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1. Introduction. Let M be a compact connected boundaryless surface and f: M —
R? a smooth immersion transverse to a straight line L. Thus there is an even number p of
points x € M such that f(x)e L. Under further transversality assumptions on f (see §3)
there is a finite number q of points x of M such that the plane containing f(x) and L
touches f(M) at f(x). These assumptions are mild in the sense that they hold for any f in
an open dense subset of the space of smooth immersions under consideration. Suppose
that the Gaussian curvature of f(M) is positive at q* of these points and negative at q~,
with q=q*+q~. Then

p+q —q =eM), ()

where e(M) denotes the Euler number of M.

The proof is an application of the Poincaré-Hopf theorem (see [1], [2]). Our theorem
may be interpreted as a development of the theory of horizon immersions for surfaces. In
particular the main result of [3] is a consequence of our result.

We illustrate the relation (*) with a few examples. Take the standard embedding of
the torus T into R and let L be parallel to the axis of T. In Figure 1, we show three
positions of L viewed from above.

I am grateful to Stewart Robertson for suggesting this problem and I thank him and
David Chillingworth for many helpful discussions.

2. Notations. In what follows we shall be dealing with compact connected smooth
(= C™) boundaryless manifolds. All the maps are smooth unless otherwise stated.

Given manifolds M and N and a map g: M — N the derivative of g is denoted by
gx: TM — TN, and gy, : TM — T,,N denotes the restriction of gy to the tangent space
to M at x. The critical set of g is denoted by C(g).

If f: M —>R""! (where dim M =n) is an immersion, then we denote by T, the affine
tangent n-plane to f(M) at f(x). Such an immersion induces a map F: M —R:*!, where
R2*! denotes the Grassmannian of affine n-planes in R**'. By the Gaussian curvature of
f(M) at f(m) we mean the Gaussian curvature of f(U) at f(m), where U is an oriented
open neighbourhood of m and f|U is an embedding.

We may assume that the line L in R? is defined by x,=x,=0. The pencil L of
2-planes containing L, as a submanifold of R3, is diffeomorphic to the 1-dimensional real
projective space P!. For P' we shall consider the two standard charts ¢:V —R,
¢': V' =R, where

V(resp. V') ={meP" | m is defined by (1, x)(resp.(x, 1))}
and Y(m)=x, ¢'(7m)=1x.
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For any immersion f: M —R>? with dim M =2, we shall use three types of chart
a, B, v for M where

fea™'(x, ¥)=(xy, g(x,y)),
feB7(x, y)=(x, hix, y),y),
fey ' (x, y)=(k(x, y), x, ).

Finally L(F, L) will denote the intersection number mod(2) of F with L.

3. The main result. The proof of the relation stated in §1 will occupy the whole of
this section. We start with two elementary observations.

3.1. Suppose f Y (L)# &. Then fAL at me f (L) iff T,, intersects L in a point.

3.2. Suppose F-Y(L)# &. Then FAL at me F- (L) iff

(a) f(m)¢L,

(b) f(M) has non-zero Gaussian curvature at f(m).

Bearing in mind 3.2, we suppose, from now on, that F 4 L. Thus the condition f A& L
follows automatically (see §1).

Let A=f"'(L). Define a map ¢ : M\A — P! by associating to m € M\A the 2-plane
containing f(m) and L. The map ¢ is smooth and m € C(¢) iff T,, € L. Since F A L, the set
C(¢)UA is finite.

Consider the vector fields grad(y c¢) and grad(¢' ed). We use these to obtain a well-
defined vector field Z on M\{AU C(¢)} as follows:

grad(y o p)(m)/grad(y o H)(m)|  if medH(V),
—grad(y' o ¢)(m)/lgrad(y’ > $)(m)l| if med~H(V).

Take a smooth function y' : M — R, such that

Z(m)={

Yx)=0 if xeAUC(¢),
Y(x)>0 if xe M\{AUC(¢)}.
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Using vy' we define another vector field Y by

_[yYm)Z(m) if meM\{AUC($)},
Y(m)'{o if meAUC(4).

It is not hard to show that Y is continuous. If ¢(m) is a regular value of ¢, then Y(m) is
orthogonal to the contour of ¢ passing through m.

As we see, we are now in a position which allows us to use the Poincaré-Hopf
theorem. To calculate the indices at the zeros of Y we shall distinguish two cases:

(a) mg is a zero of Y and mge C();
(b) my is a zero of Y and myeA.

Case (a). Due to the transversality condition we have imposed, both Yo ¢ and ' ¢
are Morse functions. Then the index of mg as a zero of Y can be calculated by looking at
the index of m, as a critical point of either o ¢ or —(¢/ o ¢). It follows from standard
calculations that the index is 1 or —1 according as the Gaussian curvature at f(m,) is
positive or negative.

Case (b). Let mye A. As f(mg)e L and f/h L it is possible to find a chart a: U — U’
such that f|U is an embedding, foa '(x,y)=(x,y, g(x,y)) and no other point of
AU C(o), other than my, is in U. The restriction f |U is transversal to any 7€ L. For any
m € U\{mg}, we have that Y(m) is orthogonal to the contour of ¢ | U\{my} through m,
and this contour is (f| U) ' (mw)\{m,}, where ¢(m)=m. Moreover (f| U) '(w) is a 1-
dimensional submanifold of M.
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If m is as shown in Figure 2, (f| U)™'(w) is diffecomorphic to U'NI, where I =
(R*>x{0}) N 7. Using the chart « we get the “pullback” Y of Y, defined on U’ This vector
field is never zero except at the origin. The important remark to make about Y is that
because Y(m) is orthogonal to ig,,(T,.((f| U) (1)) then

Y (%) ¢ ise(T(U' N DY),
for any m such that a(m) = x+ (0, 0). Here we have denoted the obvious inclusions by i,
and x =(x, y).

Let S, be a small sphere round the origin such that S, < U’. We define a vector field X
of unit norm on S, and tangent to S, such that at a particular point X, X(x) and Y(x) form
an acute angle. Looking at the vector fields as maps into R?,

X:S, —S'cR?, YIS, :S —>R?
we see that they are homotopic, a homotopy H: S, X[0, 1]— R? being defined by
HE H=tXx)+(1-0)Y(x).

The map H is never zero and therefore induces a homotopy between X and Y, :S, —S!,
where Y,(x) = Y(£)/| Y (%)|. Consequently the maps X and Y, have the same degree and
the degree of X is 1. Hence the index of Y at m, is 1.

Having calculated the indices, we can deduce the relation (*) in §1 immediately.

4. Consequences of the main result. The theorem we have just proved yields the
following two corollaries.

COROLLARY 4.1. Assume Fd L. Then I(F, L)= e(M)(mod 2).
Proof. By intersection theory, L(f, L) =0. The result follows now from (*) in §1.

The next corollary is just the theorem on the existence of horizon maps for surfaces
(3]

CorOLLARY 4.2. If f is a horizon immersion then M is diffeomorphic to S?, S*x S! or
the Klein bottle. If M is diffeomorphic to S? then #f (L) =2; otherwise, #f '(L)=0.

Proof. If f is a horizon immersion then FAL and F~Y(L)= . Because #f (L) is
even it follows from (*) in §1 that e(M) is even and greater than or equal to zero.

This paper was prepared while the author held a scholarship from INIC-LISBON.
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