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ANGLE BISECTION AND ORTHOAUTOMORPHISMS
IN HILBERT LATTICES

RONALD P. MORASH

1. Introduction. The lattices of all closed subspaces of separable, infinite-
dimensional Hilbert space (real, complex, and quaternionic) share the follow-
ing purely lattice-theoretic properties. Each is complete, orthocomplemented,
atomistic, irreducible, separable, M-symmetric, and orthomodular [2]. We
will call any lattice possessing these seven properties a Hilbert lattice. The
general situation which motivates the investigations of this paper concerns
infinite-dimensional Hilbert lattices (the dimension of a Hilbert lattice being
the cardinality of any maximal family of orthogonal atoms). There are several
lattice theoretic properties, possessed by the three canonical lattices, whose
only known proofs involve the analytic properties of the underlying Hilbert
space, that is, there is no known purely lattice-theoretic proof of these proper-
ties. For example, it is known that, in each of these three lattices, there exists an
orthoisomorphism between any two orthogonal intervals of the same height.
Also, it is known that each of the lattices is O-symmetric, a property that
could be proved abstractly if certain information were known about the
orthoautomorphisms of the lattice. This paper provides what we hope is a
step toward settling the validity of properties such as these in an arbitrary
infinite-dimensional Hilbert lattice. We might note that a more far-reaching
problem in this vein is whether there are, in fact, any other infinite-dimen-
sional Hilbert lattices (i.e. lattices which are not orthoisomorphic to any of
the known examples) than the canonical three. None is known and we, in
[2; 3; 4], presented some evidence in support of the possibility that there is no
other. In this paper, most of the results are based on the coordinatization
theorem of Birkhoff and von Neumann for finite dimensional Hilbert lattices.
In section 2, we present a purely lattice-theoretic definition, which corres-
ponds, in the three examples, to the notion of the bisection of an angle between
two orthogonal vectors by a third vector. We relate the existence of angle-
bisecting atoms, in the general case, to a property of the division ring which
coordinatizes the finite intervals of the lattice (it is a consequence of the
uniqueness property of the Fundamental Theorem of Projective Geometry
that one division ring coordinatizes all finite intervals). In section 3, we prove,
under the assumption of the existence of angle-bisectors, the existence of
certain orthoautomorphisms of a Hilbert lattice.

This paper assumes basic results of the theory of orthomodular lattices;
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we use freely facts about Sasaki projections and the theory of commutativity.
Also, we use results from the theory of atomistic lattices with the covering
property and results about the notion of perspectivity. We suggest [1] as a
reference for this material.

2. Angle bisectors. In this section, we give a lattice-theoretic formulation
of the concept of the bisection of the angle between two orthogonal atoms by
a third atom lying beneath their join. Then, we relate the existence of angle-
bisectors to an algebraic property of the division ring which coordinatizes L.
Throughout this section, L represents a Hilbert lattice (either finite or
infinite-dimensional). We denote by d(a) the dimension of an element @ € L
and by ¢, the Sasaki projection on the element b € L. We begin with some
preliminary material which will lead to the definition of angle-bisection.

2.1 FAcT. Let p, 2, r bedistinct atoms in a Hilbert latiicewith (p V z) £ rt. Then
(p V 2) A rtis an atom.

Proof. Since (pViz)frt, then (pV3z)Art<pVsz so that
d((p Viz)Art) <2,s0 (p V2) Arlisat most an atom. Thus, we need
only show that (p V z) A vt 0. But if (p V z) A rL =0, then since
(» V 2z) Vrt =1, we would have that (p V z) is a complement of rt, so
P V z is perspective to r. Hence, since perspectivity implies equal dimension,
2 =d(p V z) = d(r) =1, a contradiction. Thus, (p V z) A r+ = 0.

2.2 COROLLARY. If p, z are distinct atoms, then (p V z) N zt(=¢,L(p)) is
an atom.

2.3 LEMMA. Let p, g be orthogonal atoms. Let r be a third atom such that
r < p V q. Let x be any atom such that x 1 r,but x Z p V q. Let y be an atom,
distinct from p, g, r,x such thaty < p V r V x and y L x. Then the following
are equivalent:

(1) y = ﬁazlﬁorl(P) (=¢T-L‘P1J'(p)y since xCr).

(i) y L .

i) r = (P V g@) A xt A yh

(iv) There exists an atom s such thatx V vy = ¢,.(p) V s,and s L (p V q).
This atom s is necessarily unique and distinct from the atoms x,y, and ¢,L(p).

Proof. (i) = (ii). v = o,teL(p) < rtsoy L r.

(ii) = (iii). Since y L 7, then r < (p V g¢) A x+ A y*-. Since (p V q) A
x1 A ¥l is at most an atom (by 2.1), we must have equality.

(ili) = (iv). Let s = (x V 9) A p+ A gt. We claim s is an atom, i.e.,
(x Vy) A pt A gt 0. By assumption, (p V ¢q) A x+ A yt # 0 so, since
(p Vg) A xt is an atom, by 2.1, we must have (p V q) A xt Ayt =
(p V g@) A xtand therefore (p V g) A xt < yL. Buttheny < x V (pt A ¢b)
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so (x Vy) =xV (pt A gl); hence

(V) Apt =[Pt Agh) V] Apt
= (pr Agt) V (x A pL) (since m(x, pt))
= pL A gt (since x £ pt)
= ¢~

Thus (x V y) A pt A gt = (x V y) A pt which is an atom, by 2.1. Hence
sis an atom. Clearly s L (p V ¢) so s is automatically distinct from x, y, and
o,L(p) (since it is easy to show thaty Z p V ¢). Clearly s < x V y and, since
Yy = et L(p) = (o,0(p) Vx) A xt < et (p) V x, then ¢,1(p) < x V Yy so
sV e,L(p) = x V y. Finally s is unique since a desired atom must be
< x V y and orthogonal to p V ¢. But (x V y) A (p V ¢)t, as we have
already seen, is an atom.

(iv) = (i). We claim y = (¢,1(p) V x) A xt. By assumption, y < xt. By
(iv) ¢rL(p) <x V ysoy < ¢,1(p) V «x,and therefore y < (o,L(p) V x) A xt,
which is an atom, by 2.1, and so we have equality.

2.4 Definition. Let p,q,x,y,r be distinct atoms such that p L g,
r<pVgxLlr,xZpVgyLlxandy <pVqgVx Wewrite (p,q) H
(x, ¥) via r if the four equivalent statements of 2.3 are true.

2.5 Remark. Given three distinct atoms p, ¢, r with p L gand » < p V ¢,
there always exist pairs (x, y) such that (p,q) H (x,y) via r, namely there
exists one pair for each atom x such thatx 1 r and x Z p V ¢, ¥ being then
uniquely determined by p, r, and x (by 2.3(1)).

2.6 Definition. Let p, g, r be distinct atoms with p 1 ¢gand » < p V ¢g. We
say that r bisects the angle between p and ¢, to be denoted 7B (p, ¢) if and only if,
for any pair (x, y) of orthogonal atoms with (p, ¢) H (x,y) via », we have
rsleVa)A@VNIVIEVY) AV )]

2.7 Remark. The remainder of this section is devoted to relating Definition
2.6 to an algebraic property of the division ring which coordinatizes the
lattice L. In the process, we will show that the words ‘‘for any pair (x, y) ...”
in Definition 2.6 can be replaced by ‘‘for some pair (x, y) ...”.

The way to these results is cleared by a series of rather technical lemmas.
We list here, for the sake of brevity, the assumptions and notation which
prevail in 2.8, 2.9, and 2.10. We assume throughout that (p, ¢) is a pair of
orthogonal atoms in L and that » < p V ¢ is a third atom. We let (x, y) be a
pair of atoms such that (p, ¢) H (x, y) via r. We let L’ be a finite interval in L
such that p,¢,x € L’ and n = dim L’ = 4. Then, we let (D, #, (,)) be the
triple, whose existence is given by the theorem of Birkhoff and von Neumann
such that L’ is orthoisomorphic to the lattice L(V, (D, *, (,))) of subspaces of
V.. We write p = De; and ¢ = De, where ey, e; € V, are such that (e;, e2) = 0.
Since » < p V ¢, and 7 is an atom, we can write 7 = D(e; + aes) for some
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a € D.In the following lemmas, we let w represent the element (e, e2)a™ (e, €1)~!
of D. The goal of 2.8 and 2.9 is to represent the atoms which occur in 2.6 as
the space spanned by specific vectors in V.

2.8 LEMMA. (a) ¢,L(p) = D(we; — es).
(b) x = D(wey — ex + f), where f is a vector in V, such that s = Df, s being
the atom whose existence is given in 2.3(iv).

(c) y = D(wer — ea — ((1 + wa) (e, &) (f, /)7)f).

Proof. (a) ¢.L(p) < p V g so there exist 7,p € D such that ¢,L(p) =
D(rey + pes). Since ¢,L(p) L 7, then (re1 + pes, €1 + aes) = 0. Letting
p = —1givest = (ez, e2)a*(e1, €1)™! = w50 ¢,1(p) = D(wer — ez).

(b) Let s be the atom whose existence is given in 2.3(iv), such thatx V y =
e:L(p) V s. Since ¥ < ¢,L(p) V s and ¢,1(p) = D(we; — ¢3), then we can
write x = D(we; — e2 + f), where f is a vector in V,, such that s = Df.

(c) As in (b), ¥y < ¢,L(p) V s s0 y = D(we1 — e2 + 7f), for some 7 € D.
r is determined by the fact that y 1 s, namely

(wer — ex + f, wer — e2 + 7f) = 0.
Computation yields 7 = — (1 + wa) (e, e2) (f, /)~
2.9 LEMMA.
@) (@ Vax)A(@Vy) =DI(1+ wa)w)e
+ ((ez, €2) (f, ) )ea — ((ez, €2) (f, f)~1f 1.
b)) @ V) A(gVx)=Dl((e ) (f, ) 'w)er
+ (@ + wa)™e: + ((e2, €2) (f, )7Df 1.
Proof. First we note that (p V x) A (¢ Vy) and (p V ¥) A (¢ V x) are
easily seen to be atoms by a dimension argument. To represent the atom
( V x) A (g Vy) as the space spanned by a vector in V,, we must find

scalars W, X,Y,Z € D such that We + X(wer — e+ f) — Ve, —
Z(wey — €2 — ((1 + wa)(eq, €2) (f, f)~1)f) = 0.

This equation implies the three equations.
W+ X—-—2)w=0

i) X+Y—-2Z=0,and

(iii) X 4+ Z((1 + wa)(es, e2) (f, /)71) = 0.
Letting Z = (1 4+ wa)™!, we get from (iii) that X = — (es, e2) (f, f)~. Hence
V=2-X=©04wa) '+ (e, e)(f,f)L. Thus, W = Yo = (1 + wa)lw +
(eq, €2) (f, f)"'w. Since (p V 2) A (p V y) = D|Wey + X (wer — €2 + f)], for
the scalars W, X specified above, we conclude that

@ Vx)A(@Vy) =D(W+ Xo)es — Xes + Xf]
= D[((1 4+ wa) w)er + ((es, €2) (f, f)Ves
— ((e2, ) (f, 7O 1.
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To compute (p V y) A (¢ V %), simply exchange the roles of W and — Y in
the above computation.

2.10 THEOREM. rB(p, q) if and only if r = Dler + ae;] where the scalar
a € D has the property that

a(es, e)a* = (e1, €1).

Proof. Since r < p V g, then r = Dle; + aes] for some a € D. We wish to
show that » = [(p V) A (g VY]V I[P Vy) A (V)] if and only if
ales, e2)a* = (e, e1). In view of 2.9, we will haver < [(p V x) A (¢ V ¥)] V
[(p V) A (g V x)] if and only if there exist scalars u, » € D such that

() 1 = pu[(1 + wa) o] + v[(es, ) (f, /)],
(ii) @ = ul(ez €2) (f, /)71 + »[(1 + wa)™'] and

(1) 0 = —u 4+ v, 0or p =

By (iii), (i) and (ii) become
(1) 1 = u[(1 + wa) 0 + (e, €2) (f, f) ]
= u[(1 + wa)™! + (ez €2) (f, f)~]w and

()" a = pl[(ez ) (f, )™+ (1 + wa)™].

We note that the quantity in brackets in (i)’ and (ii)’, namely (1 + wa)~! +
(e2, €2) (f, /)~ (to be denoted henceforth as Q) is nonzero, otherwise we could
prove ¥ = x, thus contradicting y 1 x. Thus we have

)" 1 = pQo,

(1) @ = uQ and Q # 0.

From this we conclude aw = 1, so that a(es, e;)a® = (e, 1), as desired.

2.11 COROLLARY. Suppose that (p, q) H (x, y) via r and (p, q) H (w, 2) via r.
Then

r=[@V)AN@G@VN]VIEVIA@QV)]e
r=[Vw)A@Va]VIpVsa AVl

Proof. Coordinatize the finite interval L(0, p V ¢ V x V w) and note that,
by 210, r <[(p Vx)Al@Vy)VIPVy A@Vx)] if and only if
r = D(e1 + aey) for some a € D such that (e;, e1) = a(es, e2)a®, which holds
ifandonlyifr <[(pVw) AlgVa)]VIpEVzAI@GVwl

2.12 Definition. A Hilbert lattice L will be called a bisecting Hilbert lattice if
every pair of orthogonal atoms in L has an angle bisecting atom.

2.13 Remarks. We pause here to refer to some examples. Loosely speaking,
the algebraic requirement of Theorem 2.10 is that, given two orthogonal
vectors e;, €3, we must be able to find a vector in the direction of e, having the
same ‘‘length’’ as e;. In real, complex, and quaternionic Hilbert space (finite-
dimensional or separable infinite-dimensional), vectors can be orthonormalized
(due to the existence of square roots of positive elements in the division ring)
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so the condition is met. On the other hand, in the 3-dimensional vector space
over the field of rational numbers (with the canonical form), the orthogonal
vectors, (1, 1,1) and (—2, 1, 1) do not have an angle-bisecting vector. If D
is commutative, * = identity, and the condition of 2.10 is that each field
element in the range of (,) have a square root. Also, we point out the non-
uniqueness of angle-bisectors, where they exist (e.g. in complex Hilbert space,
each pair of orthogonal vectors has an infinite number of angle-bisecting
vectors).

3. Orthoautomorphisms of a bisecting Hilbert lattice. In this section,
we show that the existence of an angle bisector for each pair of orthogonal
atoms in a Hilbert lattice L is enough to insure the existence of certain ortho-
automorphisms of L. Specifically, the main result of this section is:

3.1 THEOREM. Let L be a bisecting Hilbert lattice, let a, b be elements of L such
that a 1 b and d(a) = d(b) < oo. Then there exists an involutory orthoauto-
morphism © of L such that ©(a) = b.

Throughout this section, L will represent a bisecting Hilbert lattice. We
construct the map O, just referred to, by first defining a mapping on the
atoms of L.

3.2 Definition. Let p, g,  be three distinct atoms in L such thatr < p V g,
p £+, and ¢ £ r-. We define a map, to be denoted 6,,,, on the atoms of L
which are either £ p V ¢ or are equal to 7, by the rules

6,..(z) = z if 2Cr, thatis,ifz =rorz L 7
var {fleVva)yArtlVg A@vVvr)ifzfrtandz £ p Vg

An easy dimension argument will convince the reader that 6,,.(z) is an
atom for each atom z in the domain of 6,,,. Note that, at this point, the atoms
z which are < p V ¢ (except for r) have been excluded from the domain of
6,¢-- The value of 8,,,, on these atoms, will be defined later. The properties of
these maps that we wish to derive concern the case p 1 ¢ and 7B (p, q¢). Under
these assumptions, we can prove that 6,,, is involutory and preserves ortho-
gonality. In 3.3, we give a criterion for 6,,, to be involutory.

3.3 LEMMA. Let p, g, 7, 2z be four distinct atoms in L such that r < p V g,

pErigfrtsxp Vg and z £ rh Suppose that (pV 0,,(2)) ANt gV z.
Then 0,4,%(2) = z.

Proof. (In this proof, and henceforth, where clarity does not suffer, we

shorten 6y, to 6.) If (p VO(E)) Art =q¢gV sz then (pVOE) Art=
(g V 2) A rt. Hence
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02(z) = {[(p V 0(=)) Art]V gt A (0(z) V 7)
={lgVva) ArlVvg A6k V)
(since m(rt, ¢ V z) by finite modularity)
=@Va AV A@Ok V)
(since ¢ V r+ = 1, because ¢ £ r1)
=(Vz)A@O@E Vr)
(since r < z V 6(2), because 0(z) < 7 V 2)
=(@Vsz)A@EVr)
(zVr#gqV zbecauser £ ¢ V z.Otherwisez < p V q).

= 2.

3.4 THEOREM. Let p, q, v be three distinct atoms as in Definition 3.2. Also,
assume p 1 q,z2 £ p V q, and rB(p, q). Then 6,,,°(z) = z.

Proof. Note first that 2 £ p V¢ But 2<1=(p Vgq)V (p Vgl so
by [1, Theorem 9.2(e)], there exists an atom s < (p V ¢)t such that
z2<pVgVs

Let L’ be any finite interval in L of dimension » = 4, containing p, ¢, and s
(and thus z). Next, apply the coordinatization theorem as before to find
(D, *, (,)) such that L’ is orthoisomorphic to L(V,(D), *, (,)). Let p = De,,
g = De,y, where ey, e2 € V,, with (e, es) = 0. Since rB(p, ¢), we can, by 2.10,
let » = D(e1 + ae:) where a(es, e2)a* = (e1,e1). Now 32 < p V ¢ V s means
that z = D(ye1 + dex + f), f a vector in V, such that Df = s. By 3.3, we need
prove only that (p V 6(z)) A r+ < ¢ V z. We do this by expressing the atom
(p V 6(z)) A rt as the span of a vector in V,. To do this, we must express
6(z) in V,.

For this, in turn, we first compute (p V z) A r+.Sincez = D (ye; + des + f),
we must find scalars o, 7 € D such that (se;1 + 7(ver + des + f), e1 + aex) = 0.
Setting 7+ = —1 and noting that (es, e2)a* = a~1(e1, 1) (since rB(p, q)), the
quantity above becomes (¢ — v — da~1) (e, e1) which is zero if and only if
6 —y—0d6a'=0,0orc =v+ 8t Thus (p V 2) A v+ = D[(v + da~V)e; —
(ve1 + dex + f)) = D(daer — des + f).

Next, we compute 6(z). For this, we need to find scalars W, X, Y, Z € D
such that

W(Ba“el — deq —f) + Xeg el Y(‘yel + 2 +f) - Z(el + aez) = (.

Computation, together with the assumption W = 1, yields X = 6§ 4+ ya, so
0(z) = D[date1 + vaes — f 1.

Finally, we compute (p V 0(z)) A rt. Proceeding as before, we arrive at
PV O@iE) Art=D(ver — yae: + f).

But yer — yae, 4+ f = (ver + des + f) + (=8 — ya)exso [p V 0(2)] A r+ <
q V 2, as desired, and hence 6%(z) = z by 3.3.
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Thus if p L g and »B(p, ¢), the map 6,,, is involutory on its domain. We
next show that it preserves orthogonality. As in 3.4, the proof uses the
coordinatization.

3.5 THEOREM. Suppose p L q, rB(p,q),z2 £ p Vg wExp Vg andz L w
(z, w are atoms). Then 0,4,(2) L Oy, (w).

Proof. There are two cases:

(Case 1) Neither z nor w is orthogonal to 7: Since neither znorwis < p V g,
then as in the proof of 3.4, we can find atoms f’, g’ in L such that z < p V
gV f and w < p V ¢ V g'. Coordinatizing, as in that proof, we can write
z = D(yer + de; + f) and w = D(oe1 + 7es + g) wheref’ = Dfand ¢’ = Dg.
By assumption, z L w so we must have v (e1, e1)o* 4 (e, e2)7* + (f, g) = 0.
In the proof of 3.4, we obtained 6(z) = da~'le; + yae: — f and 0(w) =
Ta'e; + oaes — g. Observe that

(0(2), 0(w)) = da~'(ex, e1) (@*)717* + ya(es, e2)a*a™*
+ (f, 2)
= 3(ez, e2)7™* + v (e1, €)™ + (f, g) = 0.
Thus 6(z) L 6(w).
(Case 2) One of z or w is orthogonal to 7, say w < 7L and z £ r1: As in
case 1, we can let 3 = D(ye; + des + f), but w L » means that
w = D(Ol_le]_ — €2 + g)

Since w = 71, then 0(w) = w while 6(z) = da—'e; + yae, — f, as in case 1.
Now z 1 w means

0= (yer+ des + fiates —es + g)
v (e1, €1) (@*)™1 — 8(es, €2) + (f, 2).

But
(0(z), w) = (ba'er + yaes — f,a7ler — 5 + g)
= da(e1, €1) (@*)7! — ya(es, €2) — (f, g)
= 8(ez, €2) — v(e1, €1) (@*)71 — (f, g)
= —-0=0.
Thus 0(z) L w.

3.6 Remark. Thus, the map 6,,,, where p L ¢ and rB(p, q), is involutory
and preserves orthogonality where it is defined. Our next task is to extend
0,4, to atoms z < p V g, other than . We do this by means of:

3.7 THEOREM. Let p, q, r be atoms in L such that p | q and rB(p, q). Then
there exists an orthogonal pair of atoms (x, y) such that (p, q) H (x, y) via r and
such that the atoms p = (p V x) AN (p Vy)and G= (p Vy) A (g V x) have
the following properties:

D pfpVgandg£p Vg
() ¢ L g
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(iii) B (;5_, q).
(iv) 0,0:(P) = .
(v) For any atom zwithz £ p V qand z £ p V G, 0pg:(2) = 055,(2).

Proof. We construct the orthogonal pair of atoms (x, ¥) here and leave the
computational proof of (i)-(iv) (via coordinatization) to the reader. Let s be
any atom in L orthogonal to p V ¢. Using coordinatization, as in the proofs
of 3.4 and 3.5, let p = De; and ¢ = De,, noting that, since B (p, q¢), then
r = D(e; + aes), where a(es, es)a* = (e1, e1). Now, by 2.3, an orthogonal
pair of atoms (x,y) has the property (p,q) H (x,y) via r if and only if
xZpVg y<pVgVsx and (x Vy) = eL(p) Vs, for some atom s
orthogonal to p V ¢. To obtain the desired x, we use the fact that L is a
bisecting Hilbert lattice and choose an atom x such that xB(e,L(p), s).
Necessarily, then, since ¢,L(p) = D(we; — e2), where w = (es, e2)a* (e1, e1)7?,
we must have x = D(we; — ey + f) for some vector f with Df = s. Also,
since xB (¢, (p), s), we must have, by 2.10,

(f,f) = (w61 — €2, W€} — 62) = w(el, 61)60* + (62, 82)

= (s, €2) + (eq, €2)
2(62, 62),
which is nonzero since f # 0 (thus D cannot have characteristic 2). With x
having been chosen, y is of course determined. Using the formulas derived in
29 for (p Vx) A (gV y)and (p V y) A (g V x) (together with the facts
that wa = (e, es)a*(e1, e1)7la = (ez, €2) (€2, €2)™ = 1 and (f, f) = 2(es, €2)),
we get

p=@®Vx)AI(@Vy) =Dla'er— e — f]and
g= (p Vy) AN(gVx)=Dla"es — e + f].

The verification of (i)—(iv) is now a matter of computation.

3.8 Definition. Let p, ¢ be atoms with p L ¢ and let » be an atom with the
property rB(p, ¢). Choose atoms p, § having the five properties of 3.7. Extend
the map 6,,, to all the atoms of L by defining, for atoms z with 2 < p V ¢ and
z # 7, 0,,(2) to equal 65, (3). We observe that the latter expression has a well-
defined value, because z £ p V ¢.

3.9 THEOREM. Let p, q be atoms in L such that p | q and let r be an atom such
that rB(p, q). The map 0,,, has the following properties:

(1) 0,4, 1s an everywhere-defined, one-to-one, involutory map of the set of
atoms of L onto itself, which preserves orthogonality.

(i) Oper(P) = q.

Proof. (1) We already know that 6,,, is everywhere-defined, involutory, and
preserves orthogonality. Let 6(z1) = 6(z2). Then z; = 0%2(z1) = 62(23) = 29, s0
0 is one-to-one. Finally, for any atom z in L, z = 68(6(z)), so 6 is onto.

(ii) Choose p, § having the five properties of 3.7. By 3.8, 6,,.(p) =
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([BVP)AIVGAPVr). Thus, §<[(pV p) Art] Vg so that
g=[(pVp)Ar]V gHence,qg 2{[(pVH)Ar] VG A (pVr), which
is an atom by 3.2. Thus ¢ = 657, (p) = Oy, (P).

We now wish to extend these maps from the atoms of L to all of L. For this
purpose, the following lemma is needed. We omit the computational proof.

3.10 LEMMA. Suppose that Pl 1 q1, Pg 1 g2, TIB(PIy ql), sz(Pg, q2) and
(P1V q1) L (p2 V q2), where all the symbols just used represent atoms in L.
Let 0) = 0y,4,11 and 02 = 0pyqyry. Then, the maps 050, and 6.0, are equal.

3.11 Definition. Let @ € L. Define a map 6,,, on L by the rule 6,,,(a) =
V {6,.:(2)| zan atom, z < a}.

3.12 THEOREM. Let a € L. Let {py, po, . . .} be any orthogonal family of atoms
such that N {p1, pa, . ..} = a. Then 0,4,(a) = V {0p0: (1), Oper (P2), - . .}.

Proof. Let I be an indexing set for {$1, ps, . . .} so that this set can be written
{pi|i € I}. Now since O,,,(a) = V {6,,,(2)|z an atom with z < a}, we have
V {0,0:(Px)|k € I} < 6,4,(a) clearly. Now suppose that strict inequality
held. Then, by orthomodularity, we could find an atom ¢ such that
t LV {00, (pr)|k € I} and t £ 6,,,(a). Now, t L 6,,,(px) for each & € I so
Opar(t) L 0p,2(px) = pi for each k € I. Thus 6,,,(t) L V {pplk € I} = a =
V {z|z an atom and z < a}. Therefore 8,,,(t) L z for each atom z < a. Hence,
t L V {8,.:(2)|z an atom, z < a} = 6,,,(a), a contradiction of the fact that
t < O,4,(a). Thus, we must have that V {6,,,(pr)|k € I} = 0,,.(a), as
claimed. (Note that the last step before the contradiction is obtained by
applying 6,,, to both sides of the statement 6,,,(¢!) L z, for each atom z < a.
The statement then becomes ¢ L 6,,,(z) for each atom z < «a.)

3.13 CorROLLARY. If rB(p, q), then the map Oy, is an involutory orthoauto-
morphism of L, which maps p onto q.

Proof. (i) O, is involutory. Let a € L, say a = V {ps|k € I}. Then
6,0:(@) = V {6,0:(p1) |k € I} by 3.12 so

qu,z(a) = epqr(v {opqr(Pk)[k € I}) = \Y {07472(Pk)|k € I},

again by 3.12, and this last expression equals V {p:|k € I} = a. Thus 6,,, is
involutory because 6,,, is and because of 3.12.

(ii) Oy, is one-to-one and order preserving. For suppose that a < b. Then,
by orthomodularity, we can write b = a V ¢, where the element ¢ of L is
orthogonal to a. Since 6,,, obviously preserves joins by 3.12, then 6,,.(a) <
6,4-(0). On the other hand, if 6,,,(a) £ 6,,,(b), then a = 6,,%(a) <
6,,:2(b) = b. Hence, 0,,, is order preserving in both direction and so is
one-to-one.

(iii) O, preserves orthogonality, for suppose @ L b. Let a = V{p|k € I}
and b = V {g;]j € J}. Note that p, 1 g; for all j, k. Hence, by 3.5,

https://doi.org/10.4153/CJM-1973-026-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1973-026-2

HILBERT LATTICES 271

Oper (Pr) L 0,4,(q;) for all k, j. Thus, since O,4,(a) = V {8, (px)|k € I} and
0,0r(0) = V {6,0:(g;)|7 € T}, we have 6,,,(a) L 0,,,(b).
(iv) Obviously, 6,,,(p) = g, since 8,,.(p) = ¢, by 3.9(i).

A restatement of 3.13, with a slight change in emphasis, is given by the
following

3.14 CorOLLARY. Given orthogonal atoms p, q € L, there exists an tnvolutory
orthoautomorphism of L mapping p onto q.

Proof. 6,,, has these properties.

3.15 COROLLARY. Given two finite elements a, b in L such that a 1 b and
d(a) = d(b), there exists an involutory orthoautomorphism © of L such that

6(a) = b.

Proof. Let a =V {pJi=1,2,...,n} and b = Vigli=12,...,n}
(where n = d(a) = d(b)) and note that p; 1 g, for all 7, 7 =1,2,...,n.
Now, for each 7 = 1,2,...,n, let »; be an atom such that r,B(p;, ¢;) and

form O; = 0,,,,;- Note that, if j # 7, then 0;(p;) = p,, because p, L p; V ¢;
which forces p; L 7;. Thus, if we let 6 = 6,0 6:0...0 6,, we have that

0(@) = (0106:0...00,)(p1 VP2V ...V p)
= (910 920...Oen_1)(P1VP2V...Vpn_l\/qn)
which, after » steps, equals ¢1 V¢g: V...V g, =b. Thus, 6(e) =b as

claimed. Clearly, 6 is an orthoautomorphism of L, since each 0, is. Finally, 6
is involutory because

(6106;0...00,)0(6106:0...08,)
= 0,20 0,20...0 6,2 = identity (by 3.10).

3.16 CoROLLARY. If a, b are finite elements of L with d(a) = d(b), then the
interval L(0, a) is orthoisomorphic to the interval L(0, b).

Concluding remarks. We conclude with a list of questions which present
themselves. Let L be an infinite dimensional Hilbert lattice:

(1) Need every pair of orthogonal atoms in L have an angle-bisecting atom?

(2) Given a,b € L with a L b and d(a) = d(b) < 0, need there exist an
orthoautomorphism 6 of L such that 6(a) = b?

3) If a Ab=at A bt =0, need there exist an involutory orthoauto-
morphism 6 of L such that 6(a) = b+? (If so, then we could derive 0-sym-
metry [1, Corollary 36.14].)
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