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Abstract

Industrial exoskeletons have recently gained importance as ergonomic interventions for physically demanding work
activities. The growing demand for exoskeletons is leading to a need for new knowledge on the effectiveness of these
systems. The Exoworkathlon, as a prospective study approach, aims to assess exoskeletons in realistic use cases and
to evaluate them neutrally in their entirety. For this purpose, a first set of four realistic Parcours was developed with
experts from relevant industries, the German Social Accident Insurance, and the Federal Institute for Occupational
Safety and Health. In addition, a set of ratings was defined to assess subjective user feedback, work quality, and
objective physiological parameters. Exoworkathlon aims to bring together developers, researchers, and end-users,
strengthen collaborative exchanges, and promote a platform for the prospective holistic data collection for exoskel-
eton evaluation. In this article, the focus is on the background and methodology of Exoworkathlon.

1. Introduction

Industrial exoskeletons are assistive tools for heavy physical work with a still young history of use. There
are increasing examples of their application in industrial tasks such as box picking in logistics, car body
assembly, manual welding, or construction (Linner et al., 2018; Crea et al., 2021;Marinov, 2021; Schmalz
et al., 2021; Pacifico et al., 2022). The main reasons for using exoskeletons are high-stress levels for
workers, which are difficult to eliminate by technical or organizationalmeasures (Daub, 2017). Especially
musculoskeletal disorders (MSDs) of the spine and shoulder are relevant occupational illnesses closely
related to heavy physical work (Schneider et al., 2010; EU-OSHA, 2020). Various studies have
demonstrated corresponding effects on biomechanic or metabolic parameters by wearing an exoskeleton
during physically demanding activity. Other frequently investigated parameters are subjectively per-
ceived effort, exoskeleton comfort, and usability (Kim and Nussbaum, 2019; Alemi et al., 2020;
Koopman et al., 2020; Crea et al., 2021).

These kinds of studies aremainly laboratory studies and tasks vary broadly from static to dynamic with
one or many repetitions. Less often, tasks were set that more closely resembled real work situations.
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However, since the effectiveness of exoskeletons depends on the use cases, studies should be carried out
in dedicated experiments (Crea et al., 2021).

In order to generate valuable results and perform an objective analysis of the effects of exoskeletons in
a real work environment, evaluation methods are essential (Masood et al., 2019; Planas-Lara et al., 2022).
Most current studies lack larger sample sizes or standardized parameters (Grazi et al., 2019; Crea et al.,
2021; Hoffmann et al., 2022; Sposito et al., 2022). In this respect, the EUROBENCH project has already
taken the initiative and developed a method and framework for companies to test the performance of their
robotic prototypes in a standardized way for benchmarking their exoskeletons in a unified manner. The
goal is to increase the reproducibility and comparability of robotic systems (Torricelli and Pons, 2019;
EUROBENCH, 2022).

From our point of view, however, the exoskeleton branch is still very young and consists mainly of
startups. Therefore, it is challenging for individual exoskeleton companies to generate valuable and
sufficiently large amounts of data that can show the effects of exoskeletons urgently required by potential
users (Schalk et al., 2021). Previous study designs such as EUROBENCH are based on investigating or
benchmarking the effects of single exoskeletons in an isolated activity and are mostly conducted with
laypersons as subjects. Exoworkathlon differs from this in several ways. It does not limit the analysis to a
single system but evaluates the effectiveness of exoskeletons in their entirety, independent of the
manufacturer. In addition, the tasks are embedded in a realistically simulated work process and performed
by young experts from the respective work areas, not by laypersons. Furthermore, it aims to evaluate the
subjective user feedback, the muscle activity, and the quality of work performance in relevant scenarios
when using an exoskeleton.

The benefit of the Exoworkathlon approach is that it is developed as a prospective study design in
which data are collected on an ongoing basis in a standardized approach. In the following pages, the new
methodology and standards of Exoworkathlonwill be described, aswell as the development of the first so-
called “Parcours.” Results and further work will be published in future articles.

2. Conception

Exoworkathlon aims to create a prospective data collection for the holistic evaluation of industrial
exoskeletons on neutral ground in different test scenarios. In order to guarantee an exoskeleton testing
that replicates real-world working scenarios and simultaneously allows an evidence-based evaluation,
four Parcours have been developed and defined so far.

The research team of Fraunhofer IPA and University Stuttgart defined the chosen work-related
Parcours (see Section 3), the assessment methods (see Section 4), and the working procedure. These
were developed based on the experts’many years of experience in numerous ergonomics projects (Daub
et al., 2021), recent studies, as well as in close consultation and workshops with experts from the related
industries for each Parcour. Furthermore, there is close cooperation with the Federal Institute for
Occupational Safety and Health (BAuA) and the German Social Accident Insurance (DGUV), who
approved the Parcours.

The procedure is standardized for each subject and Parcour and is always carried out in the same way.
A working time of 1 hr is chosen to ensure that the Parcours are realistic. The task is thus physically
demanding but does not exceed to high risk of overload for the participants. Each participant runs the
corresponding Parcour twice - 1 hr with and 1 hr without an exoskeleton. Between the two runs, there is a
break of at least 2 hrs to recover. The participants are instructed to discontinue the performance if he or she
is unable or unwilling to complete the task or if problems occur during the performance (e.g., physical
discomfort, malaise, or other).

Everyone receives an introduction, is fitted with the exoskeleton by an expert, and completes a test-
phase with the exoskeleton before taking part in the study.

The order of exoskeleton conditions (with or without exoskeleton) is randomized to minimize the
effects of fatigue that might occur from the first working phase. The recovery break is also an essential
aspect to avoid these effects. The exoskeletons are randomly assigned to the subjects.
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Since other laboratory studies are mainly attended by laypersons, which is to be seen as a limitation
(Crea et al., 2021), inclusion criteria for the participants in the Exoworkathlon are that they are “young
experts.” Ayoung expert is defined as being familiar with the particular work task due to their education
or professional background. In combination with real-world work scenarios, this improves the validity of
the results by excluding perturbing factors from untrained participants, which is especially important
when evaluating the quality (Schroeter et al., 2020). In addition, these participants can estimate much
better to what extent the exoskeleton could support them in the task, considering the known real working
processes.

The following exclusion criteria were defined for the study: MSDs, cardiological or neurological
diseases, acute or chronic diseases, or pregnancy. The participants take part based on informed consent.

The Exoworkathlon Parcours can be performed with CE-marked upper limb and lower back exo-
skeletons. The manufacturers are invited to participate in the global prospective study of Exoworkathlon
performances. The intention is not to show the pros and cons of any particular system but to set up a
holistic exoskeleton evaluation study.

Since the Exoworkathlon will also take place at conferences and trade fairs, a direct evaluation of the
results within a few hours is desirable. For this purpose, analysis scriptswere created to evaluate the data
directly. However, if the investigator determines that the subject is not performing the task conscientiously
or is intentionally performing it incorrectly, the data will be excluded from the analysis.

3. Parcours

So far, the research team has defined four work scenarios that have been realistically abstracted into
corresponding tasks for the Parcours. The setup and description of each Parcour are presented in detail below.

3.1. Parcour P1: Back-Support Exoskeletons in Logistics

Workplaces in the logistics sector are characterized by highly repetitive tasks, external weights, and non-
ergonomic postures. Load manipulation or activities in static postures are known to be the most common
cause of work-related musculoskeletal stress (Parent-Thirion, 2017). Here, typical tasks include lifting
and carrying external weights (BAuA, Bundesanstalt für Arbeitsschutz undArbeitsmedizin, 2019). Back-
support exoskeletons could be a helpful ergonomic aid to support and relieve the lower back during this
type of logistical task and have been evaluated in several studies (Hensel et al., 2018; Alemi et al., 2020;
Madinei et al., 2020; Schmalz et al., 2021). In order to adapt the study conditions to the real work situation
as far as possible, it is useful to study awork sequence instead of isolatedmovements. This enables a better
transfer of the study results to the real work situation (Poliero et al., 2020).

P1 depicts a realistic, representative task of a so-called “band cleaner” in an automotive plant. This task
was selected and defined with automotive and ergonomic experts from AUDI AG to ensure a realistic
workflow, walkways, weights, and heights. In this task, 8 kg packages must be picked up from a table,
which represents a belt, and carried over a distance of 2 m to one of two grid boxes (see Figure 1). In
logistics, different weights are common; however, this Parcour should still be feasible. Therefore, the
basis for the 8 kg packages is the NIOSH Lifting Index (Waters et al., 1993) for an average person (5th to
95th percentile, Deutsches Institut für Normung (2007)) so that they are working in a medium-risk area.
The packages are stacked in one of the two grid boxes according to their markings. Since sorting into
different boxes is also carried out in reality, this small cognitive task was added to the Parcour to remain as
close to reality as possible. The working time is based on the rhythm measured in the logistics of the
automotive industry (Hensel et al., 2018). A running clock gives the participants a rough schedule to keep
in order to clear all the packages within 8min. After 8min are completed and 48 packages are transported,
the participant has a short break of 2 min. Then the participant sorts the packages back onto the table.
Both tasks - sorting in and out - are present in logistics.

The process of transporting the packages into the grid boxes and back onto the belt is repeated three
times so that the participants work for 1 hr.
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3.2. Parcour P2: Exoskeletons for the Upper Limb in Automotive Assembly

Working overhead is one factor leading to work-related MSDs of the shoulder, neck, and upper
extremities (Grieve and Dickerson, 2008). Upper limb exoskeletons could reduce muscular strain in
the upper body, especially in the shoulder area, and relieve the physical strain on workers (Huysamen
et al., 2018; Schmalz et al., 2019).

Awell-known example of repetitive work at overhead height is working on an assembly line like in the
automotive industry. Therefore, P2 was developed with automotive and ergonomics experts from AUDI
AG (Hensel et al., 2020). Together, a realistic Parcour was developed, which depicts the typical tasks
involved in underbody assembly. Both dynamic and static tasks have been defined. To ensure that the
times for the tasks match those in a real work environment, duration times for each task were determined
and specified via theMethods-TimeMeasurement (MTM) together with AUDIAG. The Parcour includes
assembly and disassembly of the following tasks:

1. setting clips in a prefabricated hole (12�)
2. screwing with a cordless screwdriver into a thread (16�)
3. laying cables into nine cable holders (2�)
4. painting lines (25�, line of 390 mm).

These tasks are mapped abstractly (see Figure 2) on a test bench with the height set in an individual
overhead position for each participant (body height plus hand length).

The participants have to carry out the individual tasks sequentially and repetitively according to a given
time defined by MTM. Hence, the participants must keep to the working time and perform the tasks as
accurately as possible, especially during painting. The countdown of the availableMTM cycle time of the
task is displayed on a screen. Eachworking time ismeasured by pressing a button linked to the countdown
program. One working round consists of assembly and disassembly and takes 6.6 min (see Figure 3).
For each task, the participant takes the needed materials from the table and goes to the worktable to
perform it. When clipping and screwing, the test subject has to pick up each clip or screw separately
so that the arm is lowered each time. This execution is necessary to compare the parameters

Figure 1. Design of P1. Table (assembly line) and two grid boxes with markings. 48� 8 kg packages
(22 � 23 � 31 cm).
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(e.g., electromyography [EMG]) with and without exoskeleton. After each complete working cycle,
the subjects have a 2 min break. This procedure is repeated seven times in order to add up to 1 hr of
working time.

3.3. Parcour P3: Exoskeletons for the Upper Limb during Welding

The profession of the welder is very multifaceted and offers the most diverse application possibilities.
Common to all workplaces is the high physical stress caused bywelding equipment and protective clothing,
as well as exposure to intense heat and the often noisy environment (DVS-SLV-Internationaler Schweiss-
fachingenieur, 2022). In many cases, the respective field of application requires the adoption of constrained
body positions to be able to implement the high requirements. These unnatural and extremely stressful body
positions, especially whenweldingwith raised arms or overhead, have been shown to cause disorders of the
joints as well as musculoskeletal diseases in the shoulder, neck, and back area (Kadefors, 1994; Shahriyari

Figure 2. Design of P2. Height adjustable table with mounting plate with tasks in overhead height.
Touchpad for the painting task at the back of the table. Material table with screwdriver, screws, clips,

cables, and paintbrush with integrated touch pen, and button for time tracking.

Figure 3. The working cycle of P2. It consists of assembly and disassembly. One whole cycle is repeated
seven times within a 2 min break.
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et al., 2020). Although automation is implemented on many sides, manual welding is still essential and
indispensable due to the worker’s flexibility. The challenges of this occupational field are very demanding
and require a balanced combination of gross and fine motor skills that must remain high even under strong
external influences. To maintain this high demand for quality continuously and at the same time reduce
physical stress and thus prevent physical damage prematurely, two real welding workplaces in constrained
positions were simulated to investigate the effects of exoskeletons on these activities.

The German DIN ISO 9606-1 (Deutsches Institut für Normung, 2017) served as the basis for the
abstracted and simulated workplaces, making it possible to define real processes with authentic frame-
work conditions for P3.

In order to create a safe working environment for the study that adequately reflects reality, welding
simulators from the company Soldamatic were used instead of real welding equipment. These simulators
are widespread and used in government and private training centers as well as in company schools. The
simulators use augmented reality (AR) technology and are identical to real weldingmachines in shape and
weight. Since this is themost widespread and economically relevant joining process, only themetal active
gas welding process is represented in Parcour 3. With these modern simulators, it is possible to represent
and implement arbitrarily complex workpieces.

Eachwork process in thewelding profession also includes preparing and reworking theworkpiece. For
this work, angle grinders are usually used to process the applied welds layer by layer. In order to simulate
this part of the work, which accounts for about 20%of the activity, as precisely as possible, the forces to be
applied to the workpiece were determined in a study using force transducers. Subsequently, a device was
constructed that realistically simulates the grinding task with the help of a prepared commercial angle
grinder and optical force feedback.

Since there is a large number ofweldingpositions, P3was defined togetherwith theSLVNord inHamburg,
aWelding Training and Testing Institute, to determine the positions that are frequently used in everyday work
and require strenuouspostures.Consequently, the followingpositionswere determined for the study according
to the internationally valid standard DIN EN ISO 6947 (Deutsches Institut für Normung, 2019):

1. “PF Position” vertical uphill with the workpiece located in front of the upper body and the end
position of the burner slightly below eye level.

2. “PE Position” overhead with the workpiece positioned above the head and approximately 300 mm
in front of the eyes.

The experimental workflow can be divided into individual steps: “Simulated welding of a 250 mm
seam” and “Simulated grinding of the weld seam.”

These performed one after the other are part of both positions (PF and PE) and repeated ten times in
each (see Figure 4).

Figure 4.Working PE position in P3. Simulated welding in position PE and view though the AR glasses
(left). Simulated grinding in PE position (right).
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3.4. Parcour P4: Exoskeletons for the Upper Limb in Collaborative Tasks in Timber Construction

The timber construction industry broadly comprises two different sectors: The traditional construc-
tion method, where individual components are handled and assembled on-site, as well as off-site
construction, where the prefabrication of components takes place in a controlled environment
(e.g., a factory) and is then transported on-site. In both cases, workers perform collaborative tasks
to handle large and/or massive components like beams and panels, facing safety risks associated
with the working conditions, various activities performed, and allocating of workers’ roles. Conse-
quently, physical stress and loads are unavoidable and have a high risk of MSDs (Kim et al., 2011;
Zhu et al., 2021).

Self-observations at off-site German timber prefabrication manufacturers reveal that workers
are exposed to safety hazards such as lifting heavy objects, repeating tasks, working at heights,
or overhead hazards. Similar findings and recommendations regarding modular home installation
environments are presented in the literature (Becker et al., 2003). Other studies reported that frequent
and serial overhead work in the construction industry leads to shoulder pain in up to 30% of workers
and consequent financial losses (Umer et al., 2018; EU-OSHA European Agency for Safety and
Health at Work et al., 2020).

P4 was developed with construction site experts from Schwörer Haus KG to create a practical
adaptation of a particular off-site work-related collaborative scenario for testing commercial shoulder
support exoskeletons.

The beam is a massive and heavy element, a frequently used structural element that requires the
handling assistance of two people. Another typical use case of overhead position tasks in timber
construction is the installation of wooden strips. These lighter but large and difficult-to-handle elements
are attachment support for posterior ceiling panel installation.

In P4, based on the modular fabrication mode for housing construction, two participants (one couple)
perform two collaborative sequential assembly tasks (Parcour work cycle): positioning and fastening of a
timber beam using concealed connectors and installation of wooden strips on a ceiling.

3.4.1. Timber beam assembly
Timber beam assembly (TBI) involves repeated assembling and disassembling of a timber beam from
the ground to a certain height above the head so that it is fixed horizontally at that height and then
lowered back to the ground. Five repetitions (assembly and disassembly) are performed to complete the
task. Initially, the 2.5 m long, 13.5 kg beam is placed on the ground 1.5 m from the structure so that from
this point, the couple can place the beam horizontally on the connectors on each side of the structure.
The height at which the beam must be mounted varies in the different rounds (1.65 and 1.95 m). This
corresponds to a height of up to 50 cm above shoulder height for men belonging to the 5th to 95th
percentile of height (DIN 33402-2: Deutsches Institut für Normung, 2007). Finally, the beam is attached
to the connectors with two M12 bolts and nuts on each side. Further features of the TBI scenario are
shown in Figure 5.

3.4.2. Wooden strips installation
Wooden strips installation (WSI) consists of placing 10 units of 3 m long wooden strips on a metallic
structure ceiling. The strips weight varies from 1.4 to 1.8 kg. The couple coordinates their movements to
place each strip horizontally and adjust it to the wooden ceiling panel with six screws (three/person). The
panel is at the height of 1.9 m. One repetition is performed to complete the task. Figure 6 shows more
features of the WSI scenario.

The work cycle (TBI þ WSI) lasts 1 hr when both tasks are performed three times.
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Figure 5. Design of P4 TBI. (a) Metallic structure (250 � 68 cm) with telescopic profile, allowing
adjustable height from 160 to 210 cm. (b) The couple synchronizes movements to position the beam in the

structure. (c) The beam is fastened using bolts in the concealed connectors.

Figure 6. Design of P4 WSI. (a) Metallic structure (187 � 250 � 128 cm) with a roof (120 � 250 cm)
made of a static wood panel and aluminum frame. (b) The participants place and fasten ten strips (4.8 x

2.8 x 300 cm).
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4. Assessments

For an intra-individual anonymous comparison, the data are collected through various evaluations in the
Parcours.

The expert team defined the assessments based on standard methods in previous studies (Crea et al.,
2021; De Bock et al., 2022). Even though the assessment methods in these studies differ greatly, there are
certain parallels. Mostly, similar parameters were used to define the workload. Especially, subjective user
feedback is an assessment that is usually used. Furthermore, EMG and metabolic costs are often included
to assess objective physical parameters. Besides physiological parameters, quality aspects are interesting
objective parameters that can show advantages or disadvantages of exoskeletons in terms of duration
times orwork output quality. On this basis, subjective and objective assessmentswere defined (see Table 1
and deeper explanations below).

In principle, all assessments could be applied to all Parcours, except the task-specific quality assessments.

4.1. Subjective User Feedback

The questionnaire acquires subjective user feedback from the participants. The perceived exertion of the
performed task is queried via the established BORG-CR10 Scale (Borg, 2004). In addition, a Body Chart
by Corlett and Bishop (1976) is used for specific stress perception ratings for the individual body areas.

Perceived exertion and body areas stress are queried for both the tests with and without the
exoskeleton. The questionnaire should be filled in after each completed round to investigate a change
over time. The rounds depend on the task set for each Parcour (see definition in Parcour description). After
using the exoskeleton, an additional questionnaire is filled in to evaluate the systems. This includes the
System Usability Scale (Brooke, 1996) and additional questions on the feeling of safety and discomfort
created by Fraunhofer IPA and University Tuebingen.

4.2. Quality

In P2 and P3, the quality of work can be measured.
In P2, the time required for the tasks and the accuracy in executing the tasks can be assessed. The times

given for each task are based onMTM, which plays an essential role in the planning of manual operations
in the industry. The times were defined by an ergonomics expert from the automotive industry. Working
time is measured by a scripted program linked to a button. After completing the respective task, the
participants have to press the button and the required working time is measured and saved.

A second assessment of quality in P2 is the error score of the painting task. This captures the accuracy
in painting and ismeasuredwhen painting over a defined line by an app. If the line is painted over, the error
score increases and is saved as the average error score for one cycle.

Table 1. Assessments of Exoworkathlon

Assessments

Subjective user feedback
Effort of the task (0 none – 10 maximum)
Body discomfort scale (1 nothing – 8 extremely hard)
System Usability Scale (1 strongly disagree – 5 strongly agree)

Electromyography (Mean muscle activity [%MVC] in combination with the movement)
M. erector spinae activity (during forward bending, in back-Parcours)
M. deltoideus clavicularis and acromialis activities (during overhead work, dominant arm, in overhead-Parcours)

Cardiovascular load
Heart rate (beats per minute [BPM])
Hemodynamic and electrical cardiac conduction parameters (by use of impedance cardiography)

Quality (Parcour specific)
Duration of the working time
Accuracy in overhead painting task (error score: counts pixel overpainting the given line)
Assessment of weld seam quality (rating of welding on a scale between 0 and 100% by AR simulator)

Abbreviation: MVC: maximum voluntary isometric contraction.
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In P3, the quality of the work performed is evaluated via the Soldamatic welding simulation software.
Each weld seam is scored on a scale from 0 to 100% by the Soldamatic software based on five parameters.
Work angle, travel angle, contact to work distance, travel speed, and aim influence the weld seam quality.
Based on these parameters, each seam received an individual and overall evaluation and can thus be
compared with each other.

In the results, the quality is shown as the difference between the execution with and without
exoskeleton.

4.3. Electromyography

EMG is a standard tool to recordmuscle activity duringwork in combinationwithmovements. Depending
on the most used and stressed muscles in the selected Parcour and the supported body area of the
exoskeleton, the muscles to be recorded are specially selected for the Parcours. It is well known that it is
always helpful to examine several muscles to analyze load redistribution or compensatory movements
further. Therefore, additional EMG sensors can be added anytime for deeper analyses. In this setup,
however, the activity’s corresponding main muscles are considered first to check the exoskeletons’main
expected effect. Furthermore, for evaluation, the activity of the muscles in relevant, specific body
positions was considered, and a range of motion was defined in each case in which the EMG data should
be included into the analysis: For the upper body Parcours, the overhead working height is defined as the
threshold from which EMG data were included. For the lower body Parcour, the forward bending when
picking up the packages from the grid is defined as the threshold. These movements are recorded with a
motion capture system combined with an EMG System due to the motion-dependent EMG analysis.

The selected muscles are localized by specific tension and palpation. Skin preparation and placement
of the sensors are according to the SENIAM (1999) guidelines.

To normalize the muscle activity of the recorded muscle, the reference value needs to be obtained by
performing maximum voluntary isometric contraction (MVC) in the functional position of the respective
muscles before starting the work. The normalized muscle activity (%MVC) is used to determine the mean
value across all subjects with and without exoskeleton as a parameter of the EMG. The EMG data are
analyzed over time per round and in P2 on the individual tasks.

4.4. Cardiovascular Load

A commercially available smartwatch is used to measure the heart rate and also provides a calculated
oxygen consumption. Heart rate is a good indicator of physiological load, as it regulates the heart’s
performance as a factor for cardiac output (Klinke and Silbernagl, 2003).

In order to determine other cardiovascular effects, an impedance cardiograph is used. Hemodynamics
and cardiac conduction that describe the cardiovascular system are recorded. Therefore, two pairs of
electrodes are applied to each subject’s neck and thorax. The interface can beworn on the hip. Thismethod
is typically used for patient monitoring in intensive care units. Previously performed measurements
indicate that the changes in hemodynamics and electrical cardiac conduction could be used to evaluate
exoskeletons, as they provide more detailed insight into cardiovascular load (Stegemann, 1991).

5. Conclusion and Outlook

Research methods and evaluation of exoskeletons have several shortcomings despite the studies conducted
to date. To understand these effects, an evaluation of the systems in real work situations is necessary.
Furthermore, standardized test procedures are essential to acquire a large and comparable data pool.

To this end, this article introduced a modular study design to prospectively collect data and strengthen
the exchange between developers, researchers, and end-users to advance the young exoskeleton industry
jointly. This should motivate further research groups to stick to this study protocol to add further data sets
in a continuous, multicentric prospective study approach.
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Exoworkathlonmakes it feasible to test and evaluate exoskeletons underworking conditions that are as
close to reality as possible in specially developed Parcours. This provides the opportunity for intraindi-
vidual comparisons of exoskeleton users and for generating study data per exoskeleton type.

The Parcours of Exoworkathlon need to fulfill the following crucial aspects. They must be defined in
cooperation with experts from the corresponding industry and health sectors like the DGUVand BAuA to
be realistic and feasible as well as a relevant task for exoskeleton use. Furthermore, the Parcours must be
completed by professional workers for 1 hr with and 1 hr without an exoskeleton.

Based on these criteria, four Parcours, related assessments, and standardized procedures have been
developed and presented in this article. In addition, the Parcours are to be extended to further relevant
modular use cases and related assessment methods with interested expert partners from industries and
occupational health. This methodologywill be further conducted as prospective true worker studies under
the above aspects with exoskeleton manufacturers and end-user industries to evaluate and ideally
strengthen the evidence of exoskeleton use benefits. Exoworkathlon is carried out in the industry, at
trade fairs, conferences, and professional schools. During those implementations, an active exchange
among the test persons, end-users, scientists, and manufacturers is possible so that the feedback and
exoskeleton potentials can be discussed together.

The participated exoskeleton manufacturers can receive the results of their system to compare those
data with the overall anonymous evaluation of all systems and thus identify potential areas for
improvement.

The prospective data collection results will be published in further research papers and updated on an
online platform (www.exoworkathlon.de) to keep the ongoing study results freely accessible for everyone
to follow.
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