(g\left(\frac{n}{\alpha+\beta}\right)+g^{\prime}\left(\frac{n}{\alpha+\beta}\right)\left(\frac{n-k}{\alpha}-\frac{n}{\alpha+\beta}\right)\right.\right. \\
& \left.+\frac{1}{2} g^{\prime \prime}\left(\frac{n}{\alpha+\beta}+\theta\left(\frac{n-k}{\alpha}-\frac{n}{\alpha+\beta}\right)\right)\left(\frac{n-k}{\alpha}-\frac{n}{\alpha+\beta}\right)^{2}\right) \\
& -\beta\left(g\left(\frac{n}{\alpha+\beta}\right)+g^{\prime}\left(\frac{n}{\alpha+\beta}\right)\left(\frac{k}{\beta}-\frac{n}{\alpha+\beta}\right)\right. \\
& \left.\left.+\frac{1}{2} g^{\prime \prime}\left(\frac{n}{\alpha+\beta}+\xi\left(\frac{k}{\beta}-\frac{n}{\alpha+\beta}\right)\right)\left(\frac{k}{\beta}-\frac{n}{\alpha+\beta}\right)^{2}\right)\right\} \\
& \quad \times \exp \left\{(\alpha+\beta) g\left(\frac{n}{\alpha+\beta}\right)\right\} \sqrt{(1+o(1)) \frac{\alpha+\beta}{2 \pi \alpha \beta} g^{\prime \prime}\left(\frac{n}{\alpha+\beta}\right)}
\end{aligned}
$$

Now $\left|\frac{k}{\beta}-\frac{n}{\alpha+\beta}\right| \leq \frac{\varepsilon(n)}{\beta}$ and $\left|\frac{n-k}{\alpha}-\frac{n}{\alpha+\beta}\right| \leq \frac{\varepsilon(n)}{\alpha}$. Therefore we obtain the desired result by the same calculations as used in Lemma 1. For the second part observe that

$$
\sum_{k=0}^{n} \frac{p_{n-k}^{* \alpha} p_{k}^{* \beta}}{p_{n}^{*(\alpha+\beta)}}=1 \sim(1+o(1)) \sum_{\left|k-\frac{n \beta}{\alpha \beta \beta}\right| \leq \varepsilon(n)} \exp \{\cdots\} \sqrt{\cdots}
$$

We now give the asymptotics of the relevant power-series methods and show that for bounded sequences these methods are equivalent to certain generalized Valiron-type means, compare [6, 11].

Lemma 2. Assume that $\left(p_{n}\right)$ satisfies $(2.1(B))$. Then we have as $x \rightarrow \infty$

$$
\begin{equation*}
\left(p\left(\exp \left\{g^{\prime}\left(\frac{x}{\mu}\right)\right\}\right)\right)^{\mu} \sim\left(\sqrt{2 \pi \mu} \phi\left(\frac{x}{\mu}\right)\right)^{\mu} \exp \left\{-\left(g\left(\frac{x}{\mu}\right)-\frac{x}{\mu} g^{\prime}\left(\frac{x}{\mu}\right)\right)\right\} \tag{i}
\end{equation*}
$$

(ii) For bounded sequences $\left(s_{n}\right)$ the following equivalence holds true

$$
s_{n} \rightarrow s\left(P, p^{* \mu}\right) \Leftrightarrow \int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2 \mu}\left(\frac{x-t}{\phi\left(\frac{x}{\mu}\right)}\right)^{2}\right\} s(t) \frac{d t}{\sqrt{2 \pi \mu} \phi\left(\frac{x}{\mu}\right)} \rightarrow s
$$

where $s(t)=s_{[t]}$, for $t \geq 0$ and $s(t)=0$ elsewhere.
Proof. (i) follows directly from [12], Lemma 5, resp. [13], Lemma 8, see also Lemma 2 in [6].
(ii) In this case the calculations are similar to the calculations used in [6], Lemma 2 and [11], Theorem 2, so we only outline the major steps. We have by using Lemma 1 and part (i) (For the notation see (1.2)).

$$
\begin{aligned}
\sigma_{p^{*}}\left(e^{g^{\prime}\left(\frac{x}{\mu}\right)}\right) & =\frac{(1+o(1))}{\sqrt{2 \pi \mu} \phi\left(\frac{x}{\mu}\right)} \sum_{n=0}^{\infty} s_{n} \exp \left\{-\mu g\left(\frac{n}{\mu}\right)+n g^{\prime}\left(\frac{x}{\mu}\right)+\mu g\left(\frac{x}{\mu}\right)-x g^{\prime}\left(\frac{x}{\mu}\right)\right\} \\
& =\frac{(1+o(1))}{\sqrt{2 \pi \mu} \phi\left(\frac{x}{\mu}\right)} \sum_{n=0}^{\infty} s_{n} \exp \left\{-\frac{\mu}{2} g^{\prime \prime}\left(\frac{x}{\mu}+\theta\left(\frac{n}{\mu}-\frac{x}{\mu}\right)\right)\left(\frac{n}{\mu}-\frac{x}{\mu}\right)^{2}\right\} \\
& =\frac{(1+o(1))}{\sqrt{2 \pi \mu} \phi\left(\frac{x}{\mu}\right)} \sum_{n=0}^{\infty} s_{n} \exp \left\{-\frac{1}{2 \mu} g^{\prime \prime}\left(\frac{x}{\mu}\right)\left(\frac{n}{\mu}-\frac{x}{\mu}\right)^{2}\right\} \\
& =(1+o(1)) \int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2 \mu}\left(\frac{x-t}{\phi\left(\frac{x}{\mu}\right)}\right)^{2}\right\} s(t) \frac{d t}{\sqrt{2 \pi \mu} \phi\left(\frac{x}{\mu}\right)} .
\end{aligned}
$$

Next we show that the $\left(N, p^{* \alpha}, p^{* \beta}\right)$-means generalize some important properties of the Euler means.

First we consider the well known product-formula for the Euler-means

$$
E_{\alpha} \circ E_{\beta}=E_{\alpha+\beta} .
$$

This becomes
Lemma 3. Assume that $\left(p_{n}\right)$ and $\left(q_{n}\right)$ satisfy (1.1) (with possibly different radii of convergence) and let $\alpha, \beta, \gamma \in \mathbb{N}, \alpha \leq \beta$.
(i) With $r^{*(\alpha+\beta)}:=p^{* \alpha} * q^{* \beta}$, we have

$$
\begin{equation*}
\left(N, p^{* \beta}, q^{* \gamma}\right)=\left(N, p^{*(\beta-\alpha)}, r^{*(\alpha+\gamma)}\right) \circ\left(N, p^{* \alpha}, q^{* \gamma}\right) \tag{3.3}
\end{equation*}
$$

resp. in case $\left(p_{n}\right)=\left(q_{n}\right)$

$$
\left(N, p^{* \beta}, p^{* \gamma}\right)=\left(N, p^{*(\beta-\alpha)}, p^{*(\alpha+\gamma)}\right) \circ\left(N, p^{* \alpha}, p^{* \gamma}\right)
$$

(ii) If $\left(N, p^{*(\beta-\alpha)}, r^{*(\alpha+\gamma)}\right)$ is regular, then $s_{n} \rightarrow s\left(N, p^{* \alpha}, q^{* \gamma}\right)$ implies $s_{n} \rightarrow$ $s\left(N, p^{* \beta}, q^{* \gamma}\right)$.
Proof. (ii) is a trivial consequence of (i).

To prove (i) observe that

$$
\left(p^{*(\beta-\alpha)} * r^{*(\alpha+\gamma)}\right)_{n}=\left(p^{* \beta} * q^{* \gamma}\right)_{n}
$$

and

$$
\sum_{k=0}^{n} p_{n-k}^{*(\beta-\alpha)} r_{k}^{*(\alpha+\gamma)} \frac{1}{r_{k}^{*(\alpha+\gamma)}} \sum_{\nu=0}^{k} p_{k-\nu}^{* \alpha} q_{\nu}^{* \gamma} s_{\nu}=\sum_{\nu=0}^{n} q_{\nu}^{* \gamma} s_{\nu} \sum_{k=0}^{n-\nu} p_{n-\nu-k}^{*(\beta-\alpha)} p_{k}^{* \alpha}=\sum_{\nu=0}^{n} p_{n-\nu}^{* \beta} q_{\nu}^{* \gamma} s_{\nu} .
$$

Now $s_{n} \rightarrow s\left(N, p^{*(\beta-\alpha)}, r^{*(\alpha+\gamma)}\right) \circ\left(N, p^{* \alpha}, q^{* \gamma}\right)$ means that

$$
\frac{1}{\left(p^{*(\beta-\alpha)} * r^{*(\alpha+\gamma)}\right)_{n}} \sum_{k=0}^{n} p_{n-k}^{*(\beta-\alpha)} r_{k}^{*(\alpha+\gamma)} \frac{1}{r_{k}^{*(\alpha+\gamma)}} \sum_{\nu=0}^{k} p_{k-\nu}^{* \alpha} q_{\nu}^{* \gamma} s_{\nu} \rightarrow s \quad(n \rightarrow \infty)
$$

but by the above identities this is the same as

$$
\frac{1}{\left(p^{* \beta} * q^{* \gamma}\right)_{n}} \sum_{\nu=0}^{n} p_{n-\nu}^{* \beta} q_{\nu}^{* \gamma} s_{\nu} \rightarrow s \quad(n \rightarrow \infty)
$$

which is $\left(N, p^{* \beta}, q^{* \gamma}\right)$ convergence.
A classical result of Knopp [9, Theorem 149] gives a connection between Cesàro convergence with speed and Euler convergence. We generalize this for general $\left(p_{n}\right)$ with an additional condition on the sequence (s_{n}). (In [10, Theorem 2] this generalization is given with an additional condition on the (p_{n}), but without conditions on the $\left(s_{n}\right)$.)

Lemma 4. Let $\left(p_{n}\right)$ be a sequence of weights satisfying (2.1(B)) and $\phi($.$) as in (2.3).$ Furthermore assume that $s_{n}=O(1)$. Then

$$
\frac{1}{n+1} \sum_{k=0}^{n}\left(s_{k}+\varepsilon_{k}\right)=s+o\left(\frac{\phi(n)}{n}\right), \quad(n \rightarrow \infty), \text { with some nullsequence }\left(\varepsilon_{n}\right)
$$

implies $s_{n} \rightarrow s\left(N, p^{* \alpha}, p^{* \beta}\right)$ for every $\alpha, \beta \in \mathbb{N}$.
Proof. Since $s_{n}=O(1)$ we can use the asymptotic weights computed in the Corollary to Lemma 1 in the $\left(N, p^{* \alpha}, p^{* \beta}\right)$ method. By inclusion we have only to show the implication for the ($N, p, p^{* \beta}$) method. Because of regularity and linearity we can suppose $s=0$ and omit the convergent sequence $\left(\varepsilon_{k}\right)$. Thus the hypothesis becomes

$$
\sum_{k=0}^{n} s_{k}=o(\phi(n)) \quad(n \rightarrow \infty)
$$

For given $\varepsilon>0$ we can find a $N \in \mathbb{N}$ such that for $n \geq l \geq m \geq N$

$$
\left|\sum_{k=m}^{l} s_{k}\right| \leq \varepsilon \phi(l) \leq \varepsilon \phi(n)
$$

using also the monotonicity of $\phi($.$) . By the Corollary to Lemma 1$ and since $s_{n}=O(1)$ we have for the $\left(N, p, p^{* \beta}\right)$-transform t_{n}

$$
t_{n}=\sqrt{\frac{\beta+1}{2 \pi \beta}} \phi\left(\frac{n}{\beta+1}\right)^{-1} \sum_{\left|k \frac{n \beta}{\beta+1}\right| \leq \varepsilon(n)} \exp \left\{-\frac{\beta+1}{2 \beta}\left(\frac{k-\frac{n \beta}{\beta+1}}{\phi\left(\frac{n}{\beta+1}\right)}\right)^{2}\right\} s_{k}+o(1),
$$

with a function ε (.) as in (3.2). So the weights are piecewise monotonic and the maximal weight is for $k=\frac{n \beta}{\beta+1}$. We therefore split the sum in two parts, namely

$$
t_{n}=\sum_{\frac{n \beta}{\beta+1}-\varepsilon(n) \leq k<\frac{n \beta}{\beta+1}} \cdots+\sum_{\frac{n \beta}{\beta+1} \leq k \leq \frac{n \beta}{\beta+1}+\varepsilon(n)} \cdots+o(1) .
$$

Using Abels partial summation and the monotonicity of the weights we find that each of the two sums is bounded by $\varepsilon \frac{\phi(n)}{\phi(n /(\beta+1))}$. Since $\phi(n / \gamma)=O(\phi(n))$ for any fixed $\gamma>0$, we obtain the desired result.

Cesàro-convergence with speed is also connected to the methods of moving-averages by the following

Proposition 3. The following statements are equivalent for a self-neglecting function $\phi($.)
(i) $\frac{1}{n+1} \sum_{k=0}^{n}\left(s_{k}+\varepsilon_{k}\right)=s+o\left(\frac{\phi(n)}{n}\right)(n \rightarrow \infty)$ for some $\varepsilon_{n} \rightarrow 0$.
(ii) $\frac{1}{u \phi(n)} \sum_{n \leq k<n+u \phi(n)} s_{k} \rightarrow s, \forall u>0,(n \rightarrow \infty)$.

For the proof see [2], for notation and properties of self-neglecting functions consult [$3, \S 2.11$].

In the Euler-Borel case we have the identity $(B) \circ\left(E_{p}\right) \approx(B)$. A similar identity can be obtained in the general case. For a related calculation compare [7].

Lemma 5. Assume that $\left(p_{n}\right)$ and $\left(q_{n}\right)$ satisfy (1.1) with the same radius of convergence R and let $\alpha, \beta \in \mathbb{N}$ then

$$
s_{n} \rightarrow s\left(P, q^{* \beta}\right) \Leftrightarrow s_{n} \rightarrow s\left(P, r^{*(\alpha+\beta)}\right) \circ\left(N, p^{* \alpha}, q^{* \beta}\right) .
$$

Proof. $\quad s_{n} \rightarrow s\left(P, q^{* \beta}\right)$ means that $\frac{\sum_{n=0}^{\infty} s_{n} q_{n}^{* \beta} x^{n}}{(q(x))^{\beta}} \rightarrow s,(x \rightarrow R)$, and $s_{n} \rightarrow s\left(P, r^{*(\alpha+\beta)}\right) \circ$ ($N, p^{* \alpha}, q^{* \beta}$) means that

$$
\frac{\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} p_{n-k}^{* \alpha} s_{k} q_{k}^{* \beta}\right) x^{n}}{(p(x))^{\alpha}(q(x))^{\beta}} \rightarrow s \quad(x \rightarrow R)
$$

But

$$
\frac{\sum_{n=0}^{\infty} s_{n} q_{n}^{* \beta} x^{n}}{(q(x))^{\beta}}=\frac{\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} p_{n-k}^{* \alpha} s_{k} q_{k}^{* \beta}\right) x^{n}}{(p(x))^{\alpha}(q(x))^{\beta}}
$$

and this proves the proposition.
Using Borwein's Theorem, i.e. Proposition 1, we obtain
COROLLARY. If the assumptions of Lemma 5 hold true and if $\frac{q_{n}^{* \beta}}{r_{n}^{(\alpha+\beta)}}$ is a totally monotone sequence, then

$$
s_{n} \rightarrow s\left(P, q^{* \beta}\right) \Rightarrow s_{n} \rightarrow s\left(P, q^{* \beta}\right) \circ\left(N, p^{* \alpha}, q^{* \beta}\right) .
$$

Generalizing Theorem 1 in [10] slightly we obtain the following Tauberian theorem:

THEOREM 2. Assume that $\left(p_{n}\right)$ satisfies (1.1) and (2.1(B)). Then we have under the Tauberian condition $s_{n}=O(1)$ that for any $\gamma \in \mathbb{N}$

$$
s_{n} \rightarrow s\left(P, p^{* \gamma}\right) \text { implies } s_{n} \rightarrow s\left(N, p^{* \alpha}, p^{* \beta}\right)
$$

for all $\alpha, \beta \in \mathbb{N}$.
Remark 3. (i) Under (2.1) $\left(N, p^{* \alpha}, p^{* \beta}\right)$ is regular for all $\alpha, \beta \in \mathbb{N}$.
(ii) $s_{n} \rightarrow s\left(N, p^{* \alpha}, p^{* \beta}\right)$ implies always $s_{n} \rightarrow s\left(P, p^{* \beta}\right)$, since

$$
\sigma_{p^{* \beta}}(t)=\frac{\sum_{n=0}^{\infty} s_{n} p_{n}^{* \beta} x^{n}}{(p(x))^{\beta}}=\frac{\sum_{n=0}^{\infty} p_{n}^{*(\alpha+\beta)} \frac{1}{p_{n}^{*(\alpha+\beta)}}\left(\sum_{k=0}^{n} p_{n-k}^{* \alpha} p_{k}^{* \beta} s_{k}\right) x^{n}}{(p(x))^{\alpha}(p(x))^{\beta}}
$$

and since $\left(P, p^{*(\alpha+\beta)}\right)$ is regular, the Abelian conclusion follows.
Proof. By Lemma 3(ii), it is sufficient to consider $\alpha=1$. Define $s(u)=s_{[u]}$ if $u \geq 0$ and $s(u)=0$ if $u<0$ and $K(x)=1 / \sqrt{2 \pi} \exp \left\{-x^{2} / 2\right\}$.

Since $s_{n}=O(1)$ we have by Lemma 2(ii), that $s_{n} \rightarrow s\left(P, p^{* \gamma}\right)$ implies

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \int_{-\infty}^{\infty} K\left(\frac{x-t}{\sqrt{\gamma} \phi\left(\frac{x}{\gamma}\right)}\right) s(t) \frac{d t}{\sqrt{\gamma} \phi(x / \gamma)}=s \tag{3.4}
\end{equation*}
$$

The conditions of Theorem 1 of [15], i.e. $K(x) \in L^{1}(-\infty, \infty)$, the Fourier-transform of K is nonvanishing for any real argument and $\phi($.$) is self-neglecting, are trivially satisfied.$

It follows now from that theorem that if we choose $\varepsilon>0$ and define

$$
H(x)= \begin{cases}\frac{1}{\varepsilon}, & \text { if } x \in(-\varepsilon, 0), \\ 0 & \text { if } x \notin(-\varepsilon, 0)\end{cases}
$$

that

$$
\lim _{x \rightarrow \infty} \int_{-\infty}^{\infty} H\left(\frac{x-t}{\sqrt{\gamma} \phi(x)}\right) s(t) \frac{d t}{\sqrt{\gamma} \phi(x / \gamma)}=\lim _{x \rightarrow \infty} \frac{1}{\varepsilon \sqrt{\gamma} \phi(x / \gamma)} \sum_{x \leq k<x+\varepsilon \sqrt{\gamma} \phi(x / \gamma)} s_{k}=s
$$

Because $\phi($.$) is self-neglecting and \phi(x / \gamma)=O(\phi(x))$, for any fixed $\gamma>0$, we obtain by Proposition 3 , that

$$
\frac{1}{n+1} \sum_{k=0}^{n}\left(s_{k}+\varepsilon_{k}\right)=s+o\left(\frac{\phi(n)}{n}\right)
$$

which in turn by Lemma 4 implies that $s_{n} \rightarrow s\left(N, p, p^{* \beta}\right)$.

4. Proofs.

Proof of Theorem 1. Part (i) by Lemma 5:

$$
s_{n} \rightarrow s\left(P, p^{* \gamma}\right) \Longleftrightarrow s_{n} \rightarrow s\left(P, p^{*(\alpha+\gamma)}\right) \circ\left(N, p^{* \alpha}, p^{* \gamma}\right) .
$$

In case (A): We apply Karamatas' Tauberian theorem (observe Lemma 1) (see [2, Theorem 1.7.6, 18]) and obtain

$$
s_{n} \rightarrow s\left(N, \mathbf{1}, p^{*(\alpha+\gamma)}\right) \circ\left(N, p^{* \alpha}, p^{* \gamma}\right)
$$

Since $s_{n}=O(1)\left(N, p^{* \alpha}, p^{* \gamma}\right)$ we can use the asymptotic weights and assume w.l.o.g that $p_{n}^{*(\beta-\alpha)}$ is nondecreasing and by Theorem 3 in Das [8] we get

$$
s_{n} \rightarrow s\left(N, p^{*(\beta-\alpha)}, p^{*(\alpha+\gamma)}\right) \circ\left(N, p^{* \alpha}, p^{* \gamma}\right),
$$

which by Lemma 3(i) implies our result.
In case (B): Since $s_{n}=O(1)\left(N, p^{* \alpha}, p^{* \gamma}\right)$ we can use Theorem 2 to obtain directly

$$
s_{n} \rightarrow s\left(N, p^{*(\beta-\alpha)}, p^{*(\alpha+\gamma)}\right) \circ\left(N, p^{* \alpha}, p^{* \gamma}\right) .
$$

The last step is as above.
Part (ii) is directly implied by part (i) and by the Abelian inclusion.
REMARK 4. Boos/Tietz [4] gave an alternative proof of Theorem 1 in the Borel-case. The basic steps are as follows ($\alpha=\gamma=1, \beta=2$)
(i) $s_{n} \rightarrow s(P, p) \Rightarrow s_{n} \rightarrow s\left(P, p^{* 3}\right)\left(N, p^{* 2}, p\right)$
(ii) $\left(N, p^{* 2}, p\right)=\left(N, p, p^{* 2}\right)(N, p, p)$. Hence if $(*)\left(\left(N, p, p^{* 2}\right) x\right)_{n}-\left(\left(N, p, p^{* 2}\right) x\right)_{n-1}=$ $O(1 / \phi(n))$ for bounded sequences $\left(x_{n}\right)$, one can use the O-Tauberian theorems in $[12,13]$ to conclude
(iii) $s_{n} \rightarrow s\left(N, p^{* 2}, p\right)$.

The statement (*) in (ii) is true for some special cases, like $p_{n}=1 / n!$, but has not been obtained in general so far.

Proof of Proposition 1. Observe that e.g. in case $R=\infty$

$$
\sigma_{p^{* \beta}}(x)=\frac{\sum_{n=0}^{\infty} s_{n} \frac{p_{n}^{* \beta}}{p_{n}^{* \alpha}} p_{n}^{* \alpha} x^{n}}{(p(x))^{\beta}}=\int_{0}^{\infty} \frac{p(x t)^{\alpha}}{p(x)^{\beta}} \sigma_{p^{* \alpha}}(x t) d \chi(t)=L\left(\sigma_{p^{* \alpha}}(.), x\right) .
$$

The interchange of integral and sum is allowed because of the absolute convergence for $x>0$. We now follow the arguments in an unpublished paper by A. Jakimovski (oral communication, see also [16] for details.)
$L(f, x)$ is a positive linear operator on a linear space of real functions in $C[0, \infty)$ with the properties:
(i) There exists $e(t)>0, e(t) \rightarrow 1, t \rightarrow \infty$ such that $L(e(), x.) \rightarrow 1, x \rightarrow \infty$, namely $e(t)=\sigma_{p^{* \alpha}}(t)$ with the sequence $\left(s_{n}\right)$ chosen to be $(1,1, \ldots)$.
(ii) There exists some $e_{0}(t)>0$ such that $L\left(e_{0}(), x.\right) \rightarrow 0, x \rightarrow \infty$, namely $e_{0}(t)=$ $\sigma_{p^{* \alpha}}(t)=p_{0}^{* \alpha} / p(t)^{\alpha}$, with the sequence $\left(s_{n}\right)$ chosen to be $(1,0,0, \ldots)$.
From (i) and the assumptions we find

$$
|f(t)-\operatorname{se}(t)|<\varepsilon / 2 \leq \varepsilon e(t), \quad \text { for } t \geq t_{0}(\varepsilon)
$$

and by (ii)

$$
|f(t)-s e(t)| \leq M \leq \frac{M}{m} e_{0}(t), \quad t \in\left[0, t_{0}(\varepsilon)\right],
$$

with suitable M, m. Hence for $t \geq 0$:

$$
|f(t)-s e(t)| \leq \varepsilon e(t)+\frac{M}{m} e_{0}(t) .
$$

Since L is linear and positive we obtain that $L(f(), x.) \rightarrow s$ if $f(x) \rightarrow s$, which yields the desired result.

References

1. A. F. Andersen, Studier over Cesàro's summabilitetsmetode, Dissertation, København, 1921.
2. N. H. Bingham and C. M. Goldie, On one-sided Tauberian conditions, Analysis 3(1983), 159-188.
3. N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, 1987.
4. J. Boos and H. Tietz, Convexity theorems for the circle methods of summability, J. Comput. Appl. Math. 40(1992), 151-155.
5. D. Borwein, On summability methods based on Power Series, Proc. Royal Soc. Edinburgh Sect. A 64(1957), 342-349.
6. D. Borwein and W. Kratz, An O-Tauberian theorem and a High Indices theorem for power series methods of summability, Math. Proc. Cambridge Philos. Soc. 115(1994), 365-375.
7. G Das, On some methods of summability, Quart. J. Math. Oxford Ser. (2) 17(1966), 244-256.
8. __, On some methods of summability II, Quart. J. Math. Oxford Ser. (2) 19(1968), 417-431.
9. G. H. Hardy, Divergent Series, Oxford Press, 1949.
10. R. Kiesel, General Nörlund transforms and power series methods, Math. Z. 214(1993), 273-286.
11. R. Kiesel and U. Stadtmüller, Tauberian theorems for general power series methods, Math. Proc. Cambridge. Phil. Soc. 110(1991), 483-490.
12. W. Kratz and U. Stadtmüller, O-Tauberian theorems for $\left(J_{p}\right)$-methods with rapidly increasing weights, J. London Math. Soc. (2) 41(1990), 489-502.
13. ___ Tauberian theorems for Borel-type methods of summability, Arch. Math. 55(1990), 465-474.
14. J. E. Littlewood, The converse of Abel's theorem on power series, Proc. London Math. Soc. (2) 9(1911), 434-448.
15. T. T. Moh, On a General Tauberian theorem, Proc. Amer. Math. Soc. 36(1972), 167-172.
16. W. Motzer, Taubersätze zwischen Potenzreihenverfahren und speziellen Matrixverfahren, Dissertation, Universität Ulm, Ulm, 1993.
17. A. Peyerimhoff, Lectures on Summability, Lecture Notes in Math. 107, Springer-Verlag, 1969.
18. H. Tietz and R. Trautner, Taubersätze für Potenzreihen, Arch. Math. 50(1988), 164-174.
19. K. Zeller and W. Beekmann, Theorie der Limitierungsverfahren, Springer-Verlag, 1970.
20. A. Zygmund, Trigonometric series, Vol. I, Cambridge University Press, 1968.

Universität Ulm

Abteilung Stochastik
D-89069 Ulm

Germany

e-mail: kiesel@mathematik.uni-ulm.de
stamue@mathematik.uni-ulm.de

[^0]: Received by the editors February 17, 1993.
 AMS subject classification: 40E05.
 Key words and phrases: Power series methods, generalized Nörlund means, convexity theorems, Tauberian theorems.
 (c) Canadian Mathematical Society 1994.

