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WAVE INTENSITIES AND SLOPES
IN LAGRANGIAN SEAS

SOFIA ABERG,* Lund University

Abstract

In many applications, such as remote sensing or wave slamming on ships and offshore
structures, it is important to have a good model for wave slope. Today, most models are
based on the assumption that the sea surface is well described by a Gaussian random
field. However, since the Gaussian model does not capture several important features of
real ocean waves, e.g. the asymmetry of crests and troughs, it may lead to unconservative
safety estimates. An alternative is to use a stochastic Lagrangian wave model. Few
studies have been carried out on the Lagrangian model; in particular, very little is known
about its probabilistic properties. Therefore, in this paper we derive expressions for the
level-crossing intensity of the Lagrangian sea surface, which has the interpretation of
wave intensity, as well as the distribution of the wave slope at an arbitrary crossing.
These results are then compared to the corresponding intensity and distribution of slope
for the Gaussian model.
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1. Introduction

Stochastic wave models are derived as approximations from general ocean surface-wave
theory. The simplest approximation based on the Eulerian equations of motion, i.e. the
conservation laws written for a still volume of fluid, leads to the Gaussian or linear wave model.
This model has been successfully used in ocean engineering since the 1950s; see, e.g. [15] and
[11]. The main advantage of the Gaussian model is its simplicity—the correlation structure
or, equivalently, the frequency spectrum, commonly used in marine sciences, determines all
stochastic properties of the waves. Moreover, the theory of Gaussian processes is well known so
that, for example, statistical distributions of different wave characteristics such as wave period,
crest amplitude, and steepness can be studied in detail; see, e.g. [1], [2], [3], and [13]. However,
the simplicity of the Gaussian model is also one of its drawbacks, in the sense that it is too
simple to catch important features of real ocean waves. Ocean waves are typically asymmetric,
as opposed to the waves generated by the Gaussian model. By asymmetry it is either meant
crest—trough asymmetry, meaning that the crests are peaked and narrow, and the troughs wide
and shallow, or front—back asymmetry, which refers to the fact that the wave fronts are usually
steeper than the wave rears. The symmetry, or rather the lack of asymmetry, of Gaussian waves
is particularly unfavorable when we want to describe quantities such as wave steepness, which,
for example, is important for safety calculations of offshore structures.
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Wave intensities and slopes in Lagrangian seas 1021

Another class of physically based wave models are the Lagrangian models, whose origin
dates back to the work of Lagrange [7]. These models consider not only vertical but also
horizontal motions of the individual fluid particles and, in the stochastic formulation, these
motions are modeled by Gaussian processes. As a result, the surface elevation is described
through a parametric representation which allows for a larger flexibility in the wave shape. These
models have received much less attention in the literature than the Gaussian models. However,
recently several authors [5], [6], [14] have noted that a stochastic Lagrangian model can produce
crest—trough asymmetry as well as front—back asymmetry, the latter, in particular, produced for
higher-order Lagrangian models. Thus, the Lagrangian model produces asymmetric waves at
the same time as it retains enough of the Gaussian structure to allow the vast theory on Gaussian
processes to be used in the calculations.

There are very few studies of the probabilistic properties of the stochastic Lagrangian wave
models. Recently, however, Lindgren [9] derived the so-called Slepian models for Lagrangian
seas. In this study we take a somewhat different approach and our first goal is to derive crossing
intensities for the Lagrangian model, i.e. to derive how many times per time or space unit the
sea surface crosses a certain level. Since, in the oceanographic community, a ‘wave’ is often
defined as the part of the sea surface between two successive upcrossings of the still water
level, these crossing intensities can also be interpreted as wave intensities. Our second goal is
to derive the Palm distributions of slopes (wave steepness) for two particular cases. The first
case deals with finding the distribution of wave steepness for so-called space waves, by which
we mean that the sea surface at a fixed time point is considered. The second case considers
wave steepness of the surface elevation at a fixed location, referred to as a time wave. Important
areas of application, motivating this study, are remote sensing, where good models for wave
steepness are crucial when estimating back-scattered radar, and marine safety, as steep waves
can cause significant slamming loads on ships and offshore structures.

With a Gaussian model the slope at an arbitrary crossing can be found to have a Rayleigh
distribution, for both the time and space waves. Moreover, this distribution will not depend on
what level is being crossed. However, in this paper we will show that this is not the case for
the Lagrangian model, where the distribution of slope typically depends on the crossing level.
In particular, we will see that the Lagrangian wave is steeper than a Gaussian wave if positive
crossing levels are considered, whereas the opposite is true for negative crossing levels.

The organization of this paper is as follows. First the stochastic Gaussian and Lagrangian
wave models are presented. We then define the Palm distributions, since these are the kind
of distributions that we will later apply to finding the distribution of slope at an arbitrary
crossing. After these introductory sections, the crossing intensity and the distribution of slope
for Lagrange space waves are considered. The results from the computations in Section 4 are
then exemplified and compared to the corresponding results for a Gaussian wave model. In
Section 5 expressions for the wave intensity and the distribution of slope for Lagrange time
waves are derived and exemplified.

2. Gaussian and Lagrangian wave models

In this paper two different wave models will be considered, namely, stochastic versions of
Eulerian and Lagrangian wave models of the first order. Both these models, representing the
two main approaches in fluid mechanics for describing the motion of a fluid, are physically
based and are obtained by solving certain hydrodynamical equations with suitable boundary
conditions.

https://doi.org/10.1239/aap/1198177237 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1198177237

1022 S. ABERG

The stochastic Eulerian wave model, known as the Gaussian wave model, describes the sea
elevation W (¢, x) by means of a zero-mean stationary Gaussian process. Using the spectral
representation for stationary processes (see, e.g. [4, pp. 128—135]) the sea elevation can be
written as o
W(t, x) = / el (@x=ot) qe (). 1)

—0o0
Here & (w) is acomplex spectral process having zero mean and independent Gaussian increments
satisfying dé(—w) = d&(w), which ensure that the process W (¢, x) is real valued. The wave
number « in (1) is a function of the frequency w. This is due to the dispersion relation which is
a consequence of the boundary conditions and the governing equations of the fluid. Letting &
denote the water depth and g the gravitational acceleration, the dispersion relation is given by

w? = glk|tanh(|x|h).

If « and w are chosen to have the same sign then the waves will travel in the direction of
the positive x-axis and if they have opposite signs then the converse will be true; see also
Appendix A.

In the Gaussian model the surface elevation W (¢, x), i.e. the vertical movement of the sea
surface, is given for each fixed point x. The Lagrangian model uses a different approach. In
this model the sea is described through a set of water particles, each labeled by a reference
coordinate, u say, representing the particle’s location at rest. At a given time ¢, the particle
with reference coordinate u is located at (X (¢, u), W (t, u)), where X (¢, u) gives the horizontal
location and W (t, u) the vertical location with respect to some Cartesian coordinate system
having its origin at the still water level. Thus, the Lagrangian approach models both vertical
and horizontal movements, as opposed to the Gaussian model. In a stochastic formulation, as
defined by [9], the processes X and W are modeled by Gaussian processes. In particular, the
X-process can be written as a linear filtering of the W-process in the following fashion:

m .
Wit u) = f ik @u=an) e (i)

—0o0

X(ou) = u+ /“X’ .cosh(x (w)h)

i ei(K(w)u—wt) dg((,())
—oo Sinh(k(w)h)

In the following, we will always assume that the processes W(z, u) and X (¢, u) have con-
tinuously differentiable sample paths and the derivatives will be denoted by a subscript, e.g.
W; (¢, u) denotes the derivative of W (¢, u) with respect to time. Sometimes the Lagrange wave
height at a fixed location x at a given time ¢ will be denoted by L(z, x). Using the X-process
and W-process we may thus write L(¢, X (¢, u)) = W(t, u).

One problem with the Lagrangian model, without any reasonable physical interpretation,
is that the sea surface may ‘fold’. Folding occurs if more than one particle happens to be at
the same location xg at a certain time fy, i.e. if the equation X (#9, #) = x¢ has more than one
solution. If this is the case then the Lagrange wave height, L(7y, x), is not unique but takes
several values. As noted in [9], the probability of folding is low, especially for deep water.

3. Palm distributions

Let t be a one-dimensional parameter, which may represent either time or space, and denote
by NUZ ([0, T]) the number of times a stationary process Z(¢) takes the value v in the interval
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[0, T']. Furthermore, let NUZ ([0, T], A) be the number of times a stationary process takes the
value v and, at the same time, satisfies a statement A about the process, its derivatives, or another
process. Here A could, for instance, be the statement ‘Z’(¢t) < z’, where Z'(r) denotes the
derivative of Z(¢) with respect to time. A so-called Palm measure is defined by the following
ratio of intensities:

E[N/([0, 1], A)]

PZ(A) =
v (A) E[NZ([0, 1])]

, (2
provided that the expected number of u-crossings, E[NUZ ([0, 1], is finite. If the process Z(¢)
is ergodic then the intensities in (2) can be computed as sample averages and, with probability 1,

zZ
PE(A): lim w
T—oc NZ([0,T])

Thus, the Palm distribution has the empirical interpretation that it is the long-term proportion of
v-crossings by the process Z for which A is satisfied. Note that a Gaussian process is ergodic
if and only if its spectral distribution is continuous; see [4, p. 157].

In Lemma 1, below, a stationary Gaussian vector-valued process (Z(¢), Z'(¢), Y (¢)) will be
considered. The process Y (¢) can either be directly related to Z, e.g. wemay have Y (t) = Z" (1),
or itcan be any other process correlated with Z(#). In order to simplify the notation we introduce
the random variables Y, and Z/ having joint distribution function Fy, z; (y, z) defined by the
Palm measure, (2), i.e.

Fy,z1(3.2) =P(Yy <y, Z, <2) =PZ(Y(1) <y, Z'(t) < 2). 3)

These random variables are a special case of the so-called Slepian model process (see [10] for
a detailed presentation) and we may think of them as Y (¢) and Z’(¢) observed at a randomly
chosen v-crossing of the process Z(¢). Lemma 2, below, which will prove useful in the analysis
of space waves, gives an explicit representation of these variables.

Lemma 1. Suppose that (Z(t), Z'(t), Y (t)) is a stationary Gaussian vector-valued process
such that the density of (Z(t), Z'(t), Y (t)) exists. Furthermore, assume that the sample paths
of Y(t) and Z(t) are almost surely (a.s.) continuous and a.s. continuously differentiable,
respectively. Let mz = E(Z(t)) and my = E(Y(¢)), and let the covariance matrix X of
the vector (Z(t), Z'(t), Y (1)) be given by

re<< 0 v

zz .2y

=0 7 g,
zy 2y yy
r o T

where the superscripts indicate what processes are involved and the subscripts indicate with
respect to which variable the processes are differentiated. Then the variables Y, and Z,, with
distribution defined by (3), have the following representations:

2 ()

72 2z
r Tty

.
7,2 JrFR and Y, =m, + —2 R+\/rw— U,

iz
Vi
where = denotes equality in distribution, U is the standard normal, R is independent of U,

with a double Rayleigh distribution, i.e. with probability density f(r) = (|r|/2)67’2/2, and
my =my + (< /r¥) (v —mz).
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Proof. The proof is straightforward using the definition of the Palm probability, Rice’s for-
mula for marked crossings (see, e.g. [8, Lemma 7.5.2]), and the Gaussian regression formulae.

Remark 1. The Palm measure, (2), is defined for v-crossings of the process Z. In an analogous
fashion, Palm measures at v-upcrossings may be defined. In 2this case Lemma 1 is still valid
with R being a Rayleigh variable having density f(r) =re™""/?, r > 0.

4. Lagrange space waves

In this section the Lagrangian sea surface is considered at a fixed time point, i.e. as seen on a
photo or from a satellite. Our primary goal is to find the crossing intensities (wave intensities)
and the Palm distributions of the spatial derivative at the crossing and a secondary goal is to
compare these to what is obtained from the Gaussian model.

Let ty be a fixed time point and L(fy, x) be the surface elevation at location x at time 7y
according to the Lagrangian model. We will refer to L(#y, x) as the Lagrange space wave
and owing to the definition of the Lagrangian sea it satisfies L(ty, X (9, u)) = W (ty, u). By
differentiating this relation with respect to u, the following formula for the slope of the Lagrange
space wave is obtained:

W (10, u)
Xy (to, u) ’

Note that, due to folding, L (f9, x) may not be uniquely defined for a specific x-value. However,
by working with the underlying processes W (g, u) and X (fy, u) rather than L(#y, x) itself, the
folding problem can be reduced and (4) can be used to define the derivative at crossings.
Theorem 1, below, gives the crossing intensity and the Palm distribution of slope for Lagrange
space waves. Its result is far from surprising since the Palm distribution for the Lagrange space
wave turns out to be the Palm distribution of W, (¢, u)/ X, (¢9, u) in the Gaussian model.

Ly (to, X (10, u)) = “

Theorem 1. (Space waves.) (a) The v-crossing intensity of the Lagrange space wave, L(ty, x),
equals the v-crossing intensity of the Gaussian process W (ty, u), i.e.

E[N([0, 1] = B[N, ([0, 1D)] = % T’ 0?2

rww

(b) The slope observed at an arbitrary v-crossing xi of L(to, x) has the following distributional
representation:

ww
R,/r

Ly (to, xi) =

, S
L G /rm) + U Jris = ()2 rom

where R and U are independent double Rayleigh ( fr(r) = (|r|/2)e_’2/2) and standard normal
variables, respectively. If xi, instead, is an arbitrary crossing corresponding to an upcrossing
uy of the process W (to, u) then the result is still valid replacing R with a Rayleigh variable
—r?/2

having density fr(r) =re , r>0.

Proof. The number of v-crossings of the Lagrange space wave having slope less than or
equal to y can be expressed as

NUL([O, 11, Ly(t0,x) < y) = #{u eR; W(to,u) =v, X(to,u) €0, 1], M < }

Xu(t()a M) -
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By Rice’s formula for marked crossings (see, e.g. [8, pp. 156—160]), it holds that

E[NE([0, 11, Ly (t0, x) < y)]

o0
=/ E[|Wy (to, w)| 1{X (19,u)€[0,1], Wy (t0,1)/ Xu (t0, )<y} | W (t0, ) = V] fw (9,u) (V) du.

—00

By conditioning on X, (#y, ) = w, changing the order of integration, and making use of the
dependence structure of the variables involved (see Appendix C), we find that

E[NE([0, 11, Ly (t0, x) < )]

wy 1 0o
/ Two.u), Xu (to.u) (U, w)/ |Z|{/ / fWu(to,u),X(to,u)(Z,x)dudx}dzdw
0 —0
1 00
+/ Swto,u), Xu (t0,u) (V, u))/ |Z|{/ / SWa(t0,u), X (10,1 (2> X) du dx}dzdw.
—00 wy 0 J—oo

(6)

By straightforward calculations, the innermost integrals (i.e. the terms in the curly brackets) can
be shown to equal fw, (,u)(z). Using this result and rewriting (6) in terms of an expectation
we obtain

EINE ([0, 11, Ly (i, x) < )] = E[va ([o, 1, % < y)} ™

Part (a) now follows by letting y tend to oo in (7) and using Rice’s formula for a stationary
Gaussian process; see [4, pp. 193-200].

As (7) implies that

W, (10,
PL(L, (19, x) < y) =PY <% < y)

(cf. (2)), part (b) follows by an application of Lemma 1 on the vector-valued process (W (¢, u),
W, (1o, u), X, (to, 1)), taking the covariances given in Appendix C into account.

Remark 2. In a Gaussian sea the distribution of slope at an arbitrary crossing is, according to
Lemma 1, given by a Rayleigh variable and is not a function of the height of the crossing, i.e. it
is independent of the value of v. As can be seen from (5), this is not the case for the Lagrangian
sea.

By identifying the constants @ and b in the following lemma, which can be proved by
straightforward calculations, a closed-form expression for the density of the slope (at upcross-

ings) having representation (5) is obtained.

Lemma 2. Let R be a Rayleigh variable with density fr(r) = re*r2/2, r >0, andlet U be a
standard normal variable, independent of R. Furthermore, define X = aR /(1 4+ bU), where
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FIGURE 1: Density of slope observed at an arbitrary space-wave upcrossing of level v = 1m in the

Gaussian (dash-dotted line) and Lagrangian (solid line) models for different water depths, & = 4, 16, and
oo m, and spectrum steepnesses, S = 0.026, 0.035, and 0.049.

a,b> 0. Then
sgn(x)a ( a* 2\, 22207 (x) g SEN()A L @b i
== "7 — 1) o] )
fx@®) o3(x) (az(x) o7 )xe bo (x) * V2 04(x)xe

where o (x) = ~/a? + b*x% and ® denotes the distribution function of a standard normal
variable.

Having derived an expression for the Palm distribution of slope at space-wave crossings we
are now ready to compare it to the distribution obtained by a Gaussian model.

Example 1. In this example the densities of slope at an arbitrary upcrossing in the Gaussian
and Lagrangian models are compared. The models are defined by a frequency spectrum, in this
case a spectra of the so-called Pierson—-Moskowitz type; see Appendix B for details. This family
of spectra is defined by two parameters, namely, the significant wave height Hy and the peak
period 7p. In our case we let H; = 7 m and we consider three different water depths, 4, 16, and
oom, and three different values of the steepness of the sea state, defined as S = 27 Hy/gT?2,
namely, 0.026, 0.035, and 0.049. These different values represent moderately steep, steep, and
very steep waves, respectively. We also choose a cut-off frequency w. = 33/T, rad sliea
frequency such that the spectrum is zero for frequencies higher than w.. This particular choice
of parameters is for illustration purposes only, since in a real world situation it is unrealistic
to have the same spectrum for different water depths. In Figure 1 the densities of slope are
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shown for the crossing level v = 1 m and it can be clearly seen that the Lagrangian model gives
steeper waves than the Gaussian model. On the one hand, for a fixed steepness, the difference is
greatest for shallow water and decreases with water depth. On the other hand, for fixed depth,
the difference increases with steepness S. Thus, the densities resulting from the Lagrangian
and Gaussian models differ most for steep sea states in shallow waters. For a negative crossing
level the Lagrangian model will give less steep waves than the Gaussian model, whereas for
zero-upcrossings very little difference can be found between the two models.

5. Lagrange time waves

Next we consider the Lagrangian sea surface at a fixed location, i.e. at a so-called Lagrange
time wave, which might be appropriate in applications dealing with wave slamming on offshore
structures. As for the space waves, the goal is to obtain expressions for the crossing intensities
and the Palm distribution of the temporal derivative at the crossings. As we will see, the time
waves are more difficult to analyze, mainly owing to the fact that we need to keep track of
which particle u is currently located at the fixed position.

Let x¢ be a fixed point in space and let L(, xo) denote the Lagrange time wave, i.e. the
sea elevation at location x( at time ¢ as given by the Lagrangian model. Then L(t, x9) =
W, X1, x0)), provided that ¢ is a time point when X ~!(z, x¢) exists uniquely, i.e. provided
that no folding occurs at time ¢. The Lagrangian sea satisfies, by definition, L(t, X (t, u)) =
W (t, u). By differentiating this relation with respect to ¢, taking (4) into account, the following
formula for the temporal derivative is obtained:

X:(t,u)

Li(t, X (1, w)) = Wilt, u) = Wa(t, u) (t,u)

(®)
Again, owing to folding, L(¢, xo) may not be differentiable for certain values of ¢. For such
t-values, there are multiple us satisfying X (¢, u) = xo and, for each such solution u, we define
L;(t, x9) by (8). This should be seen as a purely mathematical construction necessary to get
around the problem of the folding of the Lagrangian sea.

The number of v-crossings of the Lagrange time wave on the unit interval is given by
N* = #{t € [0,1]; L(¢,0) = v}, where we have set xo = 0. However, this definition is
not convenient to work with when it comes to computing the crossing intensities or the Palm
distributions. Instead, note thatif #; € [0, 1] is a time when L(¢, 0) = v then there exists at least
one reference coordinate u satisfying W (x, u) = vand X (t, u) = 0. Infactitfollows, by direct
application of Rice’s formula, that there is a.s. only one such u. An alternative definition of the
number of crossings is thus given by N = #{(¢, u) € [0, 1] x R; W(t,u) = v, X(t,u) = 0}.
This crossing definition can easily be extended to include the slope at the crossing. Taking (8)
into account, the number of v-crossings having slope less than or equal to y is given by

N(—c0,y] = #{(t, u) € [0, 1] xR; W(t,u) =v, X(t,u) =0,

X t (t ) l/[)
W, (¢, —W,(t,u)——— < .
1t u) — Wy( u)Xu(t’u) y}
Thus, by defining the crossings in this way the problem of computing the crossing intensity
and the Palm distribution of slope for the Lagrange time wave is reduced to a two-dimensional
crossing problem for Gaussian processes. The solution to this problem is given by the following
theorem.
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Theorem 2. (Time waves.) Ler VX = (X;(0,0), X,,(0,0)) " and

ww ww
Tuu Tt
Ty = .
—pww Fow
tu tt

Then we have the following results.

(a) The intensity of v-crossings for the Lagrange time wave is given by

E[N] = E[WV(VX)TEWw VX | W(0,0) = u]%,/%e*”z/zrw“’. 9)
r

(b) The (Palm) density of slope at an arbitrary v-crossing of the Lagrange time wave is given
by

2 22
o) ZEBIyIMeXP< M)\/(VX)TZWVX ' W(0,0) = v]

(VX)) TZy VX 2VX)TZyVX
(10

1
* E/(VX)TZwVX | W(0,0) = v]

The proof of Theorem 2 relies on the following lemma, which can be proved by straightfor-
ward calculations.

Lemma3. If X € N(u, o2) then

E[IX]|1{x<a]

(o (15) o(£)) g e oz
T
o~ (a—1)?/20%

()
o o 2
Proof of Theorem 2. The main part of the proof consists of finding an expression for

E[N(—,y;]. Using the version of Rice’s formula for marked crossings given in [12] and
applying monotone convergence it follows that

a<0.

’

1 o)
E[N(—oo,y]]=/0 f gt, u) fwa,uy,x.u) (v, 0) du dt, (11)
—0Q

where, writing Z (¢, u) = (W (t, u), X (¢, u)),

g, u) =E[[W;(t,u) Xy, (t, u) — W, (¢, u) X, (¢, u)|
X Lw, (1) = Wo (1) X, (1) ) Xu )<y | Z(E,u) = (v, 0)].

Using the fact that, conditional on Z(¢t,u) = (v, 0), the vectors (W, (¢, u), W, (¢, u)) and
(X;(t,u), X, (t,u)) are independent (see (13) in Appendix C), the integrand in (11) can be
written as

gt u) fz(t,u)(v, 0) 2/ / E[lxaWi(t, u) —xi Wi (8, w)| 14 | Z(2,u) = (v, 0)]

X fx, X,z (x1, X2, v, 0) dxo dxq, (12)
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where A = {W,(t,u) — W, (t,u)x1/x2 < y} and the variable (¢, u) is suppressed in the
expression for the density. The distribution of xo W, (¢, u)—x1 W, (¢, u), conditionalon Z (¢, u) =
(v, 0), is normal with mean and variance respectively given by

u
_ wx wx
/’L - rX)C (ru() 'xl - r[() x2)5
1
2 2 2 2.
o =rplxy +rhVxy = 2r Y xix — pee: (rao X1 — 10" x2)%s
see Appendix C. Consequently, Lemma 3 can be used to conclude that

Ellxo Wi (t, u) — xi W, (t,u)| 14 | Z(t, u) = (v, 0)]
o(o(5) -20(-5))
o o
2 2
o 1z (x2y — p)
+ﬁ(26xp<—m> - eXP<—T)), x>0, y>0,
_ N2
_Mq)<x2y0 u) N \/c;_n exp(_ (xzyzozu) ) 52> 0.y <0,
(o) -2e(-5) 1)
o o
2 2
o 1z (x2y — p)
+ﬁ<2exp<—m) — exp(—T)), x3 <0, y>0,

X2y — o (x2y — w)?
1— @ LA 0, 0.
M( ( o )) * 2 exp( 202 ) EhYs

An integral for the intensity E[N (oo, y]] is thus obtained by combining this result with (11)
and (12). According to Fubini’s theorem the integration can be carried out in any order. By first
integrating with respect to # and using stationarity in the variable ¢, quite lengthy calculations

lead to
2y2
)
2AVX)TEwVX
xvV(VX)TZwVX | W(0,0) = v} \/;_n Sfw@), y=0,
E[N( oyl = oo
y°X;(0,0)
Elexp| = —=
[ ( 2(VX)TEWVX>
xV/(VX)TEZwVX ’ Ww(0,0) = v:| \/;_71 fw@), y<O.

Theorem 2(a) is now obtained by letting y tend to oo in this expression. Theorem 2(b) follows
by forming a Palm distribution by dividing E[N(_oo,y1] by the intensity from Theorem 2(a),
and differentiating with respect to y inside the expectation sign using a dominated convergence
argument. This concludes the proof.

Remark 3. The v-crossing intensity for W (¢, 0), given by Rice’s formula, is

L[t 2 g
Bl#{t € [0, 1]; W(t,0) = v}] = —/-Te _

rww
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Comparing this with the crossing intensity, (9), for the Lagrangian sea we see that the \/r;;"
factor in the Gaussian case is replaced with an expectation of the square root of a quadratic form.
Moreover, in a Gaussian model the slope atan arbitrary crossing has a double Rayleigh distri-
bution, i.e. has a density (1/2r%")|r|e™" /2rii A similar factor is present in the Lagrangian
expression for slope, given by (10), showing the close relationship between the Lagrangian
and Gaussian models. By reducing the Lagrangian model to the Gaussian model, by letting
X (t,u) = u, both (9) and (10) reduce to their corresponding quantities in the Gaussian model.

Remark 4. With an analogous proof we can show that the (Palm) density of slope at an arbitrary
v-upcrossing of the Lagrange time wave takes the form

2 2y2
fv+(y) - E|: Mexp( M) /(VX)TZWVX ‘ W (0, 0) = vi|

Y V) TEwVX T2(VX)TTyVX

y > 0.

1
* E/(VX)TZwVX | W(0,0) = v]

The intensity of v-crossings, (9), and the density of slope, (10), of the Lagrange time wave
are not given in an explicit form. However, since they are given in terms of expectations of
functions of normal variables, it is convenient to evaluate them by simulation or numerical
integration. The former approach is used in the example presented next.

/A. \, h=4,5=0.026, h=16,S =0.026, h=o0,5=0.026,
: v=1 v=1 v=1
h=4,5=0.035, h=16,S8=0.035, h=o0,5=0.035,
A 7\ N
o v=1 . v=1 . v=1
h=4,85=0.049,v=1 h=16,5=0.049,v=1 h=o,5=0.049,v=1
0.4 ~.
AN
021/ \
: \
/ N
\.
0'00 5 10 10 10

FIGURE 2: Density of slope observed at an arbitrary time-wave upcrossing of level v = 1 m in the Gaussian
(dash-dotted line) and Lagrangian (solid line) models for different water depths, 7 = 4, 16, and com,
and spectrum steepnesses, S = 0.026, 0.035, and 0.049.
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0.6 h=4,5=0.026, h =16, S =0.026, h =00, 8=0.026,
v=-1 v=-1 ) v=-1
0.4
024
0.0
0.6 h=4,8=0.035, h=16,5=0.035, h =00, §=0.035,
v=— y=-1 y=-1
0.4
0.2 i
0.0
0.6 h=4,5=0.049, h =16, 5 =0.049, h =0, §=0.049,
y=-1 yv=-1 v=—1
0.4 /
0.2 I\
\',
0.0
10 10 0 5 10
FIGURE 3: Density of slope observed at an arbitrary time-wave upcrossing of level v = —1m in the

Gaussian (dash-dotted line) and Lagrangian (solid line) models for different water depths, & = 4, 16, and
oo m, and spectrum steepnesses, S = 0.026, 0.035, and 0.049.

Example 2. The purpose of this example is to show the differences between the densities
of slope at time-wave upcrossings for the Gaussian and the Lagrangian models. Again we
consider three Pierson—-Moskowitz spectra, each having different spectrum steepnesses and
different water depths. The same parameters as in Example 1 are chosen, i.e. water depths of
4, 16, and oo m, spectrum steepnesses of S = 0.026, 0.035, and 0.049, and a significant wave
height of H; = 7m. Based on a sample size of 1000, the density for the Lagrangian model
is evaluated by simulation and the resulting curves are shown in Figures 2 and 3. Figures 2
and 3 show the density of slope for the Lagrange time wave for crossing levels of v = 1m
and v = —1m, respectively. From these plots it can be seen that the Lagrange densities are
dependent on the crossing level, whereas the densities arising from the Gaussian model are not.
Furthermore, the same pattern is present in these figures as in the corresponding space-wave
densities in Example 1, namely, that the difference between the models increases with steepness
and decreases with water depth.

Appendix A. Spectrum and covariances

By choosing x and w to have the same sign in the spectral representation, (1), the waves are
traveling in the direction of the positive x-axis and if they have different signs then the waves
are traveling in the opposite direction. In order to have a model where both wave directions are
allowed we may add two independent processes, one in which the waves move to the right and
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one in which the waves move to the left, i.e.

W ) = /oo ei(K+(a))u—wZ) dE+(w) " /OO ei(,(_(a))u—wl) dé_(a))
—00

—00

Here «* (w) denotes that « is chosen to have the same sign as @ and k ~ (w) denotes that ¥ and
o are of opposite sign. Each of the spectral processes £ (w) and £~ (w), which are assumed
to be independent, can be related to a spectral density, S*(w) and S~ (w), say. The spectral
density S*(w) is defined by the relation

E[d&* () dEF (@] = {0 wEw,

St(w)dw, o=,

with S~ (w) defined in an analogous way. Moreover, the symmetry relations dé*(—w) =
d§+(w) and d&~ ( w) = d&~(w), which ensure that the process W (¢, u) is real valued, imply
that S+ (w) and S~ (a)) are symmetric. In oceanography, however, we do not work with the
spectra S*(w) and S~ (w), but rather with a frequency spectrum S(w), say, which is asymmetric
and constructed in such a way that positive frequencies indicate that the wave is traveling to
the right and negative frequencies indicate that the wave is traveling to the left. The relation
between the different spectra is given by

25t (w), >0,
S(w)=185T0)+S5(0), =0,
28~ (w), o < 0.

The interpretation of the spectral density for the Gaussian model is quite different from that
for the Lagrangian model. In the Gaussian model the spectrum describes the distribution of
frequencies of the sea surface at a fixed point, whereas in the Lagrangian model it describes
a distribution of frequencies in the elevation of a fixed particle u, which is clearly nonfixed
since it moves according to X (¢, #). Owing to this fact the spectrum in the Lagrangian model
is called an orbital spectrum. As noted in [5], few studies have been carried out on suitable
models for the orbital spectrum, and in our case we use the same input spectrum as for the
Gaussian model.

Below, covariances and cross-covariances are given for the processes X (¢, u) and W (¢, u)
in the Lagrangian model. These formulae are corrected versions of the ones that can be found
in [9]. In the following S(w) is the asymmetric frequency spectrum and notation such as
r'%" (t,u) = cov(W, (0, 0), X(¢, u)) is used for the different covariances.

The covariances of W (¢, u) and its derivatives are given by

r?%(t,u) = / cos(|k|u — wt)S(w) dw,

—00

o
rol(tu) = —/ wsin(|k|u — wt)S(w) dw,

—00

o
ool (t,u) = / || sin(|x|u — wt)S(w) dw,

—00

o
ral(tu) = —/ wlk| cos(|k|u — wt)S(w) dw,

—00
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o0
rl (e, u) =/ w? cos(|k|u — wt)S () do,

—00

o0
r;';w(t,u)zf i |? cos(|x|u — wt)S(w) dw.

—00

The covariances of X (¢, u) and its derivatives are given by

o cosh(|ic|h)\?
r(t,u) = [ cos(|x|u — wt) (—) S(w) dw,

—oo sinh(|« |h)
v = [ ws cosh(jel) )
ro (tu) =— /_ooa)sm(|K|u — wt)(sinh(|/c|h)> S(w) do,

00 2
e = [ mew—wwﬂﬂﬂ9>ﬂwm,
—o0 sinh(|«|h)

- o cosh(|k|h)\?

ro (@t u) = —/ wlk| cos(|k|u — wt) <m) S(w) dw,
00 2

D) =/ w? cos(|ic|u — wt)(%) S(w) do,

" o cosh(|x|h)\?

P (1) = / |k |“ cos(|x|u — wt)(m) S(w) dw.

The cross-covariances of W (¢, u) and X (¢, u) and their derivatives are given by

“u>——fw'0|—-n@ﬂﬂ@ﬂ>d
r ,Uu) = _oosm Klu —w sinh (e [) w)dw,

o0 cosh(|k|h)
rao (t,u) = /;OO |k | cos(|k|u — wt)mS(a)) dw,

o cosh(|k|h)
rot(tu) = — [oo w cos(|k|u — wt)mS(w) dw,
*© cosh(|k|h)

Xt u) =t u) = /;00 wlk|sin(|x|u — a)t)mS(a)) dw,

o . cosh(|«|h)
rt(t u) = — /;oo w? sin(|x|u — wt)mS(a)) dow,

wr o, cosh(|k|h)
ro(t,u) = — |k |” sin(|x |u — wt) ———— S(w) dw,

uu oo sinh(|«|h)
r;g](t’ M) = _r,%x(tr M),
rio’ (t, u) = —r* (t, u).

Appendix B. The Pierson-Moskowitz spectrum

The Pierson—Moskowitz (PM) spectrum is a standard spectrum in ocean sciences and is used
to model a fully developed sea. The concept of a fully developed sea means that it has blown
steadily for a long time over a large area so that the waves are in equilibrium with the wind.
The PM spectrum has the following parametric form:

Sy = B (j;)
" op@/wp)’ T\ 4 /o))’
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where H is the significant wave height, defined as four times the standard deviation of the
surface elevation, and wy, is the peak frequency, i.e. the frequency where the spectrum has its
peak. Sometimes the peak period T, defined by 7, = 2m/wp, is used instead of the peak
period wp. Thus, the PM spectrum is totally defined by the two parameters Hg and T,,. Often,
however, we are mainly interested in the large structures of the sea surface and not in the fine
ripples on the surface, represented by the high frequencies in the spectrum. In this case the
spectrum is ‘cut off” at a certain frequency w,, called the cut-off frequency, meaning that S(w)
is set to O for all w > we.

Appendix C. Distributions

In this section distributions are given which are necessary to evaluate the crossing intensities
and the Palm distributions of slope for the Lagrangian sea. In the following we use the notation
ri¥ =ri"(0,0), etc.

Let Y = (W, (¢, u), Wy (t, u), X,(t,u), X, (t,u)) " and Z = (W (¢, u), X(t,u))". Then the
joint distribution of (¥ 7, ZT)T is normal with expectation g and covariance X given by

ww ww wx
0 Ty r 0 0 0 ry
ww ww wx
0 T T 0 0 0 .0
XX XX xXw
_lo s _ 0 0 oo 0 (13)
= 11’ - 0 0 PEE XX AW 0
0 tu uu u0
xXw Xw ww
" 0 0 ry’ 1o T 0
L 0 0 0 r

Since the joint distribution is normal then the conditional distribution of Y, given that Z =
(v,0) T, is also normal. Denoting the conditional mean and the covariance by py | Z=(v,0)T and
Xy | z=(v,0)T> respectively, we have

T
wx wx xw xw
r r r r
— t0 u0 t0 u0
_ T=|-——= _— —_ —_—
My | Z=(,0) < e el i I+ Cww v) )
wx\2 WX WX
ww (rt() ) ww 710 "u0
7 0 0
XX XX
WX WX wx\2
ww 10 "u0 ww (ruo )
o T T e Tuuw T 0 0
5 XX XX
Y |Z=(,0T = (rxw)Z XW . XW
XX t0 xx u0 "t0
0 0 V” - rtu - T ow
Fww Fww
XW . XW xwy2
XX u0 10 XX (ru0 )
0 0 Tow = ww . Tuu T T ow
Fww Fww

Note that, conditional on Z = (v, 0) T, the pairs (W;(t, u), W, (t,u)) and (X, (¢, u), X, (t, u))
are independent.
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