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Background. Mitochondria play an important role in breast cancer (BRCA). We aimed to build a prognostic model based on
mitochondria-related genes.Method.Univariate Cox regression analysis, random forest, and the LASSO method were performed
in sequence on pretreated TCGA BRCA datasets to screen out genes from a Gene Set Enrichment Analysis, Gene Ontology:
biological process gene set to build a prognosis risk score model. Survival analyses and ROC curves were performed to verify the
model by using the GSE103091 dataset. -e BRCA datasets were equally divided into high- and low-risk score groups.
Comparisons between clinical features and immune infiltration related to different risk scores and gene mutation analysis and
drug sensitivity prediction were performed for different groups. Result. Four genes, MRPL36, FEZ1, BMF, and AFG1L, were
screened to construct our risk score model in which the higher the risk score, the poorer the prognosis. Univariate and
multivariate analyses showed that the risk score was significantly associated with age, M stage, and N stage. -e gene mutation
probability in the high-risk score group was significantly higher than that in the low-risk score group. Patients with higher risk
scores were more likely to die. Drug sensitivity prediction in different groups indicated that PF-562271 and AS601245 might be
new inhibitors of BRCA. Conclusion. We developed a new workable risk score model based on mitochondria-related genes for
BRCA prognosis and identified new targets and drugs for BRCA research.

1. Introduction

Breast cancer (BRCA) is one of the most common cancers
worldwide; it is also a complex disease with different types
and molecular characteristics [1]. According to the ex-
pression status of hormone receptors (estrogen and pro-
gesterone receptors) and HER2, BRCAs are mainly classified
into four subtypes: luminal A, luminal B, HER2-enriched,
and triple-negative [2]. Although there are many different
subtypes of BRCAs, it has been reported that some of these
subtypes might convert to other under specific conditions
[3]. Because BRCA is a complex heterogeneous disease, the
pathogenesis and clinical manifestations of different patients
may differ. Diagnostic testing of patients with cancer has not
yet been fully integrated into the clinical practice [4]. In cases

where the subtype of BRCA cannot be accurately deter-
mined, identifying prognostic risk factors may be an effective
method for diagnosis and treatment [5]. -erefore, in this
study, we aimed to construct a new prognostic model for
BRCA.

Mitochondria are among the most important organelles.
Except for highly specialized mammalian mature red blood
cells, most eukaryotic cells have their own mitochondria.
Oxidative phosphorylation during aerobic respiration oc-
curs in the mitochondria; this process is the main source of
cellular energy [6]. Mitochondria play an important role in
BRCA. For example, metabolic patterns in cancer change
according to the different needs of various solid tumors [7].
Gathering mitochondria, by altering their subcellular lo-
calization, results in an increase production of ROS, which
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are toxic to cells, weakening the invasive ability of BRCA
cells [8]. In addition, as a cofactor of the electron transport
chain in mitochondrial oxidative phosphorylation, an in-
crease in heme synthesis could inhibit glycolysis and oxi-
dative metabolism, reducing the proliferation of BRCA cells
[9]. Besides, many mitochondria-related genes play im-
portant roles in cancer. For example, BMF is a proapoptotic
gene. In BRCA cell lines MCF-7 and MDA-MB-231, BMF
could bind Bcl-2, instead of Bax, leading to mitochondrial
outer membrane permeabilization and, finally, to apoptosis
[10]. Based on the importance of mitochondria and related
genes, we wondered whether we could construct a prog-
nostic model for BRCA using mitochondria-related genes.

-e mutation risk of moderate-penetrance genes in
patients with BRCA is two to four times that in the general
population [11]. Identifying high-risk germline mutations
and implementing strategies to reduce risk could increase
the survival rate of patients with BRCA [12]. Hence, we
analyzed themutation patterns of different risk score groups.
It is difficult to screen useful drugs directly on patients with
BRCA because of the high cost, great difficulty, and long
periods of treatment needed. Fortunately, the differences
between the expression patterns of tumor and normal cells
can be used to predict the sensitivity of different cells to a
certain drug. Additionally, it has been reported that
pRRophetic is a workable tool for predicting drug effects in
BRCA; therefore, we used these tools in our study [13].-ere
are various cell populations in the breast ductal epithelial
layer and the normal breast tissue microenvironment, in-
cluding immune and stromal cells. As their interactions play
a major role in early BRCA [14], we performed immune
infiltration analyses of patients with different risk scores.

In this study, we used TCGA BRCA datasets to screen
four mitochondria-related genes, namely, MRPL36, FEZ1,
BMF, and AFG1L, and constructed and verified a risk score
model to predict the prognosis of BRCA. We also compared
the features of the different risk score groups, such as
mutation, drug sensitivity prediction, and immune
infiltration.

2. Materials and Methods

2.1. Accessing and Preprocessing of BRCA Datasets. TCGA
BRCA datasets were downloaded from the UCSC Xena
platform (https://xenabrowser.net/), including RNA-seq
data and clinical features of the patients, such as gender, age,
stage, grade, survival status, and survival time. -e external
verification dataset GSE103091 (n � 107) was downloaded
from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc�
GSE103091. All probes in the microarray datasets were
renamed and re-annotated. For probes with the same gene
name, the mean value of the expression levels was defined as
the gene’s expression value. Data were normalized before
performing any other analyses.

2.2. #e Establishment of a Risk Score Model Based on Mi-
tochondria-Related Genes. -e mitochondria-related genes
were collected from the Gene Set Enrichment Analysis, Gene

Ontology: biological process (GSEAGOBP) gene set. Taking
the survival time as one of the factors and the expression of
the mitochondria-related genes as the other, univariate Cox
analyses were carried out to calculate both the p value and
hazard ratio. -e p, p value indicated whether the gene was
significantly related to the patients’ survival time, whereas
the hazard ratio indicated their relationships. A preliminary
screening of the genes whose p value was >5 was performed,
and further screening was done using random survival
forest. After the error rate stabilized, we determined the
importance of the genes in the upcoming prognostic model.
After 1000 cross-validations using the LASSO method, the
minimum lambda value was selected to determine how
many genes would be used to establish the prognostic model.
Finally, a group of genes was chosen based on their LASSO
regression coefficients.-e risk score consisted of the sum of
the gene expression values multiplied by their LASSO re-
gression coefficients.

risk score � 􏽘
n

i�1
(LASSO coefficient × Gene expression). (1)

2.3. Relationship between Clinical Features and Patient Risk
Scores, and Mutation Analysis. All patient risk scores were
calculated using the formula described above. Taking the risk
score as one of the factors, univariate and multivariate Cox
analyses were carried out with different clinical features,
such as age or stage, as the other factor, to investigate the
relationships between the risk score and each of these fea-
tures. Patients in the BRCA datasets were equally divided
into two groups according to their risk scores: low- and
high-risk score groups. In addition, the mutation infor-
mation from the patients was separately displayed by group
to compare the mutation rates and types between them.

2.4. Immune Infiltration Analysis of Patients with Different
Risk Scores. We performed four algorithms [15], ESTI-
MATE, McCounter, single-sample gene set enrichment
analysis (ssGSEA), and TIMER, to estimate the relationship
between the risk score and cell components or immune
response. Heat maps were used to show differences in
immune reactions under different algorithms.

2.5. Gene Set Enrichment Analysis (GSEA) and Drug Sensi-
tivity Prediction. -e gene sets used in this study were
downloaded from the MSigDB (http://www.gsea-msigdb.
org/gsea/msigdb). clusterProfiler (an R package) was used
to perform the GSEA. pRRophetic (an R package) was used
to predict the IC50, representing drug sensitivity [16], in the
low- and high-risk score groups.

2.6. Statistical Analysis. All the statistical analyses in this
study were performed using R 3.6.1 (https://www.r-project.
org/). -e Shapiro–Wilk test was used to check the normal
distribution of variables. Unpaired Student’s t-test was used
to check the differences in variables that conformed to the
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normal distribution, whereas the Wilcoxon test was used to
check the differences in variables that did not conform to the
normal distribution. For multiple groups, one-way ANOVA
was used to compare the mean values. -e Kaplan–Meier
method was used to generate survival curves using the R
package “survminer.” All heat maps were generated using
“pheatmap.”

3. Results

3.1. Establishment of a Risk Score Model to Predict the Prog-
nosis of BRCA. In the GSEA GO BP gene set, there were 345
genes related to mitochondria, 63 of which were screened
out by univariate Cox analysis. -e hazard ratios of these 63
genes are shown in Figure 1(a). Using the random forest
algorithm (Figure 1(b)) and LASSO regression analysis
(Figure 1(c)), we determined that the four genes with the
highest variable relative importance were MRPL36, FEZ1,
BMF, and AFG1L. -erefore, the LASSO coefficient of these
four genes was used as the weight of the risk score model.
-e risk score of the prognostic model was built using the
following formula:

risk score � 0.464 × MRPL36 + 0.297 × FEZ1

+ 0.134 × BMF + 0.578 × AFG1L.
(2)

3.2. Prognosis Prediction of Different Risk Scores. To verify
whether the risk score model worked, we evaluated the
prognosis of different risk scores in the BRCA and
GSE103091 datasets. We found that the increase in the risk
score was proportional to the increase in patient mortality
(Figures 2(a), 2(d). In addition, the survival curves shown in
Figures 2(b) and 2(e) show that the higher the risk score, the
worse the prognosis of the patients (P< 0.05). Moreover, the
ROC curves in Figures 2(c) and 2(f ) show that the AUC
values for one and three years were higher than 0.75, in-
dicating that the risk score model was workable.

3.3. Relationships between Risk Scores and Clinical Charac-
teristics, and Mutations in Different Risk Score Groups.
-e results from univariate and multivariate analyses of risk
scores with clinical characteristics of the subjects included in
TCGA BRCA datasets are shown in Figure 3(a). -e uni-
variate analysis showed that the risk score was significantly
associated with age, stage, T stage, M stage, and N stage
(P< 0.01). In addition, the multivariate analysis showed that
the risk score was significantly related to age, M stage, and N
stage (P< 0.01). All hazard ratios were greater than 1.

We performed mutation analysis of the low- and high-
risk score groups, and the results were sorted by mutation
patterns (Figure 3(b)). Comparing the upper and lower
panels of Figure 3(b), it was found that patients in the high-
risk score group had more mutations than those in the low-
risk score group. Comparing the gene name on the left and
the mutation rate on the right of Figure 3(b), the top-ranked
gene mutations in the high- and low-risk score groups were
roughly the same, in which the mutation probability of

TP53, PIK3CA, TTN, CDH1, and GATA3 exceeded 10%.
Remarkably, the mutation probability of HMCN1 increased
from 5% in the low-risk score group to 7% in the high-risk
score group. Comparing only the information on the right
side of the panels in Figure 3(b), the pattern of mutations
changed in the different groups. In the high-risk score group,
there were more nonstop mutations in PIK3CA, fewer
nonsense mutations in TP53, and more splice site and
frameshift deletions in TP53 than in the low-risk score
group. In addition, compared to the low-risk score group,
fewer missense mutations and multihit mutations in CDH1,
fewer frameshift insertions in GTAT3, fewer frameshift
insertions and deletions in HMCN1, and more nonsense
mutations in HMCN1 occurred in the high-risk score group.
In particular, the in-frame insertion mutations in MUC4
were more abundantly found in the high-risk score group
than in the low-risk score group.-us, themutation patterns
differed between the high- and low-risk score groups.

3.4. Relationships between Risk Scores and Clinical Features,
and Drug Sensitivity Prediction. As shown in Figure 4(a), as
the risk scores increased, the death rate of the patients also
increased significantly. In addition, an increase in the risk
score corresponded to significant increases in the rate of
stage IV and stage M1 BRCAs and to a significant decreased
in stage T1 BRCA. -e risk score of the patients was not
related to age or N stage.

To identify potentially effective drugs against BRCA, we
used pRRophetic to predict the different clinical drug re-
sponses in the high- or low-risk score groups (Figure 4(b)).
Compared with the low-risk score group, the high-risk score
group seemed more sensitive to cisplatin, crizotinib (PF-
02341066), CHIR99021, (-)-parthenolide, AS601245, and
PF-562271, indicating that these drugs could be used to treat
BRCA.

3.5.RelationshipbetweenRiskScores and Immune Infiltration.
To analyze the differences in immune infiltration among
patients with different risk scores, we used four methods:
ESTIMATE, McCounter, single-sample gene set enrichment
analysis (ssGSEA), and the TIMER algorithm (Figure 5).-e
epidemic immunity in BRCA was analyzed according to
different gene expression patterns. According to the ESTI-
MATE analysis, tumor purity was negatively correlated with
the risk score. In other words, the degree of immune cell
infiltration increased at higher risk score values. Stromal and
immune ESTIMATE scores significantly increased with
increasing risk scores. According to the McCounter analysis,
with an increase in risk scores, T cells, CD8 T cells,
cytotoxic lymphocytes, monocytic lineage, myeloid den-
dritic cells, neutrophils, endothelial cells, and fibroblasts
significantly increase as well. According to the ssGSEA
analysis, with an increase in risk score, activated CD4 Tcells,
activated dendritic cells, CD 56 bright natural killer cells,
CD56 dim natural killer cells, central memory CD4 T cells,
central memory CD8 T cells, effector memory CD4 T cells,
effector memory CD8 Tcells, gamma delta Tcells, immature
dendritic cells, macrophages, mast cells, myeloid-derived

Genetics Research 3

https://doi.org/10.1155/2022/2249909 Published online by Cambridge University Press

https://doi.org/10.1155/2022/2249909


Genes
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Figure 1: Continued.
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suppressor cells, memory B cells, monocytes, natural killer
cells, natural killer Tcells, neutrophils, plasmacytoid dendritic
cells, regulatory Tcells, Tfollicular helper cells, type 1 T helper
cells, type 17 T helper cells, and type 2 T helper cells were
significantly increased.According to theTIMERanalysis,with
an increase in the risk score, CD4 T cells, CD8 T cells, neu-
trophils, macrophages, and dendritic cells were significantly
more abundant.-ese resultswere consistent and showed that
the risk scores were related to immune infiltration.

3.6. GSEA. We then chose several GO processes and KEGG
pathways and performed GSEA. -e results showed that the
NES values of DNA-dependent DNA replication, the HIPPO
signaling pathway, regulation of mRNAprocessing, the TNF-
mediated signaling pathway, cell cycle G2M phase transition,
signal transduction by p53 class mediator (Figure 6(a)), the
mTOR signaling pathway, the TGFβ signaling pathway, and
the VEGF signaling pathway (Figure 6(b)) were greater than
0 (P< 0.05), indicating that these processes or pathways were
activated in the high-risk score group.

4. Discussion

In recent years, the combination of the random survival
forest model and the LASSO regression method has been
widely used to establish various disease prognostic models

from different perspectives. Not only the gene expression
patterns, imaging data, clinical characteristics [17], radio-
mics results [18], or other variables can also be used to
establish prognostic models. Mitochondria play an impor-
tant role in different cancers; mitochondria-related genes
had also been used to build prognostic models of other
diseases, for example, acute myeloid leukemia [19]. But this
thinking perspective seems did not attract researchers’ at-
tention in previous breast cancer studies. We filled this
research gap by constructing a prognosis risk score model
based on four mitochondria-related genes. Besides its role in
BRCA, BMF is also an important prognostic marker for
patients with other cancers, such as colon cancer [20] and
hepatocellular carcinoma [21]. MRPL36 is a mitochondrial
ribosomal protein that has not been studied in BRCA, but
MRPL36 has been correlated with poor progression-free
survival in ovarian cancer [22]. -e translation product of
AFG1L, LACE1, interacts with p53 and mediates its mito-
chondrial translocation and apoptosis [23]. FEZ1 is an anti-
invasive factor [24], and it is related to mitochondrial an-
terograde movement [25]. -ere is no research on FEZ1 in
BRCA, but it is known that changes in the mitochondrial
subcellular position in cells could affect the invasion ability
of BRCA [8]. -ese four genes may be new useful targets for
BRCA treatment or prognosis.

It is known that, after accumulating a certain number of
mutations, somatic cells will develop into cancer cells that
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Figure 1: Screening of mitochondria-related genes and establishment of a risk score model. (a) Differential (increased or reduced)
mitochondria-related gene expression in the hazard group compared with that in the normal group. (b) Error rates of randomly generated
trees (upper panel). Variable relative importance of the four selected mitochondria-related genes. (c) LASSO analysis: partial likelihood
deviance values were plotted against log (λ) (upper panel). -e relative abundance of the selected genes varies with the risk score.
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will be out of control and proliferate abnormally without
limitation. In this study, we analyzed and compared the
mutation patterns of the top 30 genes in the high- and low-
risk score groups. TP53 is a well-known tumor suppressor
gene, and its translation product, p53, is associated with
apoptosis in cancer [26]. -e loss of p53 leads to systemic
neutrophil inflammation, which promotes BRCA metastasis
[27]. PIK3CA is an important molecule in the PI3K signaling
pathway, and its translation product, p110α, is a catalytic
subunit of the PI3Kα complex [2]. A PIK3CA-activating
mutation often occurs in BRCA and causes disorders in the
PI3K/Akt pathway. -erefore, PI3K inhibitors have been
used to target PIK3CA for the treatment of different sub-
types of advanced BRCA [28]. As the translation product of
CDH1, E-cadherin is a structural molecule for cell adhesion
and an important factor in maintaining epithelial charac-
teristics. -e regulation of cell migration is related to
changes in E-cadherin subcellular localization [29, 30]. In

some genetic contexts, AKT inhibitors may cause the ac-
cumulation of mutations in CDH1, thereby accelerating the
metastasis and progression of BRCA [29]. Additionally,
GATA3 is a transcription factor with a zinc-finger structure
that regulates T-cell receptors in the immune system [31].
GATA3 is one of the most frequently mutated genes in
BRCA; it can affect chromatin localization of FOXA1 and
ER-α [32]. In BRCA, splice, frameshift, truncation, and
extension are the most commonmutations found in GATA3
[31].-emain function of GATA3 in the breast is to alter the
fate of luminal cells [33].-e translation product of MUC4 is
Mucin-4, a highly glycosylated protein, located on the
surface of the cell membrane, that normally lubricates and
protects vascular and epithelial surfaces [34]. It also pro-
motes the combination of blood and tumor cells [35].
-erefore, Mucin-4 plays an important role in tumor pro-
gression andmetastasis. In addition, an increased expression
of Mucin-4 masks the HER2 epitope on the cell surface,
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resulting in trastuzumab resistance of cancer cells in patients
with HER2-overexpressed BRCA [36]. Little research has
focused on HMCN1 in breast cancer, but it is known that
this gene is related to tumor heterogeneity and poor
prognosis of BRCA [37].-e different mutations analyzed in
our risk score model were consistent with those reported in
other studies.

-e assessment of tumor-infiltrating lymphocytes has
been proven to be a reliable surrogate indicator and a

powerful independent prognostic biomarker for immune
antitumor activity in patients with BRCA [38]. Noteworthy,
lung metastasis is a major cause of death in patients with
BRCA. Neutrophil extracellular traps in the tumor micro-
environment can promote this metastasis [39]. In BRCA,
activated M2 macrophages can produce cytokines and
promote tumor cell proliferation, metastasis, survival, and
tumor angiogenesis [40]. Some cancer-associated fibroblast
subpopulations can alter the immune microenvironment
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Figure 4: Clinical features and drug sensitivity prediction in breast cancer (BRCA) datasets. (a) Clinical characteristics of patients with
BRCA, sorted by risk scores. (b) Predicted responses to drugs that might be used to treat BRCA.
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and lead to BRCA cell metastasis [41]. In some NRF2-
positive breast cancers, immune cells, such as CD8+ T,
CD4+ T, dendritic, and stromal cells (such as adipocytes,
fibroblasts, and keratinocytes), are highly infiltrated [42]. In
this study, we used several algorithms to evaluate the degree
of immune infiltration. We found that, as the risk score

increased, the infiltration of neutrophils and macrophages
also increased. -e results of the different algorithms in our
study reached a consistent conclusion and coincided with
those of previous reports.

Cisplatin is one of the most commonly used chemo-
therapeutic agents. It can block BRCA progression by
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blocking early epithelial-mesenchymal transition [43],
preventing cancer cell division, and inducing apoptosis [44]
or other mechanisms. Crizotinib (PF-02341066) is an FDA-
approved small-molecule protein kinase inhibitor [45]. It
can be used to treat BRCA by targeting the inhibition of
MET and many other kinases [46]. CHIR99021 is an in-
hibitor of GSK3. Studies have shown that CHIR99021 in-
hibits the growth of the human BRCA cell line MDA-MB-
231 [47]. (-)-Parthenolide is a sesquiterpene lactone isolated
from Chrysanthemum morifolium. It can target FAK1 and
affect the proliferation, survival, and movement of BRCA
cells [48]. PF-562271 is a FAK inhibitor. Although it has not
been reported in BRCA, it can inhibit the viability and
migration ability of embryonal rhabdomyosarcoma cells
[49]. Activation of JNK signaling in BRCA promotes the
survival of cancer cells, and AS601245 is an inhibitor of JNK
[50]. -e screening done for all these drugs, according to the

different risk score groups, is consistent with the results from
other studies and suggests that PF-562271 and AS601245
may be used as new drugs for the treatment of BRCA.

Different biological processes and signaling pathways are
involved in BRCA. For example, cancer stem-like cells in
BRCA under DNA replication stress induce drug resistance
and recurrence [51]. mRNA processing is usually disordered
in BRCA [52]. In addition, the HIPPO signaling pathway
plays an important role in BRCA metastasis through
crosstalk with other signaling pathways [53]. Moreover,
TNF-α is an important component of the tumor microen-
vironment of patients with BRCA; it is a proinflammatory
cytokine secreted by macrophages or tumor cells. It can
induce macrophages to differentiate into the M1 type, which
is mainly used to kill tumors and promote chronic in-
flammation. TNF-α in peripheral blood has different im-
plications for prognosis, depending on different expression
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Figure 6: GSEA of the risk score model. (a) GSEA of GO processes. (b) GSEA of KEGG pathways. NES : normalized enrichment score.
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patterns, together with other cytokines. -e effect of TNF-α
on BRCA cell proliferation or apoptosis depends on whether
other pathways such as NF-κB are active [54]. mTOR,
downstream of the PI3K/AKT pathway, consists of two
complexes with similar structures but different functions:
mTORC1 and mTORC2. mTORC1 enhances inner cellular
anabolism to promote cell growth, while mTORC2 partic-
ipates in AKT phosphorylation. Inhibitors of mTORC1 or
mTORC2, for example, everolimus, have been proven ef-
fective in treating the ER+/HER2+ subtype of BRCA [2].
Additionally, TGFβ is a cytokine that promotes tissue repair
and inhibits adaptive immunity, and plays an important role
in epithelial-mesenchymal transition and tumor immune
evasion [55]. -e blockade of TGFβ signaling in CD4+
T cells could restore the responses of helper T cells and
inhibit cancer progression, which is mainly mediated by the
induction of vascular system reorganization [56]. VEGF not
only limits antitumor immunity but also promotes patho-
logical angiogenesis in internal tumor tissues [57]. -e
above-mentioned studies are consistent with our predictions
based on patients with different risk scores, according to our
prognostic model.

Our prognostic model found that, in the high-risk score
group, mutations, such as PI3KCA and TP53, often occur
together with the activation of signaling pathways, such as
the Hippo pathway or the PI3K/AKT/mTOR pathway. -e
wild-type p53 protein cooperates with the Hippo pathway to
inhibit tumor cell growth by promoting senescence or ap-
optosis. -is function could be reversed by the mutation
status of the TP53 gene (which causes the p53 protein to gain
GOF activity) [58]. -e hotspot mutation H1047R in
PI3KCA, frequently detected in BRCA, activates the PI3K/
AKT/mTOR pathway and promotes BRCA tumor forma-
tion [59]. -e described relationships between mutations
and activated pathways are consistent with our results.
Moreover, our risk score prognostic model may provide new
insights into the specific mechanisms of other mutations in
BRCA.

According to our model, patients with high-risk scores
are sensitive to drugs such as cisplatin. Similarly, immune
cells such as macrophages in patients with high-risk scores
are affected. Some studies have shown that regulation of the
immunemicroenvironment can enhance the immunological
benefits of chemotherapy drugs such as cisplatin [60] and
that cisplatin and other drugs can also regulate the pro-
portion of immune cells in BRCA [61]. Interestingly,
macrophage blockade enhances cisplatin response by re-
leasing intratumoral type I interferons [62]. -e described
relationships between drugs and immune cells are consistent
with our results. In addition, our risk score prognostic model
may provide possible ideas for mechanistic studies of other
chemotherapy drugs for BRCA.

Our study has some limitations.-e same genemay have
different prognostic significances in different BRCA sub-
types. For example, mutations in TP53 may contribute to the
mortality rate of luminal B or HER2-enriched subtype
BRCAs but make no effort to treat luminal A subtype BRCA
[63]. In the future, we intend to validate our model using
different subtypes of BRCA datasets and explore the

different expressions between patients with different risk
scores in different datasets. -is may provide new ideas and
targets for BRCA treatment and prognosis of different
subtypes.

5. Conclusions

In this study, we constructed a risk score model for BRCA
prognosis based on four mitochondria-related genes. -is
model was evaluated from different perspectives, such as
mutation, invasion, and sensitivity to drugs prediction,
providing new insights for BRCA prognosis.
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