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DEFINABILITY OF HENSELIAN VALUATIONS
BY CONDITIONS ON THE VALUE GROUP

LOTHAR SEBASTIAN KRAPP , SALMA KUHLMANN, AND MORITZ LINK

Abstract. Given a Henselian valuation, we study its definability (with and without parameters) by
examining conditions on the value group. We show that any Henselian valuation whose value group is not
closed in its divisible hull is definable in the language of rings, using one parameter. Thereby we strengthen
known definability results. Moreover, we show that in this case, one parameter is optimal in the sense that
one cannot obtain definability without parameters. To this end, we present a construction method for a
t-Henselian non-Henselian ordered field elementarily equivalent to a Henselian field with a specified value
group.

§1. Introduction. In recent years, the study of definable Henselian valuations has
received a considerable amount of attention and several definability conditions have
been established. Early results of this study were related to decidability questions
(cf., e.g., [2, 26]), whereas a more recent motivation is due to the Shelah–Hasson
Conjecture on the classification of NIP fields (cf., e.g., [5, 10, 11, 12, 17, 18, 22,
27]). We refer the reader to [9] for a more detailed survey on the definability of
Henselian valuations. While some of these results deal with the existence of non-
trivial definable Henselian valuations and others consider the quantifier complexity
of defining formulas (cf. [9, Sections 2 and 3]), in this paper we are interested in the
definability of a given Henselian valuation with a certain value group.1

The strongest currently known definability results which only pose conditions
on the value group of a given Henselian valuation are exhibited in [14, 21]. In the
following, we state the results under consideration for this paper and outline how
we strengthen these.

Fact 1.1 [14, Corollary 2]. Let (K, v) be a Henselian valued field such that the
value group vK is discretely ordered. Then v is Lr-definable with one parameter
from K.

For densely ordered value groups, the following is established.

Fact 1.2 [14, Theorem 3]. Let (K, v) be a Henselian valued field such that vK is
densely ordered. Assume that vK contains a convex subgroup that is p-regular but
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residue field (see our Concluding Remark).
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DEFINABILITY OF HENSELIAN VALUATIONS BY CONDITIONS ON THE VALUE GROUP 1065

not p-divisible, for some prime p ∈ N. Then v is Lr-definable with one parameter
from K.

While in [14] definability is treated in the language of rings Lr, the definability
results in [21] are stated for ordered fields in the language of ordered rings Lor.

Fact 1.3 [21, Theorem 5.3(2)]. Let (K,<, v) be an ordered Henselian valued
field such that vK is not closed in its divisible hull. Then v is Lor-definable with one
parameter from K.

After introducing preliminary notions in Section 2, we show in Section 3 that the
hypothesis on vK in Fact 1.2 is strictly stronger than that in Fact 1.3 (see Proposition
3.3 and Example 3.4). Thus, we obtain the following strengthening of both Facts
1.2 and 1.3:2

Theorem A. Let (K, v) be a Henselian valued field such that vK is not closed in
its divisible hull. Then v is Lr-definable with one parameter from K.

In Section 4, we examine definability without parameters of the valuations. To this
end, in Construction 4.5—the technical heart of this paper—we refine [25, p. 338] to
obtain a t-Henselian non-Henselian field (see Definition 4.1) with prescribed value
groups. More precisely, given an arbitrary family of non-trivial ordered abelian
groups {A� | � ∈ –�}, Construction 4.5 produces a t-Henselian non-Henselian
ordered field (K,<) as well as, for each n ∈ N, a convex valuation un on K whose
value group is the Hahn sum (see page 3) over {A� | � ≤ –n}.

By applying Construction 4.5 to the specific case where all A� are identical, we
obtain the following:3

Theorem B. LetA �= {0} be an ordered abelian group. Then there exists an ordered
Henselian valued field (L,<, v) such that vL is the Hahn sum

∐
–� A and the only

parameter-free Lor-definable Henselian valuation on (L,<) is the trivial valuation. In
particular, v is not Lor-definable without parameters.

Finally, by choosing appropriately the group in Theorem B, we can show that
Facts 1.1–1.3 and Theorem A are optimal in the sense that, in general, one cannot
obtain definability of the valuations without parameters (see Examples 4.9 and 4.10).

We conclude this work in Section 5 by collecting open questions motivated by our
results.

§2. Preliminaries. More details on the model and valuation theoretic notions we
use can be found in [6, 23, 24].

We denote by N the set of natural numbers without 0 and by � the set of natural
numbers with 0. All topological properties are considered with respect to the order
topology. Whenever an algebraic structure carries a standard linear ordering, we
refer to this specific ordering if not explicitly stated otherwise.

Let K be a field and let v be a valuation on K. We denote the valuation ring of
v (i.e., the subring {a ∈ K | v(a) ≥ 0} of K) by Ov and its valuation ideal (i.e., its
maximal ideal {a ∈ Ov | v(a) > 0}) by Mv . Moreover, we denote the value group

2Theorem A will be restated as Theorem 3.1.
3Theorem B will be restated as Theorem 4.7.
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1066 LOTHAR SEBASTIAN KRAPP ET AL.

of v by vK and the residue field Ov/Mv by Kv. An element a + Mv ∈ Kv with
a ∈ Ov is also denoted by av. Suppose that K admits an ordering <. Then we say
that v is convex (with respect to <) if Ov is a convex subset of K (with respect to
the ordering <). By [19, Lemma 2.1], any Henselian valuation on an ordered field
is convex. Given a valued field K we denote by Kh its henselisation.

Let Log = {+, –, 0, <} be the language of ordered groups, Lr = {+, –, ·, 0, 1} the
language of rings, and Lor = Lr ∪ {<} the language of ordered rings. If no confusion
is likely to arise, we denote an Log-structure (G,+, –, 0, <) simply by G, an Lr-
structure (R,+, –, ·, 0, 1) by R, and an Lor-structure (R,+, –, ·, 0, 1, <) by (R,<).
We say that a valuation v on a field K (an ordered field (K,<)) is Lr-definable (Lor-
definable) if Ov is an Lr-definable (Lor-definable) subset of K. Here, definability is
meant with parameters. We say that v is 0-Lr-definable (0-Lor-definable) if there is a
defining formula without parameters from K.

If we expand Lr by a unary predicate Ov , we obtain the language of valued fields
Lvf . Similarly, Lovf = Lor ∪ {Ov} denotes the language of ordered valued fields. Let
(K,Ov) be a valued field. An atomic formula of the form v(t1) ≥ v(t2), where t1 and
t2 are Lr-terms, is equivalent to t1 = t2 = 0 ∨ (t2 �= 0 ∧ t1

t2
∈ Ov). Hence, by abuse

of notation, we can also write (K, v) for the Lvf -structure of a valued field. Likewise
the Lovf -structure of an ordered valued field is denoted by (K,<, v).

Let (Γ, <) be a linearly ordered set, and for each � ∈ Γ, letA� �= {0} be an abelian
group (expressed additively). The corresponding Hahn product over {A� | � ∈ Γ} is
given by

H
�∈Γ
A� =

⎧⎨
⎩s ∈ ∏

�∈Γ

A�

∣∣∣∣∣∣ supp(s) is well-ordered

⎫⎬
⎭,

where
∏
�∈ΓA� denotes the group product over (A�)�∈Γ and supp(s) denotes the

support of s given by the set {� ∈ Γ | s(�) �= 0}. The Hahn product is an abelian
group under pointwise addition. It carries a valuation with value set Γ given by
vmin : s 	→ min supp(s) for s �= 0. Any s ∈ H�∈ΓA� can be expressed as a sum s =∑
�∈Γ s�1� , where s� = s(�) and 1� is the characteristic function mapping � to

some fixed 1� ∈ A� (which in our application is always clear from the context) and
everything else to 0. The valued subgroup∐

�∈Γ

A� = {s ∈ H�∈ΓA� | supp(s) is finite}

is called the Hahn sum over (Γ, (A�)�∈Γ). If Γ is a convex subset of Z with min Γ = a
and max Γ = b (where we set a = –∞ if Γ is not bounded from below, and b = ∞
if Γ is not bounded from above), then we express

∐
�∈ΓA� as

∐b
�=a A� if a �= –∞,

and as
∐b
�>–∞A� if a = –∞. For an ordinal α we have that

∐
�∈–α A� = H�∈–αA� .

If there is an ordered abelian group A such that for each � ∈ Γ we have A� = A,
we simply write HΓA (

∐
ΓA) for the Hahn product (Hahn sum) above. If A� is an

ordered abelian group for each � ∈ Γ, then also H�∈ΓA� is an ordered abelian group
with the ordering given as follows: for any non-zero s =

∑
�∈Γ s�1� ∈ H�∈ΓA� we

have s > 0 if and only if s�0 > 0, where �0 = vmin (s).
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DEFINABILITY OF HENSELIAN VALUATIONS BY CONDITIONS ON THE VALUE GROUP 1067

Let k be a field and let G be an ordered abelian group. The Hahn field (also
called power series field) k((G)) has as underlying additive group the Hahn product
HGk. Multiplication on k((G)) is defined by (rs)h =

∑
g∈G rgsh–g for any h ∈ G . To

distinguish between elements of Hahn products and Hahn fields, we write an element
s ∈ k((G)) as sum s =

∑
g∈G sgt

g , where tg is the characteristic function with
tg(g) = 1 and tg(h) = 0 for any h �= g. The valuation vmin on k((G)) is Henselian.
Again, if k is ordered, then also k((G)) carries a natural ordering as described above
making it an ordered field. We denote by k[G ] the group ring with coefficient field
k and value group G. It consists of all elements of k((G)) with finite support. Its
quotient field, denoted by k(G), is generated in k((G)) by the set of all monic
monomials, i.e., k(G) = k(tg | g ∈ G).

Let G be an ordered abelian group. We say that G is discretely ordered if there
exists some 1 ∈ G with 0 < 1 and there is no element in G strictly between 0 and 1.
If G is not discretely ordered, then it is densely ordered. Let n ∈ N. Then G is called
n-regular if every infinite convex subset of G contains at least one n-divisible element.
If G is n-regular for every n ∈ N, then we say that it is regular. We denote the divisible
hull of G by Gdiv.

§3. Definable valuations. We start by stating and proving the main result of this
section. Subsequently, we will discuss how this generalises the known definability
results from Facts 1.2 and 1.3.

Theorem 3.1. Let (K, v) be a Henselian valued field. Suppose that vK is not closed
in vKdiv. Then v is Lr-definable with one parameter.

Theorem 3.1 can essentially be proven by the methods in [14, p. 15] and [13,
p. 19].4 However, due to the more general context there are certain adjustments to
be made, which is why we present the proof in detail.

Proof. We setG = vK . Let ε ∈ K and let n ∈ N such that v(ε) is not n-divisible
in G but v(ε)n is a limit point of G inGdiv. Since v(ε)n is a limit point of G, also – v(ε)n is

a limit point of G. Thus, by replacing ε by ε–1 if necessary, we may assume that v(ε)n
is a left-sided limit point of G, i.e., for any positive h ∈ Gdiv the half-open interval(
v(ε)
n – h, v(ε)n

]
in Gdiv contains some element from G.

Set Φε = {x ∈ K | v(εxn) > 0}. We show that the formula ϕ(x, ε) given by

∃y (yn – yn–1 = εxn)

defines Φε . Let x ∈ Φε . Then εxn ∈ Mv and by Hensel’s Lemma there exists y ∈ K
such that yn – yn–1 = εxn, i.e., K |= ϕ(x, ε). Conversely, let x ∈ K such that K |=
ϕ(x, ε), i.e., there exists y ∈ K such that yn–1(y – 1) = εxn. By applying v, we obtain

(n – 1)v(y) + v(y – 1) = v(ε) + nv(x)

and distinguish three cases.
Case 1: v(y) > 0. Then v(y – 1) = 0 and thus 0 < (n – 1)v(y) = v(ε) + nv(x) =

v(εxn), as required.

4We thank Blaise Boissonneau for pointing out this method to the first author.
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1068 LOTHAR SEBASTIAN KRAPP ET AL.

Case 2: v(y) = 0. Then v(y – 1) = v(ε) + nv(x). If v(y – 1) > 0, then we
are done immediately. Otherwise, v(y – 1) = 0 and we obtain v(ε)

n = –v(x), a
contradiction to the fact that v(ε) is not n-divisible in G.

Case 3: v(y) < 0. Then we obtain v(ε) = n(v(y) – v(x)), again a contradiction,
as v(ε) is not n-divisible.

Now set

Ψε = {εxn | x ∈ Φε} = {εxn | x ∈ K, v(εxn) > 0}.
Again, Ψε is Lr-definable only using the parameter ε. Finally, set

Ωε =
{
xn – xn–1 | x ∈ K,K |= ∃y ∃(z ∈ Ψε) z(yn – yn–1) = xn – xn–1}.

We show that Ωε = Mv , as then Ov is defined by ∀(u ∈ Ωε) xu ∈ Ωε .
First let a ∈ Ωε and fix x ∈ K such that xn – xn–1 = a. Then by definition of Ωε

there are y ∈ K and z ∈ Ψε such that z(yn – yn–1) = a. Let r ∈ K with z = εrn ∈
Mv . Assume, for a contradiction, that v(a) ≤ 0. If v(a) < 0, then

0 > v(xn–1(x – 1)) = (n – 1)v(x) + v(x – 1) = nv(x)

and 0 > v(z) + (n – 1)v(y) + v(y – 1) > (n – 1)v(y) + v(y – 1) = nv(y).

Since

ε = zr–n = (xn – xn–1)[(yn – yn–1)rn]–1,

we obtain

v(ε) = v(xn – xn–1) – v(yn – yn–1) – nv(r) = n(v(x) – v(y) – v(r)),

contradicting the choice of ε. If v(a) = 0, then 0 = (n – 1)v(x) + v(x – 1) and
thus v(x) = v(x – 1) = 0. Moreover, 0 = v(z) + (n – 1)v(y) + v(y – 1) and thus
0 > –v(z) = (n – 1)v(y) + v(y – 1) = nv(y). This implies

v(ε) = v(xn – xn–1) – v(yn – yn–1) – nv(r) = n(v(y) – v(r)),

which again contradicts the fact that v(ε) is not n-divisible. This shows that v(a) > 0,
i.e., a ∈ Mv .

For the converse, let a ∈ Mv . By Hensel’s Lemma there exists x ∈ K such that
xn – xn–1 = a. Since v(ε)n is a left-sided limit point of G, we obtain some b ∈ K×

with

v(ε)
n

–
v(a)
n
< v(b) <

v(ε)
n
.

Hence, – v(ε) < –nv(b) < v(a) – v(ε). We set z = εb–n and obtain that 0 < v(z) <
v(a), whence z ∈ Ψε and v

(
a
z

)
> 0. Again by applying Hensel’s Lemma, we find

some y ∈ K such that yn – yn–1 = a
z . This yields a ∈ Ωε and therefore Ωε = Mv ,

as required. �
Remark 3.2. Note that the class of non-trivial ordered abelian groups that are

closed in their divisible hull is elementary in the language of ordered groups. Indeed,
it is axiomatised by the axiom scheme

∀a (∀ (b > 0) ∃g |a – ng| < b → ∃h a = nh) ,

one for each n ∈ N. �
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Our next aim is to show that Theorem 3.1 implies Fact 1.2. Note that in both of
these statements the value group is densely ordered, in Fact 1.2 by assumption and
in Theorem 3.1 since any discretely ordered abelian group is already closed in its
divisible hull.

Proposition 3.3. Let G be a densely ordered abelian group. Suppose that there
exists some n ∈ N such that G contains a convex subgroup C that is n-regular but not
n-divisible. Then G is not closed in Gdiv.

Proof. Note that since G contains a convex subgroup that is not n-divisible, we
have that G is a non-divisible ordered abelian group. Assume, for a contradiction,
that G is closed in Gdiv. Since C is not n-divisible, there exists a ∈ C such that
a
n ∈ Gdiv \G . Moreover, since G is closed in Gdiv, there exists a positive � ∈ Gdiv

such that (a
n

– �,
a

n
+ �

)
∩G = ∅.

As 0 is a limit point of G in Gdiv (cf. [21, Lemma 3.6]), there exists b ∈ G with
0 < b < � and hence (

a

n
–
b

n
,
a

n
+
b

n

)
∩G = ∅. (1)

By convexity of C, we may choose b ∈ C>0. Further, since G is densely ordered and
thus C is densely ordered, the interval (a – b, a + b) is an infinite convex subset of
C. By n-regularity of C, there is some z ∈ C such that a – b ≤ nz ≤ a + b. This is
equivalent to

a – b
n

≤ z ≤ a + b
n
,

a contradiction to (1). Hence, G is not closed in Gdiv. �

Proposition 3.3 shows that the condition on the value group in Fact 1.2 is covered
by the condition in Theorem 3.1. The converse of Proposition 3.3 does not hold, as
verified by the following example.

Example 3.4. We consider the ordered abelian group

G =

(∐
�

Z

)
+ aZ ⊆ H

�
Z, where a =

∑
n∈�

21n.

Note that G consists of all elements s =
∑
n∈� sn1n ∈ H�Z for which the following

holds: there exist m ∈ Z and n0 ∈ � such that for any n ≥ n0 we have sn = 2m. We
now show that G is not closed in Gdiv but for any n ∈ N and any convex subgroup
C of G, if C is n-regular, then it is already n-divisible.

By [21, Lemma 3.6], we have that G is densely ordered, as its value set vminG = �
does not have a maximum. We first note that the divisible hull of G is given by

Gdiv =

(∐
�

Q

)
+ aQ.
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1070 LOTHAR SEBASTIAN KRAPP ET AL.

Let s =
∑
n∈� 1n ∈ Gdiv. By the description of the elements of G above, one

immediately sees that s /∈ G . We now show that s is a limit point of G in Gdiv,
whence G is not closed in Gdiv. Let b ∈ Gdiv be positive and set � = vmin(b).
Further, let g =

∑�
n=0 1n ∈ G and note that g < s . As b� > 0, we obtain that

0 < s – g = 0 · 1� +
∑
n≥�+1 1n < b. We have thus found an element g ∈ G with

s – b < g < s , showing that s is a limit point of G in Gdiv.
Let n ∈ N with n ≥ 2. We show that G contains no non-trivial n-regular convex

subgroup. Thus, in particular, the only n-regular convex subgroup of G is the trivial
group, which is n-divisible.

Let C be a non-trivial convex subgroup of G. Then there exists � ∈ � such that C
is of the form

C = {g ∈ G | vmin(g) ≥ �} =

⎛
⎝ ∞∐
�=�

Z

⎞
⎠ +

⎧⎨
⎩∑
i≥�
k1i

∣∣∣∣∣∣ k ∈ 2Z

⎫⎬
⎭

(cf. [23, p. 50 f.]). Now let c, d ∈ C with c = q1� and d = q1� + 1�+1, where q ∈ N
is some prime with q > n. Then c < d and (c, d ) is an infinite convex subset of the
densely ordered group C. Since for any z ∈ (c, d ) we have that z� = q and n � q in
Z, there is no n-divisible element in (c, d ). Hence, C is not n-regular. �

Example 3.4 shows that the condition in Theorem 3.1 is indeed more general
than the condition in Fact 1.2. More precisely, let k be any field and let G be the
ordered abelian group constructed in Example 3.4; then Theorem 3.1 implies that
the Henselian valuation vmin on k((G)) isLr-definable (with one parameter), whereas
Fact 1.2 cannot be applied directly to obtain the Lr-definability of vmin.

In conclusion, Theorem 3.1 is a strict generalisation of both Facts 1.2 and 1.3
for densely ordered value groups: Theorem 3.1 clearly generalises Fact 1.3, as it
has the same condition on the value group but does not rely on the existence of
an ordering on the field. Moreover, Proposition 3.3 shows that the value group
condition of Theorem 3.1 follows from that of Fact 1.2 but Example 3.4 illustrates
that the converse does not hold.

§4. Main construction and parameter-free definability. The main aim of this
section is to show that the conclusions of Fact 1.1 and Theorem 3.1 can, in
general, not be strengthened to 0-Lr-definability. More precisely, we construct
a class of ordered Henselian valued fields that do not admit any non-trivial
0-Lor-definable Henselian valuation (see Theorem 4.7). This class contains ordered
Henselian valued fields (K,<, v) with discretely ordered value group vK (see
Example 4.9) as well as such with a value group vK not closed in vKdiv (see
Example 4.10).

The method for constructing an ordered Henselian valued field (K,<, v) that
does not admit a non-trivial 0-Lor-definable Henselian valuation relies on the
construction of a t-Henselian non-Henselian ordered field.5 We start by clarifying
the notion of t-Henselianity, which was first introduced in [25, Section 7].6

5Our construction is inspired by the arguments in [25, p. 338], which have also been refined in [8,
Section 6], [16, Section 6], and [1, Section 4].

6Several characterisations for a field to be t-Henselian are given in [8, p. 354].
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DEFINABILITY OF HENSELIAN VALUATIONS BY CONDITIONS ON THE VALUE GROUP 1071

Definition 4.1. We call a field Henselian if it admits a non-trivial Henselian
valuation. A field K is t-Henselian if there exists a Henselian field L such thatK ≡ L
(in the language Lr).

We now establish a sufficient condition for t-Henselianity based on n≤-Henselian
valuations: Let n ∈ N. Following the terminology of [8, Definition 6.1], we say
that a valued field (K, v) is n≤-Henselian if Hensel’s Lemma holds in (K, v) for
all polynomials of degree at most n. Note that (K, v) is Henselian if and only if it
is n≤-Henselian for any n ∈ N. Arguing similarly as in the proof of [6, Theorem
4.1.3], one can show that (K, v) is n≤-Henselian if and only if every polynomial
X� + X�–1 + a�–2X

�–2 + ··· + a0 ∈ Ov[X ] with � ≤ n and a�–2, ... , a0 ∈ Mv has a
zero in K. Moreover, by the arguments in the proof of [19, Lemma 2.1], for n ≥ 2
any n≤-Henselian valuation on a real field K is convex with respect to any ordering
on K.

Lemma 4.2. Let K be a field. Suppose that for any n ∈ N, there exists a non-trivial
n≤-Henselian valuation on K. Then K is t-Henselian.

Proof. Lethn be theLvf -sentence stating that v is a non-trivial valuation for which
Hensel’s Lemma holds for polynomials of degree at most n. Then any finite subset of
the Lvf -theory Th(K) ∪ {hn | n ∈ N} is satisfied by (K, vm) for some m ∈ N, where
vm ism≤-Henselian. Hence, by the Compactness Theorem, there exists a Henselian
field L with L |= Th(K), i.e., L ≡ K . �

Our aim is to refine the construction of a t-Henselian non-Henselian field in [25,
p. 338] by gaining influence on the resulting value group. More precisely, starting
with a family of non-trivial ordered abelian groups {A� | � ∈– �}, we construct a
non-Henselian ordered field (K,<) such that for any n ∈ N, there is an n≤-Henselian
valuation vn on K with vnK =

∐–n
�>–∞A� .

In the following, for an ordered abelian group G we consider Gdiv also as a
Q-vector space with the usual scalar multiplication. For an algebraic field extension
K ⊆ L and an element α ∈ L, we denote by degK (α) the degree of the minimal
polynomial of α over K.

Lemmas 4.3 and 4.4 will be used in Construction 4.5. Note that the statement of
Lemma 4.4 can be adjusted for an arbitrary field k of characteristic 0 (instead of an
ordered field).

Lemma 4.3. Let k be a field of characteristic 0 and let G be an ordered abelian group.
Moreover, let a ∈ k[G ] such that for some n ≥ 2 we have supp(a) = {g1, ... , gn, 0}
and g1, ... , gn are linearly independent in the Q-vector space Gdiv. Then a is prime in
k[G ].

Proof. First note that the group of units of k[G ] is given by the multiplicative
group of monomials of k((G)), i.e., k[G ]× = {ctg | c ∈ k×, g ∈ G}. By [3, Propo-
sition 4.1], every irreducible element of k[G ] is prime. It thus suffices to show
that a is irreducible. Let r, s ∈ k[G ] with a = rs . We obtain from [3, Proposition
4.8] that a is prime in k[Gdiv] and hence irreducible in k[Gdiv] (as k[Gdiv] is
an integral domain). We may thus assume that r is a unit in k[Gdiv]. Hence,
r ∈ k[G ] ∩ {ctg | c ∈ k×, g ∈ Gdiv} = k[G ]×. This shows that r is a unit in k[G ],
as required. �
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For two ordered abelian groups A and B, we denote by A� B the abelian group
A× B ordered lexicographically.

Lemma 4.4. Let (k,<) be an ordered field and let A1, A2 �= {0} be ordered abelian
groups. Moreover, set K = k(A1 � A2) and let (Kh, <) be a henselisation of K
in (k((A1 � A2)) , <, vmin). Then for any n ∈ N, there exists an intermediate field
extension K ⊆ L � Kh such that (L, vmin) is n≤-Henselian but not Henselian.

Proof. Let n ∈ N and let p ∈ N be prime with p > n. Since p≤-Henselianity
implies n≤-Henselianity, it suffices to construct an ordered valued field (L,<, vmin)
with (K,<, vmin) ⊆ (L,<, vmin) � (Kh, <, vmin) such that for any polynomial of the
form

f(T ) = Tm + am–1T
m–1 + ··· + a0 ∈ L[T ],

wherem ≤ p, and any α ∈ Kh with f(α) = 0, we have that α ∈ L. Let M be the set
of all natural numbers m such that for any prime number q ∈ N dividing m we have
q ≤ p. We set L = K

(
α ∈ Kh | degK (α) ∈M

)
, i.e., L is generated by all elements

inKh whose degree over K only has prime factors less than or equal to p. Note that
since M is closed under multiplication and divisors, degK (x) ∈M for any x ∈ L.
Letm ≤ p and letf(T ) = Tm + am–1T

m–1 + ··· + a0 ∈ L[T ]. By construction of L,
we have degK (ai) ∈M for any i ∈ {0, ... , m – 1}. Moreover, since [K(a0, ... , am–1) :
K ] divides the product [K(a0) : K ] ... [K(am–1) : K ] = degK (a0) ... degK (am–1), we
obtain [K(a0, ... , am–1) : K ] ∈M . Suppose that α ∈ Kh is a zero of f. Since also
[K(a0, ... , am–1, α) : K(a0, ... , am–1)] ≤ m ≤ p, we obtain

[K(a0, ... , am–1, α) : K ]

= [K(a0, ... , am–1, α) : K(a0, ... , am–1)] · [K(a0, ... , am–1) : K ] ∈M.

Finally, since degK (α) = [K(α) : K ] divides [K(a0, ... , am–1, α) : K ], we obtain
degK (α) ∈M and thus α ∈ L.

It remains to show that (L, vmin) is not Henselian, i.e., that there exists y ∈ Kh

such that y /∈ L. Let q ∈ N be a prime number greater than p. We set

a = t(b1,0) + t(0,b2) + 1 ∈ k[A1 � A2],

where b1 ∈ A1 and b2 ∈ A2 are fixed positive elements, and observe that a is prime
in k[A1 � A2] by Lemma 4.3. Further, let

g(T ) = Tq + aTq–1 + at(b1,0)Tq–2 + ··· + at(b1,0)T + at(b1,0) ∈ K [T ].

Note that vmin(a) = 0 and vmin(at(b1,0)) = (b1, 0) > 0. Hence, by applying the
residue map, we obtain the polynomial gvmin(T ) = Tq + Tq–1 ∈ k[T ]. Since
gvmin(T ) has a simple zero in k, we obtain that g has a zero y ∈ Kh. Moreover, by
Eisenstein’s Criterion we obtain that g is irreducible over K and thus q = [K(y) : K ].
Since q does not divide any element in M, we obtain by construction of L that y /∈ L.
Hence, L � Kh as required. �

We now proceed with our main construction.

Construction 4.5 (Main Construction). Let {A� | � ∈ �} be a family of non-
trivial ordered abelian groups and setG :=

∐
�∈–� A–� . We construct an ordered field
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(K,<) such that for any n ∈ N there exists a convex n≤-Henselian valuation un on K
with value group unK =

∐–n
�>–∞A–� and K does not admit a non-trivial Henselian

valuation. In particular, K is t-Henselian (by Lemma 4.2) but not Henselian.
By induction on m ∈ � we construct a chain of ordered fields (Km,<) each

endowed with a valuation vmmin. From this the ordered field (K,<) will be obtained
by an inverse limit construction, as well as a chain of convex valuations vm on K
for m ∈ �. Ultimately, for each n ∈ � we set u2n to be vn and u2n+1 to be a certain
coarsening of u2n.

To initiate the induction, we set (K0, <) = (R, <). Now let m ∈ N and suppose
that the ordered field (Km–1, <) has already been defined. We denote the valuation
given by s 	→ min supp(s) onKm–1

((
A2m–1 � A2(m–1)

))
by vmmin. By Lemma 4.4, there

is an ordered valued field Km with

Km–1
(
A2m–1 � A2(m–1)

)
⊆ Km,

�Km–1
(
A2m–1 � A2(m–1)

)h ⊆ Km–1
((
A2m–1 � A2(m–1)

))
,

where the ordering is inherited from Km–1
((
A2m–1 � A2(m–1)

))
and the valuation is

vmmin, such that any zero inKm–1
(
A2m–1 � A2(m–1)

)h
of a polynomial overKm of degree

at most 2m + 1 already lies inKm. Since the extensions above are immediate, we have
Kmv

m
min = Km–1. Let O′

m and M′
m be the valuation ring and valuation ideal of vmmin

in Km and let 	m : O′
m → Km–1 denote the corresponding residue map a 	→ avmmin.

For i, j ∈ �with j ≤ i we define the map
i,j : Ki ∪ {∞} → Kj ∪ {∞} as follows:
We set


i,i = idKi∪{∞} and 
i,i–1(x) =

{
	i(x), if x ∈ O′

i ,

∞, if x /∈ O′
i .

For 0 ≤ j < i – 1 we set
i,j = 
j+1,j ◦ ··· ◦ 
i,i–1. Now we define I to be the inverse
limit of (Km ∪ {∞})m, i.e., I is the following set of sequences:

I =

{
(xm) ∈

∏
m∈�

(Km ∪ {∞})

∣∣∣∣∣ 
i,j(xi) = xj for all i, j ∈ � with j ≤ i
}
.

Note that if for a given sequence (xm) ∈ I , we have x� = 0 (respectively x� = ∞) for
some � ∈ �, then xk = 0 (respectively xk = ∞) for any k ≤ �. On the other hand,
if x� /∈ {0,∞} for some � ∈ �, then

xk ∈ O′
k \M′

k, (2)

i.e., vkmin(xk) = 0, for all k > �. Therefore, ifx� /∈ {0,∞} and x�–1 ∈ {0,∞} for some
� ∈ N, then v�min(x�) �= 0.

Claim 1. The set K := I \ {(∞)} can be made an ordered field.

Proof of Claim 1. Addition, multiplication, and an ordering on K can be defined
by a standard procedure7 making K an ordered field: Let (xm), (ym) ∈ K and let
� ∈ � be least such that x� �= ∞ and y� �= ∞. For any i ≥ � set zi = xi + yi . For
any i < � set zi = 
�,i(x� + y�). Then (xm) + (ym) is given by (zm) ∈ K . Likewise,

7See [6, p. 114 ff.] for analogous construction in the group case.

https://doi.org/10.1017/jsl.2022.34 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.34


1074 LOTHAR SEBASTIAN KRAPP ET AL.

multiplication can be defined via the multiplication operations on the fields Km.
Finally, a non-zero element (xm) of K is positive if and only if xi is non-negative for
any i ∈ � with xi �= ∞. �

For any n ∈ � we define the projection map 
n : K → Kn ∪ {∞}, (xm) 	→ xn.
This gives rise to the following commutative diagram and equation for j ≤ i :

K Ki ∪ {∞}

Kj ∪ {∞}

j


i


i,j


i,j ◦ 
i = 
j. (3)

One can easily verify that 
n is a place, and therefore On = 
–1
n (Kn) defines a

valuation ring on K with maximal ideal Mn = 
–1
n ({0}) and residue field Kn. By

(3) we compute for any a ∈ Mn+1:


n(a) = 
n+1,n(
n+1(a)) = 
n+1,n(0) = 0.

Therefore we have a ∈ Mn, and thus On ⊆ On+1.
We denote the valuation on K with valuation ring On by vn and fix n ∈ N.

Claim 2. vn is a (2n + 1)≤-Henselian valuation on K.

We observe that, if Claim 2 is established, then we also have that vn is (2n)≤-
Henselian and convex (as 2n + 1 ≥ 2).

Proof of Claim 2. Let

f(T ) = T 2n+1 + T 2n + a(2n–1)T 2n–1 + ··· + a(0) ∈ K [T ],

where a(2n–1), ... , a(0) ∈ Mn. We need to find a zero (ym) ∈ K of f. For any i ∈ �,
set a(2n–1)

i = 
i
(
a(2n–1)

)
, ... , a(0)

i = 
i
(
a(0)

)
∈ Ki and

fi(T ) = T 2n+1 + T 2n + a(2n–1)
i T 2n–1 + ··· + a(0)

i ∈ Ki [T ].

First let i ≤ n. Then a(2n–2)
i = ··· = a(0)

i = 0 and therefore fi(T ) = T 2n+1 + T 2n.
Set yi = –1, which is a simple zero of fi . Now let i > n. We construct yi iteratively.
To this end, assume that yi–1 ∈ Ki–1 is a simple zero of fi–1 with 
i–1,j(yi–1) = yj
for 0 ≤ j ≤ i – 1. Applying 	i to the coefficients of fi(T ) ∈ Ki [T ] we obtain the
residue polynomial

T 2n+1 + T 2n + a(2n–1)
i–1 T 2n–1 + ··· + a(0)

i–1 = fi–1(T ) ∈ Ki–1[T ].

Thus, fi has a simple zero yi in the henselisation of Ki with 	i(yi) = yi–1. By
construction ofKi (as i > n), we obtain yi ∈ Ki , as required. Finally, one can verify
by direct computation that the element (ym) ∈ K we obtained from this construction
is a zero of f.

The argument above shows that vn satisfies the condition for (2n + 1)≤-
Henselianity only for polynomials of degree equal to 2n + 1. However, since the
coarsening of a (2n + 1)≤-Henselian valuation is also (2n + 1)≤-Henselian (see
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the proof of [20, Lemma A.4.24]), we immediately obtain (2n + 1)≤-Henselianity
of vn. �

It remains to show that vn is not Henselian.

Claim 3. vn is not Henselian.

Proof of Claim 3. Assume for a contradiction that vn is Henselian. Let m ∈ N
and let

g(X ) = Xm + Xm–1 + am–2X
m–2 + ··· + a0 ∈ Kn+1[X ]

for some am–2, ... , a0 ∈ M′
n+1. Let a(m–2), ... , a(0) ∈ K such that 
n+1

(
a(i)

)
= ai

for 0 ≤ i ≤ m – 2. Then a(m–2), ... , a(0) ∈ 
–1
n ({0}) = Mn. As vn is Henselian,

there exists x ∈ On such that xm + xm–1 + a(m–2)xm–2 + ··· + a(0) = 0. A direct
computation shows that 
n+1(x) is a zero of the polynomial g(X ). Thus, we
have that

(
Kn+1, v

n+1
min

)
is Henselian, which is a contradiction to the construction

of Kn+1. �
So far we have seen that for any n ∈ N there exists a non-Henselian but (2n + 1)≤-

Henselian valuation vn on K. It remains to show that K does not admit a non-trivial
Henselian valuation.

Claim 4. K does not admit a non-trivial Henselian valuation.

Proof of Claim 4. Let u be any non-trivial convex valuation on K and pick
a = (am) ∈ K with u(a) < 0, i.e., a /∈ Ou . Let � ∈ N be least such that a� �= ∞.
Then 
�(a) = a� ∈ K� , whence a ∈ O� . Since v� is convex, we obtain that v�
is a proper coarsening of u. Therefore, since v� is not Henselian, also u is not
Henselian. Finally, as any Henselian valuation on an ordered field is convex (cf. [19,
Lemma 2.1]), this suffices to show that K does not admit a non-trivial Henselian
valuation. �

Finally, we show inductively that vnK =
∐–2n
�>–∞A–� . Since vn is a coarsening of

v0 for all n ∈ N, we have that vnK is the quotient of v0K by v0(O×
n ). Therefore our

next task is to compute v0K and v0(O×
n ). In order to do so, let us first recall the

construction of the fields Km.
We have the inclusions as ordered fields

R(A1 � A0) ⊆ K1 ⊆ R((A1 � A0)) ⊆ R((G)),

where the last inclusion is obtained by embedding A1 � A0 into G as its convex
subgroup

∐0
�=–1A–� . In the next step of our iterative field construction we obtained

the ordered field inclusions

R(A1 � A0)(A3 � A2) ⊆ K2 ⊆ R((A1 � A0))((A3 � A2)) ⊆ R((G)).

The last inclusion is given via the isomorphism8

R((A1 � A0))((A3 � A2)) ∼= R
((

(A3 � A2) � (A1 � A0))
)

8Generally, for any ordered abelian groups C and D and any ordered field (k,<) we have
(k((C ))((D)) , <) ∼= (k((D � C )) , <) via the isomorphism of ordered fields induced by atc td �→ at(d,c)
for any a ∈ k and (c, d ) ∈ C ×D.

https://doi.org/10.1017/jsl.2022.34 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.34


1076 LOTHAR SEBASTIAN KRAPP ET AL.

and the embedding of (A3 � A2) � (A1 � A0) into G as its convex subgroup∐0
�=–3A–� . Continuing this process, we have that

R

⎛
⎝ 0∐
�=–(2m–1)

A–�

⎞
⎠ ⊆ Km ⊆ R

⎛
⎝
⎛
⎝ 0∐
�=–(2m–1)

A–�

⎞
⎠
⎞
⎠ ⊆ R((G)).

We denote by vmin the standard valuation s 	→ min supp(s) on R((G)). By the
inclusion described above, vmin restricted toKm defines a valuation with value group
vminKm =

∐0
�=–(2m–1)A–� . For any m ∈ � we have that vminKm can be regarded

as a convex subgroup of G. Note that the valuation vmin restricted to Km is a
refinement of vmmin: Both vmin and vmmin are convex, vminKm =

∐0
�=–(2m–1)A–� and

vmminKm =
(
A2m–1 � A2(m–1)

)
. Thus, vmmin is the coarsening of vmin induced by the

convex subgroup
∐0
�=–(2m–3)A–� of vminKm.

We now want to define a map v on K such that v is a valuation on K and Ov = O0.
We set v(0) = ∞.

Claim 5. For any element (xm) ∈ K× and for any xi , xj /∈ {0,∞} we have that
vmin(xi) = vmin(xj).

Proof of Claim 5. Let � ∈ � be maximal with x�–1 ∈ {0,∞}, if such � exists,
and � = 0 otherwise. It suffices to show that vmin(xk) = vmin(x�) for any k ≥ �. We
proceed by induction on k. For k = � there is nothing to prove. Now assume that
vmin(x�) = vmin(xk) for some fixed k ≥ �. We first express xk ∈ Kk as

xk =
∑
g∈G
cgt
g ∈ R((G)).

Now set g0 = vmin(xk). Then vmin(xk) = vmin(x�) ∈
∐0
�=–(2�–1)A–� ⊆ G if � ≥ 1,

and g0 = vmin(x0) = 0 if � = 0. Further we set

g0 =
0∑

�=–(2�–1)

h�1� ,

where h� ∈ A–� for each �. By (2) we have that vk+1
min (xk+1) = 0 and by construction

xk+1v
k+1
min = xk . Therefore we can set

xk+1 = cg0t
g0 +

∑
g>g0

cgt
g + ε,

for some ε ∈ M′
k+1. Considering ε as an element of R((G)) we can write

ε =
∑

g∈
∐0
�=–(2k+1) A–�

εgt
g .

Let � = vmin(ε) and write

� = �–(2k+1)1–(2k+1) + �–2k1–2k +
–2�∑

�=–(2k–1)

��1� +
0∑

�=–(2�–1)

��1� .
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Now since ε ∈ M′
k+1, we have that �–(2k+1)1–(2k+1) + �–2k1–2k > 0. Hence,

� – g0 = �–(2k+1)1–(2k+1) + �–2k1–2k︸ ︷︷ ︸
>0

+
–2�∑

�=–(2k–1)

��1� +
0∑

�=–(2�–1)

(�� – h�)1�

> 0,

and therefore � > g0. Thus, vmin(xk+1) = vmin(xk + ε) = vmin(xk) = vmin(x�), as
required. �

Let (xm) ∈ K×. We define

v((xm)) := vmin(xi) ∈ G

for any xi /∈ {0,∞}.

Claim 6. The map v defines a valuation on K with vK = G .

Proof of Claim 6. Note that by Claim 5, v is well-defined. Let (xm), (ym) ∈ K×

and let i be large enough such that xi , yi /∈ {0,∞}. We obtain

v((xm)(ym)) = vmin(xiyi) = vmin(xi) + vmin(yi) = v((xm)) + v((ym)).

Similarly, we prove that v((xm) + (ym)) ≥ min{v((xm)), v((ym))}.
Moreover, vK = G : For any g ∈ G we can choose the least � such that there is

an element a� ∈ K� with vmin(a�) = g. Now for any (xm) ∈ K with x� = a� a direct
calculation shows v((xm)) = vmin(a�) = g. �

We now show that Ov = O0, this will yield that v0K is (isomorphic to) G, as
required.

Claim 7. Ov = O0.

Proof of Claim 7. Let (xm) ∈ K . First suppose that (xm) /∈ O0 = 
–1
0 (K0). Then

x0 = ∞. Let i be maximal such thatxi = ∞. Then v((xm)) = vmin(xi+1) < 0. Hence,
(xm) /∈ Ov . For the converse, suppose that (xm) ∈ O0 \ {0}. Thenx0 �= ∞. Ifx0 = 0,
then let � ∈ � be maximal withx�–1 = 0. We obtain v((xm)) = vmin(x�) > 0 and thus
(xm) ∈ Ov . If x0 �= 0, then xi �= 0 for every i ∈ �. Hence, v((xm)) = 0, also showing
(xm) ∈ Ov . �

Claim 8. For any n ∈ � we have v0(O×
n ) =

∐0
�=–2n+1A–� and therefore

vnK =

(
0∐

�>–∞
A–�

)
/

⎛
⎝ 0∐
�=–2n+1

A–�

⎞
⎠ =

–2n∐
�>–∞

A–� . (4)

Proof of Claim 8. Let (xm) ∈ O×
1 . Then x1 ∈ K1 \ {0}. Hence, by the inclusion

of ordered fields above, we have x1 ∈ R
((∐0

�=–1A–�

))
and thus v0((xm)) =

vmin(x1) ∈
∐0
�=–1A–� . By iteration of this argument, we obtain (4) for any

n ∈ �. �

To complete our construction, set u2n = vn for any n ∈ �. Claims 2 and 8 yield
thatu2n is a (2n + 1)≤-Henselian (and thus (2n)≤-Henselian) valuation withu2nK =
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�>–∞A–� . Now let u2n+1 be the coarsening of u2n induced by the convex subgroup
A2n of u2nK . Since u2n+1 is the coarsening of a (2n + 1)≤-Henselian valuation, it is
itself also (2n + 1)≤-Henselian. By definition of u2n+1, its value group is given by
u2n+1K =

∐–2n–1
�>–∞A–� , as required. �

Remark 4.6. In Construction 4.5 we could have started with any ordered field
K0 (instead of R) to obtain the required t-Henselian non-Henselian ordered field.
In fact, one can also start with any field K0 of characteristic 0 (so Lemma 4.3 is
applicable) to obtain a t-Henselian non-Henselian field (without an ordering) with
the specified value groups. �

Theorem 4.7. Let A �= {0} be an ordered abelian group. Then there exists an
ordered Henselian valued field (L,<, v) such that vL =

∐
–� A and (L,<) admits no

non-trivial 0-Lor-definable Henselian valuation. In particular, v is not 0-Lor-definable.

Proof. For any Log-sentence �, let �∗ be the Lvf -sentence such that for any
valued field (F,w) we have wF |= � if and only if (F,w) |= �∗.9 Let G =

∐
–� A

and let Th(G) be the complete Log-theory of G. We set Σ to be the Lvf -theory
{�∗ | � ∈ Th(G)}.

Let (K,<) and un (for any n ∈ N) be as in Construction 4.5 for the case A� = A
for any � ∈ �. For any n ∈ N we let hn be the Lvf -sentence stating that v is a non-
trivial n≤-Henselian valuation. Finally, let Th(K,<) be the complete Lor-theory of
(K,<).

For any n ∈ N, the ordered valued field (K,<, un) satisfies {hi | i ≤ n}. Since
unK = G , we also have (K, un) |= Σ. Hence, any finite subset of the Lovf -theory
Σ ∪ {hn | n ∈ N} ∪ Th(K,<) is satisfiable. By the Compactness Theorem, we obtain
an ordered valued field (F,<,w) such that (F,<) |= Th(K,<),wF |= Th(G), and w
is non-trivial, n≤-Henselian for any n ∈ N, and thus Henselian. We setL = Fw((G))
and v = vmin on L. Since Fw = Lv and wF ≡ G = vL, the Ax–Kochen–Ershov
principle for ordered fields (cf. [7, Corollary 4.2]) implies (L,<, v) ≡ (F,<,w). As
(F,<) ≡ (K,<), we also obtain (L,<) ≡ (K,<).

By elementary equivalence, any non-trivial 0-Lor-definable Henselian valuation in
(L,<) corresponds to a non-trivial 0-Lor-definable Henselian valuation in (K,<).
However, since (K,<) does not admit any non-trivial Henselian valuation, this
shows the required conclusion. �

Remark 4.8. 1. Let A �= {0} be an ordered abelian group. In order to obtain
an ordered Henselian valued field (L,<, v) such that vL =

∐
–� A and v is

not 0-Lor-definable, one can also proceed as follows:10 Let L = K((
∐

Z
A))

for some ordered field (K,<). Now let v be the coarsening of vmin induced
by the convex subgroup

∐
N
A of vminL. Then Lv = K((

∐
N
A)). Now let w

be the strict coarsening of v induced by the convex subgroup
∐

{0}A of vL.
Then wL =

∐
–NA

∼= vL and Lw = K
((∐

� A
)) ∼= Lv. We fix a ∈ Ow \ Ov .

9Syntactically, the sentence �∗ is obtained from � as follows: Any instance of quantification Qx
(where Q ∈ {∃,∀} and x is a variable) is replaced by Q(x 	= 0), any occurrence of the constant symbol
0 is replaced by v(1), any occurrence of a variable x is replaced by v(x), and finally any expression of
the form v(t) + v(s) is replaced by v(ts).

10We thank the referee for this argument and for the permission to include it in our paper.
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Assume, for a contradiction, that there is a parameter-free Lor-formula ϕ(x)
defining Ov . Then we have that

(L,<) |= ¬ϕ(a).

By the Ax–Kochen–Ershov principle for ordered fields we have that (L,<, v) ≡
(L,<,w), whence ϕ(x) also defines Ow . Since a ∈ Ow , we obtain

(L,<) |= ϕ(a),

a contradiction.
2. Let (L,<, v) be as in Theorem 4.7. Since any non-trivial coarsening w of v is also

Henselian, also w is not 0-Lor-definable. Moreover, for any convex subgroup
B ⊆ A, the corresponding coarsening w of v with value group (

∐
–NA) �

(A/B) is not 0-Lor-definable.
3. Theorem 4.7 stands in contrast to [14, Theorem 4], which implies that any

Henselian valuation v such that vK is non-divisible and archimedean is already
0-Lr-definable. In this regard, note that the rank – � of

∐
–� Ahas no minimum,

whence the valuation v in Theorem 4.7 has no coarsening with archimedean
value group. �

We can now use Theorem 4.7 to show that the conclusion in Fact 1.1 cannot be
strengthened to parameter-free definability.

Example 4.9. The ordered abelian group
∐

–� Z is discretely ordered (with 10 as
least positive element). By Theorem 4.7, there exists an ordered Henselian valued
field (L,<, v) with vL =

∐
–� Z such that v is not 0-Lor-definable. �

Similarly, we show that Facts 1.2 and 1.3 and Theorem 3.1 cannot be strengthened
to parameter-free definability.

Example 4.10. Consider the densely ordered abelian group

A =
{ a

2n

∣∣∣ a, n ∈ Z
}
⊆ Q.

Then A is regular but not 3-divisible, and is (isomorphic to) a convex subgroup
of G :=

∐
–� A. Proposition 3.3 yields that G is not closed in Gdiv. By Theorem

4.7, there exists an ordered field (L,<) and a Henselian valuation v on L such that
vL = G and v is not 0-Lor-definable. �

Remark 4.11. By [13, Lemma 2.3.7], the following holds:11 Let (K, v) be a
Henselian valued field and let p ∈ N be prime. Suppose that vK is densely ordered and
p-regular but not p-divisible. Then v is 0-Lr-definable.

In contrast to this result, Example 4.10 shows that the mere existence of a convex
p-regular subgroup that is not p-divisible does, in general, not ensure definability
without parameters.

§5. Further work. We conclude this work by collecting open questions which
may serve as a possible starting point for future work on topics related to this
paper.

11A similar argument can also be found in [16, Proof of Proposition 3.7].
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For a class C of non-trivial ordered abelian groups we consider the following:
(†)0 If (K, v) is a Henselian valued field such that vK ∈ C, then v is 0-Lr-definable.
(†) If (K, v) is a Henselian valued field such that vK ∈ C, then v is Lr-definable.
The corresponding properties (��†)0 and (��†) stand for the negations of the above;

that is, a class C of non-trivial ordered abelian groups satisfies (��†)0 (respectively
(��†)) if there exists a Henselian valued field (K, v) such that vK ∈ C but v is not
0-Lr-definable (respectively Lr-definable).

To summarise the results from the literature as well as this work, we distinguish
between discretely and densely ordered abelian groups.

5.1. Discrete case. We consider the following two elementary classes of ordered
abelian groups.

Cdiscr
0 : all regular discretely ordered abelian groups;

Cdiscr
1 : all discretely ordered abelian groups.

The class Cdiscr
0 consists of all ordered abelian groups that are elementarily equivalent

to Z as Log-structures. These are also called Z-groups (cf., e.g., [21, Fact 3.4]). By
[14, Theorem 4], Cdiscr

0 satisfies (†)0.
The ordered abelian group Z� Z serves as an example of a non-regular discretely

ordered abelian group, showing that Cdiscr
0 is strictly contained in Cdiscr

1 . By Fact 1.1
the class Cdiscr

1 satisfies (†), and due to Example 4.9 this class does not satisfy (†)0.
We thus obtain the following picture:

Cdiscr
0︸︷︷︸
(†)0

� Cdiscr
1︸︷︷︸

(†) and (�†)0

5.2. Dense case. We consider the following four elementary classes of ordered
abelian groups Cdense

i consisting of all densely ordered abelian groups G satisfying
the condition ci , where ci is given as follows:

c0 : for some prime p, the group G is p-regular but not p-divisible;
c1 : for some prime p, some convex subgroup of G is p-regular but not p-divisible;
c2 : G is not closed in Gdiv;
c3 : for some prime p, the group G contains no non-trivial p-divisible convex

subgroup.
While Cdense

0 satisfies (†)0, the class Cdense
1 satisfies (†) but not (†)0 (see Example

4.10 and Remark 4.11). By Proposition 3.3 and Example 3.4, the class Cdense
1 is

strictly contained in Cdense
2 . Moreover, Theorem 3.1 yields that Cdense

2 satisfies (†).
Further, Cdense

2 is strictly contained in Cdense
3 (cf. [21, Proposition 3.18 and Example

3.20]). The remarks in [4, p. 1147] show that for any densely ordered abelian group
G not satisfying condition c3 above there exists an (almost real closed) valued field
(K, v) with vK = G such that v is not Lr-definable. Hence, any class of densely
ordered abelian groups D that strictly contains Cdense

3 does not satisfy (†).
As a result of the discussion above, we obtain the following picture:

Cdense
0︸ ︷︷ ︸
(†)0

� Cdense
1 � Cdense

2︸ ︷︷ ︸
(†) and (�†)0

� Cdense
3 � D︸︷︷︸

(�†)
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5.3. Open questions. While from the observations above it is clear that the class
G0 of ordered abelian groups for which (†)0 holds is a proper subclass of the class G
of ordered abelian groups satisfying (†), none of the described dividing lines are yet
proven to be sharp. Therefore, we pose the following questions:

Question 5.1. (i) What is the largest class of ordered abelian groups satisfying
(†), respectively (†)0?

(ii) Is there a characterisation of G0 inside G?

5.4. Concluding Remark. As noted in the introduction, in this paper we only
consider conditions on the value group. There are also conditions for the definability
of a given Henselian valuation only depending on its residue field (cf., e.g., [15,
Proposition 3.1 and Corollaries 3.3 and 3.8] and [21, Theorem 5.3(3)]). In particular,
the analogous of (†) and (†)0 can be formulated for residue fields. Such conditions
will be the subject of a further publication.
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