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Abstract
We study the existence and structure of branch points in two-phase free boundary problems. More precisely, we
construct a family of minimizers to an Alt–Caffarelli–Friedman-type functional whose free boundaries contain
branch points in the strict interior of the domain. We also give an example showing that branch points in the free
boundary of almost-minimizers of the same functional can have very little structure. This last example stands in
contrast with recent results of De Philippis, Spolaor and Velichkov on the structure of branch points in the free
boundary of stationary solutions.

1. Introduction

In this paper, we study the structure of ‘branch points’ in the free boundary of minimizers of Alt–
Caffarelli–Friedman-type functionals (see equation (1.1) below). In particular, we show the existence
of minimizers to the two-phase functional whose zero set contains an open subset (of positive measure)
which stays far away from the fixed boundary of the domain. Relatedly, the free boundary of this
minimizer also contains branch or cusp points (c.f. equation (1.2)). We also show, in contrast with recent
results for critical points to equation (1.1) in [19], that the set of branch points in the free boundary of
almost-minimizers to equation (1.1) can have fractal like structure.

Alt, Caffarelli and Friedman, in [2], gave the first rigorous mathematical treatment of the two-phase
energy

𝐽Ω (𝑢) =
∫
Ω
|∇𝑢 |2𝑑𝑥 + 𝜆2

+|{𝑢 > 0} ∩Ω| + 𝜆2
−|{𝑢 < 0} ∩Ω| (1.1)

where Ω ⊂ R𝑛 is a domain with locally Lipschitz boundary, and 𝜆± > 01.
This is a two-phase analogue of the one-phase free boundary problem (also called the Bernoulli

problem) studied in [1], first introduced to model the flow of two liquids in jets and cavities but later found
to have applications to a variety of problems including eigenvalue optimization, c.f. [20, Corollary 1.3].

1[2] actually considered a related functional which also weighs the zero set, but equation (1.1) captures the essence of the more
general functional, and for almost minimizers the general case can be transformed to equation (1.1) through a standard change of
notation.
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We say that u is a minimizer of J in Ω if 𝐽𝐷 (𝑢) ≤ 𝐽𝐷 (𝑣) for all open D with 𝐷 ⊂ Ω and all
𝑣 ∈ 𝑊1,2(Ω) with 𝑢 = 𝑣 in Ω\𝐷. Alternatively, given some subset 𝑆 ⊂ 𝜕Ω and continuous data
𝜑 ∈ 𝐶 (𝑆) we say that u minimizes 𝐽Ω for the data 𝜑 if 𝑢 = 𝜑 on S and for any 𝑣 ∈ 𝑊1,2 (Ω) with 𝑣 = 𝜑
on S we have 𝐽Ω (𝑢) ≤ 𝐽Ω(𝑣). If the data, 𝜑, is not important, we simply say that u is a minimizer of 𝐽Ω.
We note that if u minimizes 𝐽Ω for some data 𝜑, then u is a local minimizer of J in Ω.

Given a minimizer, u, of particular interest are the free boundaries, Γ±(𝑢) = 𝜕{±𝑢 > 0}. When
Γ+ ∩ Γ− = ∅, each of Γ± is the free boundary of a minimizer to an associated one-phase problem and
thus have well understood regularity (c.f. [1]). On the other hand, when Γ+ = Γ−, the free boundary
regularity is also well understood, first when 𝑛 = 2 in [2] and later by Caffarelli ([4, 6, 5]; see also
the book [3]) and De Silva-Ferrari-Salsa (see, e.g., [21, 22] and the recent survey article [23]). Until
recently, the only missing piece of the picture was the behavior of Γ± in neighborhoods where the two
sets are not disjoint but also not identical. To be more precise, define the points in the intersection of
Γ± as two-phase points; ΓTP(𝑢) := Γ+ ∩ Γ−. Points which are in one of Γ± but not both are one-phase
points; ΓOP (𝑢) := Γ+ ∪ Γ− \ (Γ+ ∩ Γ−). It was a long open question how the free boundary behaved
around branch points, that is, points around which the free boundary contains both one-phase points
and two-phase points at every scale;

ΓBP(𝑢) := ΓTP(𝑢) ∩ ΓOP (𝑢). (1.2)

This open question was finally resolved in the recent work of De Philippis, Spolaor and Velichkov
[20] (see also [28] when 𝑛 = 2):

Theorem 1.1. (Main Theorem in [20]). Let u be a minimizer to the energy in equation (1.1) in Ω with
𝜆± > 0. Then for every 𝑥0 ∈ Γ+ ∩ Γ− ∩ Ω there exists an 𝑟0 > 0 such that both Γ+ ∩ 𝐵(𝑥0, 𝑟0) and
Γ− ∩ 𝐵(𝑥0, 𝑟0) are 𝐶1,1/2-graphs.

We note that Theorem 1.1 is most interesting around branch points, that is, 𝑥0 ∈ ΓBP(𝑢) ∩ Ω.
However, left open in [20] is whether branch points actually exist in the strict interior of a domain or,
more precisely, does there exist a minimizer u in Ω such that ΓBP(𝑢) ∩ Ω ≠ ∅. Here, we resolve that
open question when 𝜆+ = 𝜆− = 1.

Theorem 1.2. (Main Theorem). There exists a domainΩ ⊂ R2 and a minimizer u to 𝐽Ω with 𝜆+ = 𝜆− = 1
such that ΓBP (𝑢) ∩ Ω ≠ ∅. Even stronger, there exists a ‘pool’ of zeroes: a (nonempty) connected
component O of {𝑢 = 0} such that O ⊂⊂ Ω and 𝜕O ∩ Γ± ≠ ∅.

Remark 1.3. After this preprint was posted on arXiv, the authors were informed by H. Shahgholian
of another method that could be used to produce branch points ‘topologically’. We thank him for his
interest and for explaining this to us. Take a square with zero boundary values on the top and bottom
and boundary values +𝑎 on the left side and −𝑎 on the right side. Let u minimize J (with 𝜆+ = 𝜆−)
inside of the square, Q, with these boundary values. If |𝑎 | is large enough, then it is not hard to show
that ΓTP(𝑢) ≠ ∅. If ΓTP(𝑢) ∩ 𝜕𝑄 = ∅, then there must be a branch point.

On the other hand, if ΓTP(𝑢) touches the fixed boundary, then it should do so nontangentially and in
the interior of the top or bottom edge. This would contradict a version of the main theorem in [26], for
𝜆+ = 𝜆− (the theorem in [26] assumes that 𝜆+ ≠ 𝜆−).

It would be interesting to formalize this construction, especially as it may be able to produce branch
points which cannot be perturbed away under small deformations of the boundary values or functional.
On the other hand, this construction cannot be easily modified to produce ‘pools’ of zeroes. In particular,
the branch points in this example are somehow ‘forced’ by the topology of the boundary data (i.e., the
presence of a relatively open set of zeros), in contrast to the construction in our Theorem 1.2.

Our tools are reminiscent of our previous studies on almost-minimizers with free boundary, c.f.
[10, 13, 12]. In particular, we carefully choose competitor functions and use ideas from harmonic
analysis and geometric measure theory. We further remark that our construction can be extended to
produce examples in dimensions 𝑛 ≥ 3; see Remark 4.5.
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1.1. Comparison with other work on branch points

While we believe the question of whether branch points (or pools) in the free boundary of minimizers
of equation (1.1) exist has been open until now, there has been substantial work on branch points for
other related functionals and for ‘critical points’ of the functional (1.1).

In particular, branch points in the free boundaries of minimizers to a related vectorial problem
were constructed by Spolaor and Velichkov in [28]. Additionally, a related phenomena, when the free
boundary of minimizers to a one-phase version of equation (1.1) comes into contact with the fixed
boundary (i.e., 𝜕Ω) resulting in branching like behavior, is well studied (e.g., [8, 19]).

The only other work we are aware of regarding branch points in the free boundary of functions
associated to the energy (1.1), is the recent preprint [19]. In this very nice work, the authors (amongst
other things) construct an infinite family of critical points to the functional (1.1) when 𝑛 = 2 using
(quasi-)conformal mappings (see [19, Theorem 1.8]).2 Without being precise, we recall that critical
points to equation (1.1) satisfy the associated Euler–Lagrange equations but do not necessarily (locally)
minimize the functional in any domain (e.g., 𝑢(𝑥) = |𝑥 | is a critical point of 𝐽Ω with 𝜆+ = 1 but not a
(local) minimizer).
Remark 1.4. To be explicit, we note that (none of) the results of [19] either imply or are implied by
our results here. In particular, our main theorem does not analyze the rate at which Γ+ and Γ− come
together at the cusp points and thus does not produce examples with different rates. On the other hand,
it is not clear whether the examples produced in [19] are minimizers.

Furthermore, the methods of proof are very different, in so far as [19] draws an interesting connec-
tion with minimizers of a nonlinear obstacle type problem and uses (quasi-)conformal maps in their
construction. We construct the relevant boundary values and domains explicitly but do not have a closed
formula for our minimizer. Rather, we use tools from harmonic analysis and geometric measure theory
to constrain the behavior of the minimizer. In particular, our methods extend to producing examples in
dimension 𝑛 > 2; see Remark 4.5, which presumably are out of reach of (quasi-)conformal methods.

We are not aware of any prior work on ‘pools’ in the zero set of minimizers to equation (1.1). We will
limit ourselves to pointing out that it is easy to construct examples of minimizers whose zero set has
nonempty interior but that some care is required to constrain this open component to the strict interior
of the domain.

1.2. Accumulation of branch points

Also of interest in [19] is the fact that for certain, symmetric (in a precise sense), critical points of
equation (1.1) in two dimensions, the branch points in the free boundary are locally isolated in (c.f. [19,
Theorem 1.6(a)]). In fact, in analogy with area-minimizing surfaces (see, e.g., [7, 16, 17, 18, 15]) one
might conjecture the following:
Conjecture 1.5. Let u be a minimizer to equation (1.1) in some Ω ⊂ R𝑛. Then, for any 𝐷 ⊂⊂ Ω the set
𝐷 ∩ ΓBP(𝑢) is locally contained in finitely many Lipschitz (𝑛 − 2)-dimensional submanifolds.

In the second part of this paper, we show that such a theorem fails for almost-minimizers of equation
(1.1). Recall that almost-minimizers minimize the energy (1.1) up to some noise.
Definition 1.6. We say that u is an almost-minimizer to equation (1.1) in Ω ⊂ R𝑛 if there is a 𝐶 > 0 and
an 𝛼 ∈ (0, 1] such that for every ball, B, with radius, 𝑟 (𝐵) > 0, and 𝐵 ⊂ Ω and for every 𝑣 ∈ 𝑊1,2 (Ω)
with 𝑣 = 𝑢 in Ω \ 𝐵 we have

𝐽𝐵 (𝑢) ≤ 𝐽𝐵 (𝑣) + 𝐶𝑟 (𝐵)𝑛+𝛼 .

Almost-minimizers arise naturally in constrained optimization (and thus in eigenvalue-optimization
problems; see, e.g., [27]). Almost-minimizers may not satisfy a Euler–Lagrange equation, but the work

2It was brought to our attention that these examples are also ‘locally minimizing’: a function u is locally minimizing if for
every 𝑥 ∈ R𝑛 there exists an 𝑟𝑥 > 0 such that u minimizes J in 𝐵 (𝑥, 𝑟𝑥 ) with respect to the boundary values 𝑢 |𝜕𝐵 (𝑥,𝑟𝑥 ) .
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of the authors in [10, 13, 12] show that the ‘first-order’ regularity of almost-minimizers mimics that of
minimizers; in particular, almost-minimizers are regular, Lipschitz continuous, non-degenerate, 𝐶1,𝛽

up to their free boundary and, in the one-phase case, have free boundaries which are smooth up to a set
of H𝑛−1-measure zero.

However, in contrast to [19, Theorem 1.6(a)] and Conjecture 1.5, in this paper, we prove that the set
of branch points for almost-minimizers can be essentially arbitrary.

Theorem 1.7. (Corollary to Theorem 5.1). Let 𝐸 ⊂ R𝑛−1 be a compact set with no interior point. Embed
E into R𝑛 so that 𝐸 ⊂ {(𝑥 ′, 0) | 𝑥 ′ ∈ R𝑛−1} and let 𝑅 > 0 be so large that 𝐸 ⊂ 𝐵(0, 𝑅/10). Then there
exists an almost-minimizer, u, to 𝐽𝐵 (0,𝑅) with 𝜆+ = 𝜆− = 1 such that ΓBP(𝑢) = 𝐸 . Furthermore, we can
take u to be such that Γ+ is the reflection of Γ− across the hyper-plane {𝑥𝑛 = 0} (so that this solution is
‘symmetric’ in the sense of [19]).

For those familiar with almost-area minimizers, this theorem may seem trivial; indeed any graph
of a 𝐶1,𝛼 function is almost-area minimizing. However, it is not the case that if 𝜕{𝑢 ≠ 0} is locally
given by a (union of) smooth graphs and u is smooth, except for jumps along 𝜕{𝑢 ≠ 0}, then u is an
almost-minimizer to the energy in equation (1.1). Indeed, almost-minimizers must satisfy additional
nondegeneracy and boundedness conditions in addition to a condition on their normal derivative at
𝜕{𝑢 ≠ 0} (c.f. Lemma 5.3 below).

The essence of Theorem 1.7 is that we are able to construct almost-minimizers to equation (1.1)
whose free boundaries are given by the graphs of any two smooth functions 𝑓 − ≤ 𝑓 + over R𝑛−1 ⊂ R𝑛.
These almost-minimizers are given by a regularized distance (see equation (5.9) below) developed by
the first author, with Feneuil and Mayboroda, to characterize the geometry of sets of high codimension
using degenerate PDE (see, e.g., [14]). This connection is surprising, but essentially is due to the fact that
regularized distances satisfy the same growth conditions as almost-minimizers and, due to the results
of [11], one can prescribe their normal derivatives along the set on which they vanish.

2. Slice minimizers and uniform Lipschitz continuity

Let 𝐼𝑁 := [−3𝑁, 3𝑁], with N very large, and consider 𝑅𝑁 := 𝐼𝑁 ×[−1, 1] ⊂ R2. To define our boundary
conditions on 𝐼𝑁 × {1} and 𝐼𝑁 × {−1}, we fix some 𝛼 ∈ (0, 1) small but universal (𝛼 = 1/10 will do)
and define

𝑓𝑁 (𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − 𝛼, if |𝑥 | ≤ 𝑁
|𝑥 | (1+𝛼)

𝑁 − 2𝛼 if 𝑁 ≤ |𝑥 | ≤ 2𝑁
2 if 2𝑁 ≤ |𝑥 | ≤ 3𝑁

(see Figure 1).

𝑁 (1+2𝛼)𝑁
1+𝛼

−(1+2𝛼)𝑁
1+𝛼 −𝑁 2𝑁−2𝑁 3𝑁−3𝑁 𝑥

𝑓𝑁 (𝑥)

1 − 𝛼

1

2

Figure 1. Graph of 𝑓𝑁 .
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We then let

𝑢𝑁 = argmin{𝐽 (𝑢, 𝑅𝑁 ) | 𝑢𝑁 (𝑥,±1) = ± 𝑓𝑁 (𝑥), 𝑥 ∈ 𝐼𝑁 }, (2.1)

that is, a minimizer to the Alt–Caffarelli–Friedman function with boundary values ± 𝑓𝑁 (𝑥). We should
note that we are abusing the argmin notation slightly, as this minimizer is not necessarily unique, but we
can pick any minimizer for the analysis below. We should also note that we are not prescribing Dirichlet
data on the ‘vertical’ parts of the boundary. However, an existence and regularity theory for minimizers
given ‘partial Dirichlet data’ exists (see, e.g., [2]) or we could prescribe data on {±3𝑁} × [−1, 1] that
simply linearly interpolates between 𝑓𝑁 (±3𝑁) and − 𝑓𝑁 (±3𝑁).

When the precise value of N is not important we will suppress it from the notation.
In order to study 𝑢𝑁 we will introduce the ‘slice minimizer’, 𝑣𝑁 , defined as follows: For each 𝑥 ∈ 𝐼,

𝑣𝑁 (𝑥,−) is the unique3 minimizer of the one-dimensional functional

𝐻𝑥 (𝑤) :=
∫ 1

−1
(𝑤′(𝑦))2𝑑𝑦 + |{𝑤 ≠ 0} ∩ [−1, 1] | (2.2)

under the constraint 𝑣𝑁 (𝑥,±1) = ± 𝑓𝑁 (𝑥).
Notice first that, for 𝑥 ∈ 𝐼, the set {𝑣𝑁 (𝑥,−) = 0} is an interval. Indeed, if 𝑦1 and 𝑦2 are the first/last

points where 𝑣𝑁 vanishes, replacing v by 0 on the interval [𝑦1, 𝑦2] yields an admissible candidate w
with

∫ 1
−1 (𝑤

′(𝑦))2𝑑𝑦 ≤
∫ 1
−1 (𝑣

′)2𝑑𝑦 and |{𝑤 ≠ 0}| ≤ |{𝑣 ≠ 0}|, with strict inequality, unless 𝑣𝑁 ≡ 0 on
[𝑦1, 𝑦2]. Moreover, 𝑣𝑁 is harmonic in the open set {𝑣𝑁 ≠ 0} ∩ (−1, 1), that is, 𝑣𝑁 is locally affine. A
straightforward calculation, which we defer to the appendix (c.f. Sections 6.1.1 and 6.1.2), allows us to
explicitly calculate the slice minimizer and its energy for each 𝑥 ∈ [−3𝑁, 3𝑁].

Lemma 2.1. Let 𝑣(𝑦) = 𝑣𝑁 (𝑥, 𝑦) be the minimizer of 𝐻𝑥

with 𝑣(𝑥,±1) = ± 𝑓𝑁 (𝑥).

Case 1. When 𝑓𝑁 (𝑥) ≥ 1, 𝑣(𝑦) = 𝑦 𝑓𝑁 (𝑥), for 𝑦 ∈ [−1, 1] .
Notice that in this case, 𝐻𝑥 (𝑣) = 2 𝑓𝑁 (𝑥)2 + 2.

Case 2. When 𝑓𝑁 (𝑥) < 1, 𝑣(𝑦) = sgn(𝑦) (|𝑦 | − 1 + 𝑓𝑁 (𝑥))+.
In this case, 𝐻𝑥 (𝑣) = 4 𝑓𝑁 (𝑥).

−1 1

1

−1

𝑓𝑁 (𝑥)

− 𝑓𝑁 (𝑥)

𝑦

𝑣𝑁 (𝑦)

−1 1

1

−1

𝑓𝑁 (𝑥)

− 𝑓𝑁 (𝑥)

𝑦

𝑣𝑁 (𝑦)

A crucial observation is that even though we built 𝑣𝑁 ‘slice by slice’, its x-derivative still has small
𝐿2-norm.

3Our computations in the appendix show that this minimizer is unique.
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Lemma 2.2. We have ∬
𝑅𝑁

				𝜕𝑣𝑁𝜕𝑥

				2 ≤
16
𝑁

. (2.3)

Proof. Notice that 𝑣𝑁 (𝑥, 𝑦) is not harmonic in {𝑣 ≠ 0}, hence 𝑣𝑁 is not a minimizer of 𝐽 (−, 𝑅𝑁 ).
However, 𝜕𝑣𝑁

𝜕𝑥 exists a.e. in (−3𝑁, 3𝑁) × (−1, 1) (see Lemma 2.1), and, where it exists,
			 𝜕𝑣𝑁𝜕𝑥 			 ≤

| 𝑓 ′𝑁 (𝑥) | ≤ 1+𝛼
𝑁 ≤ 2

𝑁 .

Since 𝑓 (𝑥) ≡ 1 − 𝛼 for |𝑥 | < 𝑁 and 𝑓 (𝑥) ≡ 2 for 2𝑁 < |𝑥 | < 3𝑁 ,
			 𝜕𝑣𝑁𝜕𝑥 			 = 0 on (−𝑁, 𝑁) × (−1, 1),

on (2𝑁, 3𝑁) × (−1, 1) and on (−3𝑁,−2𝑁) × (−1, 1). Consequently,∬
𝑅𝑁

				𝜕𝑣𝑁𝜕𝑥

				2 =
∫ −𝑁

−2𝑁

∫ 1

−1

				𝜕𝑣𝑁𝜕𝑥

				2 + ∫ 2𝑁

𝑁

∫ 1

−1

				𝜕𝑣𝑁𝜕𝑥

				2 ≤

(
2
𝑁

)2
(2𝑁) ≤

16
𝑁

.
�

Using the fact that 𝑣𝑁 has smaller energy than 𝑢𝑁 ‘slice by slice’, but larger energy overall, we can
transfer equation (2.3) to 𝑢𝑁:

Lemma 2.3. Any 𝑢𝑁 which minimizes J in 𝑅𝑁 with 𝑢𝑁 (𝑥,±1) = ± 𝑓𝑁 (𝑥), satisfies∬
𝑅𝑁

				𝜕𝑢𝑁𝜕𝑥

				2 ≤
16
𝑁

. (2.4)

Proof. Since 𝑢𝑁 is a minimizer of J,∬
𝑅𝑁

|∇𝑢𝑁 |2 + |{𝑢𝑁 ≠ 0}| ≤
∬

𝑅𝑁

|∇𝑣𝑁 |2 + |{𝑣𝑁 ≠ 0}|. (2.5)

Moreover, for every 𝑥 ∈ [−3𝑁, 3𝑁] fixed, 𝑣𝑁 (𝑥, ·) is a minimizer of 𝐻𝑥 , hence∫ 1

−1

				𝜕𝑣𝑁𝜕𝑦

				2𝑑𝑦 + |{𝑣𝑁 (𝑥, ·) ≠ 0}| ≤
∫ 1

−1

				𝜕𝑢𝑁𝜕𝑦

				2𝑑𝑦 + |{𝑢𝑁 (𝑥, ·) ≠ 0}|.

Integrating the last inequality on [−3𝑁, 3𝑁] leads to∬
𝑅𝑁

				𝜕𝑣𝑁𝜕𝑦

				2 + |{𝑣𝑁 ≠ 0}| ≤
∬

𝑅𝑁

				𝜕𝑢𝑁𝜕𝑦

				2 + |{𝑢𝑁 ≠ 0}|. (2.6)

Combining equations (2.5) and (2.6), we conclude∬
𝑅𝑁

				𝜕𝑢𝑁𝜕𝑥

				2 ≤

∬
𝑅

				𝜕𝑣𝑁𝜕𝑥

				2. �

Our next goal is to prove a uniform Lipschitz bound on 𝑢𝑁 . To do so, we will compare it with 𝑣𝑁 .
Since the latter minimizes the energy on each slice, it will be convenient to integrate this ‘slice-by-slice’
energy across all values of x.

Definition 2.4. Define the ‘total sliced energies’ of a function w by

𝑆(𝑤) =
∫ 3𝑁

−3𝑁

∫ 1

−1

				𝜕𝑤𝜕𝑦
				2𝑑𝑦𝑑𝑥 + |{𝑤 ≠ 0}| =

∫ 3𝑁

−3𝑁
𝐻𝑥 (𝑤(𝑥, ·))𝑑𝑥, (2.7)
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and with 𝑄 = [𝑎, 𝑏] × [−1, 1] ⊂ 𝑅𝑁 ,

𝑆𝑄 (𝑤) =
∬

𝑄

				𝜕𝑤𝜕𝑦
				2𝑑𝑦𝑑𝑥 + |{𝑤 ≠ 0} ∩𝑄 | =

∫ 𝑏

𝑎
𝐻𝑥 (𝑤(𝑥, ·))𝑑𝑥. (2.8)

The following lemma encapsulates the fact that 𝑢𝑁 is a minimizer and 𝑣𝑁 is a slice minimizer,
written in the language of total slice energy.

Lemma 2.5. We have

𝑆(𝑣𝑁 ) ≤ 𝑆(𝑢𝑁 ) ≤ 𝐽 (𝑢𝑁 ) ≤ 𝑆(𝑣𝑁 ) +
16
𝑁

. (2.9)

Proof. Let 𝑤 ∈ 𝑊1,2 (𝑅𝑁 ). Notice that

𝑆(𝑤) =
∬

𝑅𝑁

				𝜕𝑤𝜕𝑦
				2 + |{𝑤 ≠ 0}| ≤ 𝐽 (𝑤), 𝑆(𝑤) +

∬
𝑅𝑁

				𝜕𝑤𝜕𝑥
				2 = 𝐽 (𝑤). (2.10)

Using equation (2.10) and the fact that 𝐻𝑥 (𝑣𝑁 (𝑥, ·)) ≤ 𝐻𝑥 (𝑢𝑁 (𝑥, ·)) a.e., we obtain

𝑆(𝑣𝑁 ) ≤ 𝑆(𝑢𝑁 ) ≤ 𝐽 (𝑢𝑁 ).

Combining this with the equality in equation (2.10) and with equation (2.3), we conclude that if 𝑢𝑁 is
a minimizer of J, then

𝑆(𝑣𝑁 ) ≤ 𝑆(𝑢𝑁 ) ≤ 𝐽 (𝑢𝑁 ) ≤ 𝐽 (𝑣𝑁 ) = 𝑆(𝑣𝑁 ) +

∬
𝑅𝑁

				𝜕𝑣𝑁𝜕𝑥

				2 ≤ 𝑆(𝑣𝑁 ) +
16
𝑁

. �

We can also localize these estimates to 𝑄 = [𝑎, 𝑏] × [−1, 1].

Lemma 2.6. We also have

𝑆𝑄 (𝑢𝑁 ) ≤ 𝑆𝑄 (𝑣𝑁 ) +
16
𝑁

. (2.11)

Proof. Given a subset 𝑋 ⊂ [−3𝑁, 3𝑁] × [−1, 1] and defining

𝑆𝑋 (𝑢𝑁 ) =
∬

𝑋

				𝜕𝑢𝑁𝜕𝑦

				2𝑑𝑥𝑑𝑦 + |{𝑢𝑁 ≠ 0} ∩ 𝑋 |,

we obtain 𝑆(𝑢𝑁 ) = 𝑆𝑄 (𝑢𝑁 ) + 𝑆𝑅𝑁 \𝑄 (𝑢𝑁 ). If we had 𝑆𝑄 (𝑢𝑁 ) > 𝑆𝑄 (𝑣𝑁 ) +
16
𝑁 , then

𝑆(𝑢𝑁 ) > 𝑆𝑄 (𝑣𝑁 ) +
16
𝑁

+ 𝑆𝑅𝑁 \𝑄 (𝑢𝑁 ). (2.12)

Since for a.e. 𝑥 ∈ [−3𝑁, 3𝑁] we have 𝐻𝑥 (𝑣𝑁 (𝑥, ·)) ≤ 𝐻𝑥 (𝑢𝑁 (𝑥, ·)), integrating this inequality we
obtain 𝑆𝑅𝑁 \𝑄 (𝑣𝑁 ) ≤ 𝑆𝑅𝑁 \𝑄 (𝑢𝑁 ). Together with equation (2.12), this gives

𝑆(𝑢𝑁 ) > 𝑆𝑄 (𝑣𝑁 ) +
16
𝑁

+ 𝑆𝑅𝑁 \𝑄 (𝑣𝑁 ) = 𝑆(𝑣𝑁 ) +
16
𝑁

,

contradicting equation (2.9). �

With these estimates, we are almost ready to prove the (uniform) Lipschitz continuity of the 𝑢𝑁
on compact subsets of 𝑅𝑁 . We introduce the following notation, by analogy with Definition 2.4, for
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𝑄 = [𝑎, 𝑏] × [−1, 1]

𝐽𝑄 (𝑤) :=
∬

𝑄
|∇𝑤 |2 𝑑𝐴 + |𝑄 ∩ {𝑤 ≠ 0}|. (2.13)

Our first result is an immediate corollary of Lemma 2.6 and equation (2.4).

Corollary 2.7. There exists a constant 𝐶0 > 0 such that for any 𝑁 > 0 and any 𝑄 = [𝑎, 𝑏] × [−1, 1] ⊂
𝑅𝑁 we have

𝐽𝑄 (𝑢𝑁 ) ≤ 𝐶0 |𝑏 − 𝑎 | +
32
𝑁

.

Proof. From Lemma 2.6, we have that 𝑆𝑄 (𝑢𝑁 ) ≤ 𝑆𝑄 (𝑣𝑁 ) +
16
𝑁 and from equation (2.4) we have∬

𝑄
|𝜕𝑥𝑢𝑁 |2 𝑑𝐴 ≤ 16

𝑁 . Putting this together, we get that

𝐽𝑄 (𝑢𝑁 ) ≤ 𝑆𝑄 (𝑣𝑁 ) +
32
𝑁

.

Thus, it suffices to show that 𝑆𝑄 (𝑣𝑁 ) grows proportionally to |𝑏−𝑎 | with a constant of proportionality
independent of 𝑎, 𝑏, 𝑁 . Indeed, by Lemma 2.1 𝐻𝑥 (𝑣𝑁 ) ≤ max{2 𝑓𝑁 (𝑥)2 +2, 4 𝑓𝑁 (𝑥)} ≤ 10. Integrating
that across [𝑎, 𝑏] gives the desired result. �

From here, we can conclude the main result of this section, the uniform Lipschitz continuity.

Theorem 2.8. For 0 < 𝛿 < 1, we can find constants 𝐿 ≥ 1 and 𝑁0 > 0 such that

‖𝑢𝑁 ‖Lip(Ω𝑁 ) ≤ 𝐿

for 𝑁 ≥ 𝑁0, where Ω𝑁 = (−3𝑁 + 𝛿, 3𝑁 − 𝛿) × (−1 + 𝛿, 1 − 𝛿).

Proof. As 𝑢𝑁 is a minimizer, we can apply [10, Theorem 8.1] (c.f. the discussion at the bottom of page
504 in [10]) which gives a Lipschitz bounds on almost-minimizers depending only on the distance from
the boundary and the 𝐿2-norm of the gradient (see also [13, Remark 2.2]). Corollary 2.7 gives uniform
bounds on the 𝐿2-norm of the gradient of 𝑢𝑁 inside of any rectangle and a covering argument finishes
the proof. �

3. Existence of a zero set

The goals of this section are two fold. First to prove that |{𝑢𝑁 = 0}| > 0 (which will follow from
Lemma 3.5) and second to show that the set {𝑢𝑁 = 0} does not get too close to the boundary of 𝑅𝑁

(Lemma 3.4 and Corollary 3.7).
Let us first describe the zero set of 𝑣𝑁 , the ‘slice minimizer’.

Lemma 3.1. The following holds regarding the set {𝑣𝑁 (𝑥, 𝑦) = 0}:

◦ When |𝑥 | ≥ (1+2𝛼)𝑁
1+𝛼 , 𝑣𝑁 (𝑥, 𝑦) = 0 only when 𝑦 = 0.

◦ When |𝑥 | ≤ 𝑁 , 𝑣𝑁 (𝑥, 𝑦) = 0 for |𝑦 | ≤ 𝛼.
◦ When 𝑁 < |𝑥 | < (1+2𝛼)𝑁

1+𝛼 , 𝑣𝑁 (𝑥, 𝑦) = 0 when |𝑦 | ≤ 2𝛼 + 1 −
|𝑥 | (1+𝛼)

𝑁 .

Proof. The result follows from the following simple observations:

◦ When |𝑥 | ≥ (1+2𝛼)𝑁
1+𝛼 , 𝑓𝑁 (𝑥) ≥ 1. In this case 𝑣𝑁 (𝑥, 𝑦) = 𝑦 𝑓𝑁 (𝑥).

◦ When |𝑥 | ≤ 𝑁 , 𝑓𝑁 (𝑥) ≡ 1 − 𝛼, and 𝑣𝑁 (𝑥, 𝑦) = sgn(𝑦) (|𝑦 | − 𝛼)+.
◦ In the remaining interval, 𝑓𝑁 (𝑥) = |𝑥 | (1+𝛼)

𝑁 − 2𝛼 and 𝑣𝑁 (𝑥, 𝑦) = sgn(𝑦) (|𝑦 | − 1 +
|𝑥 | (1+𝛼)

𝑁 − 2𝛼)+.

�
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We expect a minimizer 𝑢𝑁 of J, taken among all functions 𝑤 ∈ 𝑊1,2(𝑅𝑁 ) with 𝑤(𝑥,±1) = ± 𝑓𝑁 (𝑥),4
to look similar to 𝑣𝑁 . In particular, we want to extract information about its zero set and prove that
{𝑢𝑁 = 0} has a ‘pool’ close to 0.

Before we can prove this closeness, we need to observe that our minimizer is nice on ‘most’ of the
vertical slices.
Definition 3.2. Let 𝑋0 ⊂ 𝐼 be the smallest set such that 𝑥 ∉ 𝑋0 implies that 𝑢𝑁 (𝑥, ·) ∈ 𝑊1,2 ([−1, 1])
and lim

𝑦→±1
𝑢𝑁 (𝑥, 𝑦) = ± 𝑓𝑁 (𝑥).

Since 𝑢𝑁 ∈ 𝑊1,2 (𝑅𝑁 ), we note that 𝑋0 has measure zero.
We now show that the zero set of 𝑢𝑁 does not get too close to the ‘top’ or ‘bottom’ of the rectangle.

We start by showing that if 𝑢𝑁 is small close to the top or bottom of the rectangle, then that slice has
large energy.
Lemma 3.3. Let 𝜀 ∈ (0, 1), 𝛿 ∈ (0, 1/2) and assume that |𝑢𝑁 (𝑥, 𝑦) | < 𝛿 for some 𝑥 ∈ [−3𝑁, 3𝑁]\𝑋0

and some y with 1 − |𝑦 | < 𝜀. Then 𝐻𝑥 (𝑢𝑁 (𝑥,−)) ≥ ( 𝑓𝑁 (𝑥)−𝛿)2

𝜀 .
In particular, if 𝑥 ∈ 𝐼 \ 𝑋0 and there exists y such that 1 − |𝑦 | < 1

44 and |𝑢𝑁 (𝑥, 𝑦) | < 1
4 , then

𝐻𝑥 (𝑢𝑁 (𝑥,−)) ≥ 𝐻𝑥 (𝑣𝑁 (𝑥,−)) + 1.
Proof. Without loss of generality, assume 𝑢𝑁 (𝑥,−) is both equal to 𝑓𝑁 (𝑥) and 𝛿 on an interval of
length 𝜀. The lowest energy way to do this is assuming these values are achieved at the endpoints of the
interval and that 𝑢𝑁 interpolates between them linearly. Thus, 𝐻𝑥 (𝑢𝑁 (𝑥,−)) ≥ ( 𝑓𝑁 (𝑥)−𝛿)2

𝜀 . The second
result follows from the first once we remember that 𝑓𝑁 (𝑥) ≥ 3

4 for all x, and 𝐻𝑥 (𝑣𝑁 (𝑥,−)) ≤ 10 for
all x. �

We are now ready to show the existence of a strip near the top and bottom of R, on which u cannot
vanish. We actually show something stronger which is that u is quantitatively large in this strip.
Lemma 3.4. Let 𝛿 > 0 and set

𝑅± =

{
(𝑥, 𝑟) ∈ 𝑅𝑁 ; 0 ≤ |𝑥 | ≤ 3𝑁 − 𝛿 and ± 𝑦 ∈

[
1 −

1
44

, 1 −
1

88

]}
(3.1)

(the two blue zones in the picture). Then there exists an 𝑁0 = 𝑁0 (𝛿) > 1 such that if 𝑁 > 𝑁0 then
𝑢𝑁 (𝑥, 𝑦) ≥ 1/8 on 𝑅+ and 𝑢𝑁 (𝑥, 𝑦) ≤ −1/8 on 𝑅−. (3.2)

4Recall we do not need to specify the data on the ‘vertical’ components of the boundary
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Proof. Fix 𝛿 > 0. Recall from Theorem 2.8 that there exists 𝐿 > 0 (independent of N but dependent on
𝛿 > 0) such that if

Ω = [−3𝑁 + 𝛿, 3𝑁 − 𝛿] ×

[
−1 +

1
100

, 1 −
1

100

]
,

then ‖𝑢𝑁 ‖Lip(Ω) ≤ 𝐿.
We first check that |𝑢𝑁 (𝑥0, 𝑦0) | ≥

1
8 on 𝑅±. Note that, if |𝑢𝑁 (𝑥0, 𝑦0) | < 1

8 for some (𝑥0, 𝑦0) ∈

[−3𝑁 + 𝛿, 3𝑁 − 𝛿] × ([−1 + 1
88 ,−1 + 1

44 ] ∪ [1 − 1
44 , 1 − 1

88 ]), then by Lipschitz continuity there exists
an interval 𝐼 ⊂ [−3𝑁 + 𝛿, 3𝑁 − 𝛿] of length 1

8𝐿 such that |𝑢(𝑥, 𝑦0) | <
1
4 for all 𝑥 ∈ 𝐼.

We apply Lemma 3.3 to conclude that for almost every 𝑥 ∈ 𝐼 we have 𝐻𝑥 (𝑢𝑁 (𝑥,−)) ≥

𝐻𝑥 (𝑣𝑁 (𝑥,−)) + 1. If 𝑄 = 𝐼 × [−1, 1], then this implies that 𝑆𝑄 (𝑢𝑁 ) ≥ 𝑆𝑄 (𝑣𝑁 ) + |𝐼 | = 𝑆𝑄 (𝑣𝑁 ) +
1

8𝐿 .

Of course, this contradicts equation (2.11) as long as 16
𝑁 < 1

8𝐿 ⇔ 128𝐿 < 𝑁 .
Now, we check that u has the right sign on 𝑅±. Suppose for instance that 𝑢(𝑥, 𝑦) ≤ −1/8 somewhere

on 𝑅+. Since u is continuous, 𝑢(𝑥, 𝑦) ≤ −1/8 everywhere on 𝑅+. Then for all 𝑥 ∈ [−3𝑁 + 𝛿, 3𝑁 − 𝛿]\𝑋0,
𝑢(𝑥,−) is a Sobolev function that goes from −1/8 to at least 1/4 in an interval of length at most 1/88, a
direct computation shows that 𝐻𝑥 (𝑢𝑁 (𝑥,−)) ≥ 3

8 ×88 ≥ 33, and we reach a contradiction as above. �

Now, we show that {𝑢𝑁 = 0} must be contained in a strip around {𝑦 = 0} when |𝑥 | < 𝑁 . Actually,
we prove something more precise.

Lemma 3.5. There exists an 𝑁 > 1 large enough such that if |𝑥 | < 𝑁 − 1, and 𝑢𝑁 (𝑥, 𝑦) > 0, then
𝑦 > 𝛼/8. Similarly, if 𝑢𝑁 (𝑥, 𝑦) < 0 then 𝑦 < −𝛼/8.

Proof. Assuming by contradiction this were not the case, without loss of generality there would exist a
point in (𝑥0, 𝑦0) with |𝑥0 | < 𝑁 − 1, 𝑦0 ≤ 𝛼/8 and 𝑢𝑁 (𝑥0, 𝑦0) > 0.

By continuity of 𝑢𝑁 , the connected component of {𝑢𝑁 > 0} containing (𝑥0, 𝑦0) must be separated
from {𝑦 = −1} by {𝑢𝑁 = 0}. This implies that there is a connected subset of {(𝑥, 𝑦) | |𝑥 | ≤ 𝑁,
𝑢𝑁 (𝑥, 𝑦) = 0} which touches the sets {𝑥 = 𝑁} and {𝑥 = −𝑁} and which separates (𝑥0, 𝑦0) from
{𝑦 = −1}. By Lemma 3.4, this connected component cannot intersect the set {(𝑥, 𝑦) | |𝑥 | < 𝑁,−1 +

1/44 > 𝑦 > −1 + 1/88}. If 𝑦0 < −1 + 1/44, then this connected component lies below 𝑦 = −1 + 1/88
and the length of its projection onto the x-axis is at least 2𝑁 . Such a configuration has too much energy
by Lemma 3.3, and thus we can assume 𝑦0 > −1 + 1/44.

We can also assume that 𝑥0 ∉ 𝑋0 (since {𝑢𝑁 > 0} is open), so by continuity of 𝑢𝑁 on the slice
{𝑥 = 𝑥0} and Lemma 3.4 there exists a point (𝑥0, 𝑦̃) with −1 + 1/44 < 𝑦̃ < 𝑦0 and 𝑢𝑁 (𝑥0, 𝑦̃) = 0 and
(𝑥0, 𝑦̃) ∈ 𝜕{𝑢𝑁 > 0}.

We note that {𝑢𝑁 > 0} ∩ ([−𝑁, 𝑁] × [−1 + 1/88, 1− 1/88]) is a locally non-tangentially accessible
(NTA) domain, uniformly in N (i.e., for any 𝐾 ⊂⊂ ([−𝑁, 𝑁] × [−1 + 1/88, 1 − 1/88]), {𝑢𝑁 > 0}
satisfies the corkscrew conditions at 𝑄 ∈ 𝜕{𝑢𝑁 > 0} ∩ 𝐾 with constants and at scales that depend only
on K not N c.f. [13, Theorem 2.3])). In particular, there exists a point (𝑥1, 𝑦1) ∈ {𝑢𝑁 > 0} such that
‖(𝑥1, 𝑦1) − (𝑥0, 𝑦̃)‖ ≤ 𝑟0 = 𝑟0(𝐾) ≤ 𝛼/8 and dist((𝑥1, 𝑦1), {𝑢𝑁 ≤ 0}) ≥ 𝑟0/𝑀 for some 𝑀 > 1 (where
both 𝑟0, 𝑀 are independent of N large).

By the nondegeneracy of 𝑢𝑁 (c.f. [1, Lemma 3.4]) and the Lipschitz continuity of 𝑢𝑁 , Theo-
rem 2.8, there exists a constant 𝐶 > 1 (again uniform for large N) such that 𝑢𝑁 ≥ 𝑟0/𝐶 in the ball
𝐵((𝑥1, 𝑦1), 𝑟0/(3𝐶𝐿)) (where L is the Lipschitz constant).

Therefore, there exists an interval 𝐼 ⊂ [−𝑁, 𝑁] of length 2𝑟0/(3𝐶𝐿) such that for each 𝑥 ∈ 𝐼 there
exists a 𝑦 < 𝛼/2 with 𝑢𝑁 (𝑥, 𝑦) > 𝑟0/𝐶. Invoking the computations of Section 6.2 (c.f. Claim 6.1),
we get that 𝐻𝑥 (𝑢𝑁 (𝑥,−)) ≥ 𝐻𝑥 (𝑣𝑁 (𝑥,−)) + 𝜂 for every 𝑥 ∈ 𝐼\𝑋0, where 𝜂 = 𝜂(𝛼,𝐶, 𝑟0) > 0 is
independent of N.

Let 𝑄 = 𝐼 × [−1, 1]; we get (from equation (2.11))

𝑆𝑄 (𝑣𝑁 ) +
16
𝑁

≥ 𝑆𝑄 (𝑢𝑁 ) ≥ 𝑆𝑄 (𝑣𝑁 ) +H1(𝐼)𝜂.
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This gives a contradiction if 𝑁 > 0 is large enough (since |𝐼 | = 2𝑟0/(3𝐶𝐿), 𝜂 > 0 are independent
of N). �

So we have a good control on where {𝑢𝑁 = 0} is in the central region. Before we end this section,
it behooves us to refine the result of Lemma 3.3, with the goal of showing that when 𝑓𝑁 (𝑥) ≥ 1, we
can actually confine {𝑢𝑁 = 0} to an arbitrarily thin strip around the line {𝑦 = 0}. This will be used in
the next section to show that there are no one-phase points on the sides of 𝑅𝑁 . We first estimate the
difference between 𝑣𝑁 (𝑥,−) and near minimizers for 𝐻𝑥 .

Lemma 3.6. Let 𝑥 ∈ (−3𝑁, 3𝑁) be such that 𝑓𝑁 (𝑥) ≥ 1, and let 𝜀 ∈ (0, 1). Let 𝑤 ∈ 𝑊1,2([−1, 1]),
with 𝑤(±1) = ± 𝑓𝑁 (𝑥), and assume 𝐻𝑥 (𝑤) ≤ 𝐻𝑥 (𝑣𝑁 (𝑥,−)) + 𝜀. Then, there exists a 𝐶 > 0 (uniform
over the choice of 𝑥, 𝜀 above) such that

| |𝑤 − 𝑣𝑁 | |𝐿∞ ( [−1,1]) ≤ 𝐶𝜀1/2.

Proof. Recall that for x as in the statement of Lemma 3.6, we have 𝑣𝑁 (𝑥, 𝑦) = 𝑦 𝑓𝑁 (𝑥). Our plan is to
first modify w, reducing energy, and show the desired inequality for w, then estimate the 𝐿∞ distance
between the original w and our modified functional. We know that 𝑤 ∈ 𝑊1,2([−1, 1]), so by Sobolev
embedding we have that w is Hölder continuous and thus

−1 < 𝛼 := inf{𝑡 | 𝑤(𝑡) = 0} ≤ sup{𝑡 | 𝑤(𝑡) = 0} =: 𝛽 < 1.

We construct

𝑤̂(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 𝑡 ∈ [𝑎, 𝑏]
𝑓𝑁 (𝑥) (𝑡−𝑎)

1+𝑎 𝑡 ∈ [−1, 𝑎]
𝑓𝑁 (𝑥) (𝑡−𝑏)

1−𝑏 𝑡 ∈ [𝑏, 1] .

We observe that 𝐻𝑥 (𝑤) ≥ 𝐻𝑥 (𝑤̂) (as we have enlarged the zero set and minimized Dirichlet energy
where w is positive).

We can compute that

𝐻𝑥 (𝑤̂) = 𝑓 2
𝑁 (𝑥)

(
1

1 − 𝑏
+

1
𝑎 + 1

)
+ 2 − (𝑏 − 𝑎).

Recall that 𝐻𝑥 (𝑣𝑁 (𝑥,−)) = 2 𝑓 2
𝑁 (𝑥) + 2 and rewrite

𝐻𝑥 (𝑤̂) − 𝐻𝑥 (𝑣𝑁 (𝑥,−)) = 𝑓 2
𝑁 (𝑥)

(
1

1 − 𝑏
+

1
𝑎 + 1

− 2
)
− (𝑏 − 𝑎)

≥

(
1

1 − 𝑏
+

1
𝑎 + 1

− 2
)
− (𝑏 − 𝑎) =: 𝐹 (𝑎, 𝑏),

where the last inequality follows because 𝑓𝑁 (𝑥) ≥ 1 in the salient range and 1
1−𝑏 + 1

𝑎+1 − 2 ≥ 0 as long
as 1 > 𝑏 ≥ 𝑎 > −1.

We compute that 𝐹 (0, 0) = 0,∇𝐹 (0, 0) = (0, 0) and that

∇2𝐹 (𝑎0, 𝑏0) =

(
2

(1+𝑎0)3 0
0 2

(1−𝑏)3

)
,

is a diagonal matrix with entries between 107 and 1
107 as long as [𝑎0, 𝑏0] ∈

[
− 99

100 ,
99
100

]
. If either of

𝑎0, 𝑏0 is outside that range, then Lemma 3.3 gives a contradiction to the assumption on energy. Thus,
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by the Taylor remainder theorem (and the fact that F is 𝐶2 as long as a stays away −1 and b stays away
from 1) we have that

|𝐹 (𝑎, 𝑏) − 𝐹 (0, 0) | = (𝑎, 𝑏)𝑇∇2𝐹 (𝑎0, 𝑏0) (𝑎, 𝑏) ≤ 𝐶 (𝑎2 + 𝑏2)

for some (𝑎0, 𝑏0) on the segment connecting (0, 0) and (𝑎, 𝑏).
On the other hand, since 𝑣𝑁 (𝑥,−) is linear in y and 𝑤̂ is piecewise linear in y we can see that

‖𝑣𝑁 − 𝑤̂‖𝐿∞ = max
𝑡=𝑎,𝑏

|𝑣𝑁 (𝑥, 𝑡) − 𝑤̂(𝑡) | = 𝑓𝑁 (𝑥) max
𝑡=𝑎,𝑏

|𝑡 |.

Chaining everything together, we get that

‖𝑣𝑁 − 𝑤̂‖𝐿∞ ≤ 𝐶
√
𝐻𝑥 (𝑤̂) − 𝐻𝑥 (𝑣𝑁 (𝑥,−)).

We now estimate |𝑤̂−𝑤 | (𝑡0) for 𝑡0 ∈ [−1, 1]. We have two cases; in the first, assume that 𝑡0 ∈ [𝑎, 𝑏].
Then 2|𝑤̂(𝑡0) − 𝑤(𝑡0) | = 2|𝑤(𝑡0) | ≤

∫ 𝑡0
𝑎

|𝑤𝑦 | +
∫ 𝑏

𝑡0
|𝑤𝑦 |. Using Jensen’s inequality, we get that

|𝑤(𝑡0) | ≤

(
𝑏 − 𝑎

4

∫ 𝑏

𝑎
|𝑤𝑦 |

2 𝑑𝑦

)1/2

≤ 𝐶
√
𝐻𝑥 (𝑤) − 𝐻𝑥 (𝑤̂).

Putting this together, we have that

|𝑣𝑁 (𝑥, 𝑡0) − 𝑤(𝑡0) | ≤ 𝐶
√
𝐻𝑥 (𝑤) − 𝐻𝑥 (𝑤̂) + 𝐶

√
𝐻𝑥 (𝑤̂) − 𝐻𝑥 (𝑣𝑁 (𝑥,−)) ≤ 𝐶𝜀1/2.

In the second case, we assume that 𝑡0 ∈ [−1, 𝑎] (the case that 𝑡0 ∈ [𝑏, 1] works the same way). Since
𝑤(−1) = 𝑤̂(−1) and 𝑤(𝑎) = 𝑤̂(𝑎) we get that 2|𝑤(𝑡0) − 𝑤̂(𝑡0) | ≤

∫ 𝑎

−1 |𝜕𝑦 (𝑤 − 𝑤̂) | 𝑑𝑦. Again applying
Jensen’s inequality, we get that

|𝑤(𝑡0) − 𝑤̂(𝑡0) | ≤ 𝐶 (𝑎 + 1)

(∫ 𝑎

−1

				𝜕𝑦𝑤 −
𝑓𝑁

1 + 𝑎

				2 𝑑𝑦
)1/2

.

Expanding out the integrand and using the fact that at 𝑤(𝑎) − 𝑤(−1) = 𝑓𝑁 (𝑥) we get

|𝑤(𝑡0) − 𝑤̂(𝑡0) | ≤ 𝐶

(∫ 𝑎

−1
|𝜕𝑦𝑤 |2 𝑑𝑦 − 2

𝑓𝑁 (𝑥)2

1 + 𝑎
+

𝑓𝑁 (𝑥)2

1 + 𝑎

)1/2

≤ 𝐶 (𝐻𝑥 (𝑤) − 𝐻𝑥 (𝑤̂))
1/2.

We can chain the inequalities together as above to get the desired result. �

From here, we have an easy corollary: Outside of the central box, the zero set of 𝑢𝑁 is contained in
a very thin strip around {𝑦 = 0}.
Corollary 3.7. Let 𝛿, 𝜃 > 0. There exists an 𝑁0 = 𝑁0(𝛿, 𝜃) > 0 such that for 𝑁 > 𝑁0 and every pair
(𝑥, 𝑦) ∈ 𝑅𝑁 such that |𝑥 | < 3𝑁 − 𝛿, |𝑦 | ≤ 1 − 1

88 , 𝑓𝑁 (𝑥) ≥ 1, and 𝑢𝑁 (𝑥, 𝑦) = 0, we have |𝑦 | < 𝜃.
Proof. Fix 𝛿 > 0, and let 𝑁 > 0 be big enough so that, invoking Theorem 2.8, we can say 𝑢𝑁 is
L-Lipschitz in [−3𝑁 + 𝛿, 3𝑁 − 𝛿] ×

[
−1 + 1

44 , 1 − 1
44

]
.

Assume there exists a point (𝑥0, 𝑦0) such that 𝑓𝑁 (𝑥0) ≥ 1, 𝜃 ≤ |𝑦0 | ≤ 1 − 1
88 and 𝑢𝑁 (𝑥0, 𝑦0) = 0.

We know that |𝑦0 | < 1 − 1
44 , by Lemma 3.4. Then there exists an interval I of length at least 𝜃

2𝐿 such
that |𝑢𝑁 (𝑥, 𝑦0) − 𝑦0 𝑓𝑁 (𝑥) | ≥ 𝜃

2 and 𝑓𝑁 (𝑥) ≥ 1 on all 𝑥 ∈ 𝐼.
By Lemma 3.6, this implies that 𝐻𝑥 (𝑢𝑁 (𝑥,−)) ≥ 𝐻𝑥 (𝑣𝑁 (𝑥,−)) + 𝜃4

4𝐶 for almost every 𝑥 ∈ 𝐼.
Integrating and letting 𝑄 = 𝐼 × [−1, 1], we get that 𝑆𝑄 (𝑢𝑁 ) ≥ 𝑆𝑄 (𝑣𝑁 ) + 𝐶−1𝜃5, where 𝐶 = 𝐶 (𝛿) > 0
is independent of 𝑁, 𝜃. This contradicts equation (2.11) as long as N is large enough (depending on 𝐶, 𝜃
and thus on 𝛿, 𝜃). �
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4. The proof of Theorem 1.2: Ruling out one-phase points

The main goal of this section is to finish up the proof of our main Theorem 1.2, that ΓBP(𝑢𝑁 ) ≠ ∅. In
fact, we have the following more precise description.
Theorem 4.1. Let 𝑢𝑁 , 𝑅𝑁 , 𝑓𝑁 be as above. Then, for N large enough, there exists a ‘pool of zeroes’,
that is, a connected open set O ⊂ {𝑢𝑁 = 0} ∩ {|𝑥 | < 2𝑁 + 1} ∩ {|𝑦 | ≤ 1 − 1

44 } such that |O | > 0, 𝜕O
is contained in the free boundary Γ+ ∪ Γ−, and 𝜕O meets Γ+, Γ−, and the set, ΓTP(𝑢), of branch points.

The idea is that Lemma 3.5 guarantees the existence of a ‘pool of zeroes’ separating the positive and
negative phases in the central part of 𝑅𝑁 . We then want to show that this pool does not ‘leak’ to the
sides of 𝑅𝑁 . For this, we need the following lemma, whose proof will be the main goal of this section.
Lemma 4.2. Let

𝑅𝑒𝑥𝑡 =
{
(𝑥, 𝑦) ∈ 𝑅𝑁 | 2𝑁 + 1 < |𝑥 | < 3𝑁 − 1 and |𝑦 | ≤ 1 −

1
88

}
.

There exists a 𝑁0 > 1 such that if 𝑁 ≥ 𝑁0, then every free boundary point for 𝑢𝑁 in 𝑅𝑒𝑥𝑡 is a two-phase
point. Or, put another way:

𝑅𝑒𝑥𝑡 ∩ (Γ+(𝑢𝑁 ) ∪ Γ−(𝑢𝑁 )) ⊂ ΓTP(𝑢).

Before we prove the lemma, let us see how its proof implies the theorem.

Proof of Theorem 4.1 assuming Lemma 4.2. By Lemma 3.5, 𝑢𝑁 vanishes in the region, where |𝑥 | ≤
𝑁 − 1 and |𝑦 | ≤ 1/8. Denote by O0 the interior of {𝑢𝑁 = 0}, and let O the connected component of
𝐵(0, 1/8) in O0.

Let us first check that 𝜕O contains one-phase points of both types. Consider the line segment ℓ from
the origin to 𝑧+ = (0, 1/44); we know that 𝑢(𝑧+) ≥ 1/8 (by equation (3.2)), so ℓ meets 𝜕O. At the first
point of intersection 𝑧 = (0, 𝑦) (going up from 0), Lemma 3.5 says that 𝑦 > 𝛼/8, and then Lemma 3.5
says that 𝑢(𝑤) ≥ 0 for w near z; hence, z is a (positive) one-phase point. Similarly, the first point of 𝜕O
on the interval from 0 to 𝑧− = (0,−1/44) is a negative one-phase point.

Next, we want to show that O ∩ 𝑅𝑒𝑥𝑡 = ∅. Suppose not, and let 𝛾 be a path in O that goes from
0 to some point of O0 ∩ 𝑅𝑒𝑥𝑡 . Certainly, 𝛾 does not get close to the top and bottom boundaries, that
is, where |𝑦 | = 1 − 1

88 , by equation (3.2). So there is a point (𝑥0, 𝑦0) ∈ 𝛾 such that |𝑥0 | > 2𝑁 + 1
and |𝑦0 | ≤ 1 − 1/44. Then, as above with the origin, we can find a point 𝑃 = (𝑥0, 𝑦

′
0) above (𝑥0, 𝑦0),

which lies in 𝜕O. This vertical segment lies inside of O (and is nonempty by the openness of O0). By
Lemma 4.2, this point is a two-phase point. But in fact the proof of Lemma 4.2 will say more: near P,
the free boundary is a Lipschitz graph, with a small constant, and then the nondegeneracy of u shows
that on the vertical line that goes through P, u is (strictly) positive on one side of P, and negative on
the other side; this contradicts the fact that the open segment between (𝑥0, 𝑦0) and P lies in O. Hence,
O ∩ 𝑅𝑒𝑥𝑡 = ∅. Note this, with Lemma 3.4, implies that

O ⊂ 𝑅𝑖𝑛 := {(𝑥, 𝑦) ∈ 𝑅𝑁 | |𝑥 | ≤ 2𝑁 + 1, |𝑦 | ≤ 1 −
1

44
}.

We still need to show thatO contains a branch point. Suppose not, and let 𝑧 ∈ 𝜕O be given. Obviously,
u takes nonzero values near z, so z lies in the free boundary, and by assumption z is a one-phase point
(since only one-phase points or branch points can be on the boundary of an open subset of {𝑢 = 0}).
Suppose 𝑧 ∈ Γ+(𝑢). In the present situation (and even in ambient dimension 3), the free boundary in a
neighborhood of z is a smooth hypersurface Γ, with 𝑢 > 0 on one side of Γ, and 𝑢 = 0 on the other side.
Thus, 𝐵𝑟 (𝑧) ∩ 𝜕O ⊂ Γ+(𝑢) for some 𝑟 > 0 small enough (depending on z).

More globally, the curve Γ ⊂ 𝜕O that contains z is a Jordan curve (it is disjoint from 𝑅𝑒𝑥𝑡 , does not
touch the boundary of R and is locally smooth), so O, which is connected, is contained in one of the two
components of U = R2 \ Γ. If O is contained in the unbounded component of U, then we can replace u
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with 0 on the bounded component of U and keep u a valid competitor (because Γ ⊂ 𝜕O ⊂ 𝑅𝑖𝑛 ⊂⊂ 𝑅𝑁 ).
However, this will strictly decrease energy which is a contradiction. Thus, O is contained in the bounded
component of U. Arguing as before, if O is not the entirety of this bounded component, then we could
replace u by 0 on the rest of this bounded component and decrease energy. So it must be that O is one
of the connected components of R2 \ Γ.

This contradicts the fact that 𝜕O meets Γ− too. So 𝜕O contains a branch point, and the theorem
follows from the proof of the lemma.

In ambient dimension 3, the same proof would work, using the fact that a connected smooth orientable
hypersurface in R𝑛 always separates R𝑛 in exactly two connected component, as in the Jordan curve
theorem. �

The rest of this section will be devoted to the proof of Lemma 4.2. We begin by observing that when
|𝑥 | > 2𝑁 , 𝜕𝑦𝑢𝑁 (𝑥,−) must be close to 𝜕𝑦𝑣𝑁 (𝑥,−) = 2 at most points.

Lemma 4.3. For every 𝜀 > 0, there exists an 𝑁0 = 𝑁0 (𝜀) > 0 such that, if 𝑁 ≥ 𝑁0, then∫
{(𝑥,𝑦) | 2𝑁< |𝑥 |<3𝑁− 1

4 , |𝑦 | ≤1}

				𝜕𝑢𝑁𝜕𝑦
− 2

				2 𝑑𝑥𝑑𝑦 ≤ 𝜀.

Proof. Recall that 𝑓𝑁 (𝑥) = 2 for 2𝑁 ≤ |𝑥 | ≤ 3𝑁 , so 𝑣𝑁 (𝑥, 𝑦) = 2𝑦 and 𝜕𝑦𝑣𝑁 (𝑥,−) = 2. Also,
𝑦 ↦→ 𝑣𝑁 (𝑥, 𝑦) is harmonic on [−1, 1] and (when 𝑥 ∉ 𝑋0) 𝑦 ↦→ 𝑢𝑁 (𝑥, 𝑦) is a 𝑊1,2 function with
the same trace as 𝑣𝑁 . Fix such an x, and set 𝐼 (𝑤) =

∫ 1
−1 |𝑤𝑦 |

2 𝑑𝑦 for 𝑤 ∈ 𝑊1,2 ([−1, 1]). Amongst
𝑤 ∈ 𝑊1,2 ([−1, 1]) with the same boundary values ±2 as 𝑣𝑁 (𝑥,−), 𝑣𝑁 (𝑥,−) minimizes I. Thus, the
Euler–Lagrange equation shows that

∫ 1
−1 𝜕𝑦𝑣𝑁 (𝜕𝑦𝑢𝑁 − 𝜕𝑦𝑣𝑁 )𝑑𝑦 = 0. Hence, by Pythagoras

∫ 1

−1
|𝜕𝑦𝑢𝑁 |2 =

∫ 1

−1
|𝜕𝑦𝑣𝑁 |2𝑑𝑦 +

∫ 1

−1
|𝜕𝑦𝑢𝑁 − 𝜕𝑦𝑣𝑁 |2𝑑𝑦.

Now, we also care about the functional 𝐻𝑥 , so we need to add |{𝑦 | 𝑤(𝑦) ≠ 0}| to 𝐼 (𝑤). For 𝑣𝑁 (𝑥,−), we
get 2, since 𝑣𝑁 (𝑥, 𝑦) = 2𝑦 only vanishes at 0. For 𝑢𝑁 (𝑥,−), Corollary 3.7 says that, for any given 𝜃 > 0,
and if N is large enough 𝑢𝑁 (−) can only vanish for |𝑦 | < 𝜃. Then 2 − |{𝑦 | 𝑢𝑁 (𝑥, 𝑦) ≠ 0}| ≤ 2𝜃 and∫ 1

−1
|𝜕𝑦𝑢𝑁 − 2|2𝑑𝑦 =

∫ 1

−1
|𝜕𝑦𝑢𝑁 − 𝜕𝑦𝑣𝑁 |2𝑑𝑦 =

∫ 1

−1
|𝜕𝑦𝑢𝑁 |2 𝑑𝑦 −

∫ 1

−1
|𝜕𝑦𝑣𝑁 |2 𝑑𝑦

= 𝐻𝑥 (𝑢𝑁 (𝑥,−)) − 𝐻𝑥 (𝑣𝑁 (𝑥,−)) + 2 − |{𝑦 | 𝑢𝑁 (𝑥, 𝑦) ≠ 0}|
≤ 𝐻𝑥 (𝑢𝑁 (𝑥,−)) − 𝐻𝑥 (𝑣𝑁 (𝑥,−)) + 2𝜃.

We now integrate over x such that 2𝑁 < |𝑥 | < 3𝑁 − 1
4 , use equation (2.9) and get the desired result for

𝑁 ≥ 𝑁0 (𝜀). �

We now need to invoke the results of [20] to show that the free boundary is smooth and that the
positive and negative parts of 𝑢𝑁 extend smoothly to the free boundary. Recall that 𝑢+𝑁 = max{𝑢𝑁 , 0}
and 𝑢−𝑁 = max{−𝑢𝑁 , 0}.

Lemma 4.4. Let 𝛿 > 0. There exists 𝑁0 = 𝑁0 (𝛿) > 1 such that if 𝑁 ≥ 𝑁0, then each 𝜕{𝑢±𝑁 > 0}∩({2𝑁 <

|𝑥 | < 3𝑁 − 1} × [−1, 1]) is a 𝐶1,1/4-graph over the set {𝑦 = 0} with norm ≤ 𝛿. Furthermore,

|∇𝑢±𝑁 | ∈ 𝐶0,1/4
(
{𝑢±𝑁 > 0} ∩ ({2𝑁 ≤ |𝑥 | ≤ 3𝑁 − 1 − 𝛿} × [−1, 1])

)
,

with a 𝐶0,1/4 seminorm less than 1.
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Proof. Pick some 𝑟0 > 0 small, but independent of 𝑁, 𝛿. For points 𝑥0 such that 𝐵(𝑥0, 𝑟0)∩ΓTP(𝑢𝑁 ) = ∅,
the result follows from uniform Reifenberg flatness (Corollary 3.7) and standard ‘flat-implies-smooth’
regularity for the one-phase problem (c.f. [1]).

If 𝐵(𝑥0, 𝑟0) ∩ ΓTP (𝑢𝑁 ) ≠ ∅, then we can consider 𝑦 ∈ 𝐵(𝑥0, 𝑟0) ∩ ΓTP(𝑢𝑁 ), and look at 𝐵(𝑦, 2𝑟0).
Then the regularity follows from the 𝜃-Reifenberg flatness at scale 1 (Corollary 3.7), the uniform
Lipschitz continuity (Theorem 2.8) and [20, Theorem 3.1].

In both instances, the dependence on 𝑟0, 𝜃 is such that the 𝐶1,1/4-norm of the graph(s) goes to zero
as 𝑟0 > 0 stays constant but the Reifenberg flatness parameter, 𝜃, goes to zero. Corollary 3.7 says
we can take 𝜃 arbitrarily small, at the expense of making N larger. The regularity of the gradient is a
consequence of standard elliptic regularity once we know the regularity of the free boundary. �

We are finally ready to prove Lemma 4.2. Our proof uses harmonic analysis to take advantage of
the fact that 𝑢(𝑥, 𝑦) is close to 2𝑦 in an integral sense (c.f. Lemmas 4.3 and 4.4). One might try a
barrier argument instead, but it was not clear (to us) how to gain the necessary pointwise control on the
boundary of a subdomain to use the maximum principle.

Proof. Let 𝜀 > 0 be small, to be chosen later and assume by contradiction that there exists a one-phase
point (𝑥0, 𝑦0) ∈ 𝜕{𝑢𝑁 > 0} ∩ {2𝑁 ≤ |𝑥 | ≤ 3𝑁 − 1}. By Lemma 4.3, we may choose N large enough
(depending only on 𝜀) such that for any square, Q, of side length ℓ(𝑄) ≤ 3/4 centered at the point
(𝑥0, 𝑦0) we have ∫

𝑄

				𝜕𝑢𝑁𝜕𝑦
− 2

				2 𝑑𝑥𝑑𝑦 ≤ 𝜀. (4.1)

Using Fubini, we also get that ∫ 3/4

0

∫
𝜕𝑄

				𝜕𝑢𝑁𝜕𝑦
− 2

				2 𝑑H1𝑑ℓ(𝑄) ≤ 𝜀,

where the integration is occurring over squares all centered at (𝑥0, 𝑦0) with increasing side lengths.
Thus, we can pick a cube 𝑄0 (which will be fixed going forward) with 1/2 ≤ ℓ(𝑄0) ≤ 3/4 such that∫

𝑄0

				𝜕𝑢𝑁𝜕𝑦
− 2

				2 𝑑𝑥𝑑𝑦,∫
𝜕𝑄0

				𝜕𝑢𝑁𝜕𝑦
− 2

				2 𝑑H1 ≤ 4𝜀. (4.2)

Note that 𝑢𝑁 |𝑄0 is L-Lipschitz (by Theorem 2.8), where L is independent of 𝑁,𝑄0.
Let 𝑄̃ = 𝑄0 ∩ {𝑢𝑁 > 0}. By Lemma 4.4, the domain 𝑄̃ is piecewise 𝐶1,1/4 and is an NTA domain,

with constants uniform in N (c.f. [25] for definitions and details). Let us say a bit more about this; the
NTA constants depend on how the vertical edges of Q touch the smooth graph 𝜕{𝑢𝑁 > 0}. However,
this graph over {𝑦 = 0} has very small norm (uniform in N), so this intersection happens (quantitatively)
transversely and thus the NTA constants are also uniform in N. These bounds on norm of the graph
which gives 𝜕{𝑢𝑁 > 0} also imply that 4 ≥ H1( ˜𝜕𝑄) ≥ 1 and |𝑄̃ | ≥ 1

8 . From this information, using
equation (4.2) and Chebyshev, there exists a 𝐴 ∈ 𝑄̃ with dist(𝐴, 𝜕𝑄̃) > 1

100 and |𝜕𝑦𝑢(𝐴) − 2|2 < 8𝜀
(this will work as long as 𝜀 > 0 is small enough).

Let𝜔𝐴
𝑁 be the harmonic measure of 𝑄̃ with a pole at A (where the notation emphasizes the dependence

on N). Since 𝜕𝑦𝑢 is a harmonic function in 𝑄̃, we have the following integral representation:

𝜕𝑦𝑢𝑁 (𝐴) =
∫
𝜕𝑄̃

𝜕𝑦𝑢𝑁 (𝑃)𝑑𝜔𝐴
𝑁 (𝑃).

Finally, it will be convenient to let 𝜕𝑄̃ = Γ1 ∪ Γ2, where Γ1 = 𝜕{𝑢𝑁 > 0} ∩ 𝑄0 and Γ2 =
𝜕𝑄0 ∩ {𝑢𝑁 > 0}; see the picture below.
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Recall that (𝑥0, 𝑦0) is a one-phase point for 𝑢𝑁 . Thus, we can compute |𝜕𝑦𝑢𝑁 (𝑥0, 𝑦0) | ≤

|𝜕𝜈𝑢𝑁 (𝑥0, 𝑦0) | = 1, where the last equality holds due to the free boundary condition at (regular) one-
phase points. Because the derivative of 𝑢𝑁 restricted to 𝜕{𝑢𝑁 > 0} has 𝐶0,1/4-seminorm less than 1,
we also have that

|𝜕𝑦𝑢𝑁 (𝑥0, 𝑦0) − 𝜕𝑦𝑢𝑁 (𝑃) | <

(
3
4

)1/4
<

94
100

for all 𝑃 ∈ Γ1

⇒ 𝜕𝑦𝑢𝑁 (𝑃) ≤ 2 −
1

20
for all 𝑃 ∈ Γ1.

Putting things together, we have that

2 − 3𝜀1/2 ≤ 𝜕𝑦𝑢𝑁 (𝐴) ≤

(
2 −

1
20

)
𝜔𝐴
𝑁 (Γ1) +

∫
Γ2

𝜕𝑦𝑢𝑁 (𝑃)𝑑𝜔𝐴
𝑁 (𝑃)

⇒ 2(1 − 𝜔𝐴
𝑁 (Γ1)) +

𝜔𝐴
𝑁 (Γ1)

20
≤

∫
Γ2

𝜕𝑦𝑢𝑁 (𝑃)𝑑𝜔𝐴
𝑁 (𝑃) + 3𝜀1/2

⇒ 2 + 𝑐 ≤

 
Γ2

𝜕𝑦𝑢𝑁 (𝑃)𝑑𝜔𝐴
𝑁 (𝑃),

(4.3)

where in the last line we used that 𝜔𝐴
𝑁 (Γ2) = 1−𝜔𝐴

𝑁 (Γ1) and also Bourgain’s Lemma (c.f. [25, Lemma

4.2]), which implies that there is a constant 𝑐 > 0 (independent of 𝜀, 𝑁) such that 𝜔𝐴
𝑁 (Γ1)

1−𝜔𝐴
𝑁 (Γ1)

≥ 𝑐 and

𝑐−1 ≥ 1
1−𝜔𝐴

𝑁 (Γ1)
.

Recall that u is 𝐿−Lipschitz, and write Γ2 = Γ2,+ ∪ Γ2,−, with

Γ2,+ = {𝑃 ∈ Γ2 | 𝐿 ≥ |𝜕𝑦𝑢𝑁 (𝑃) | > 2 + 𝑐/2} and Γ2,− = {𝑃 ∈ Γ2 | |𝜕𝑦𝑢𝑁 (𝑃) | ≤ 2 + 𝑐/2}.

After overestimating
ffl
Γ2

𝜕𝑦𝑢𝑁 𝑑𝜔𝐴
𝑁 over each set, equation (4.3), gives us

𝑐

2
≤ 𝐿

𝜔𝐴
𝑁 (Γ2,+)

𝜔𝐴
𝑁 (Γ2)

. (4.4)

Once more invoking Bourgain’s theorem, we have that

𝜃 :=
𝑐𝜔𝐴

𝑁 (Γ2)

2𝐿

is bounded strictly away from zero, independently of N (large enough) or 𝜀 > 0.
Using the condition on the integral of |𝜕𝑦𝑢𝑁 − 2| on 𝜕𝑄0 (i.e., equation (4.2)), we see that

H1(Γ2,+) <
16𝜀
𝑐2 .
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Recall that H1(𝜕𝑄̃) ≥ 1, and we get that

H1(Γ2,+)

H1(𝜕𝑄̃)
<

16𝜀
𝑐2 � 𝜃 ≡

𝜔𝐴
𝑁 (Γ2,+)

𝜔𝐴
𝑁 (𝜕𝑄̃)

. (4.5)

We now recall that in 𝑄̃ we have that the harmonic measure 𝜔𝐴
𝑁 ∈ 𝐴∞(H1) (see, e.g., [9, Theorem

2]). In fact, the 𝐴∞-constants depend on the NTA constants of 𝑄̃, the 1-Ahlfors regularity of 𝜕𝑄̃, the
distance from A to 𝜕𝑄̃ and the diameter of 𝑄̃ (for more details and definitions of the relevant terms, see
[9]). As discussed above, all of these quantities can be taken uniform for N large enough. Thus, we can
take 𝜀 > 0 small until equation (4.5) contradicts 𝜔𝐴

𝑁 ∈ 𝐴∞(H1), and we are done. �

Remark 4.5. The arguments above can be adapted to produce cusp points in R2+1 but not directly in
ambient dimensions larger than 3. In the setting of R3, our domain is given by 𝑅𝑁 := 𝐵′(0, 3𝑁) ×

[−1, 1] ⊂ R2+1, where 𝐵′ is a ball in R2. Then 𝑓𝑁 (𝑟, 𝜃) = 𝑓𝑁 (𝑟) : 𝐵′(0, 3𝑁) → R depends only on the
radial variable. Now, we define 𝑓𝑁 piecewise:

𝑓𝑁 (𝑟) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − 𝛼, if 𝑟 ≤ 1(

log(𝑟 )
log(2𝑁 )

+ 1
)
(1 + 𝛼) − 2𝛼 if 1 ≤ |𝑥 | ≤ 2𝑁

2, if 2𝑁 ≤ 𝑟 ≤ 3𝑁.

We can then define the slice minimizer similarly, where 𝑣𝑁 (𝑟, 𝜃,−) ∈ 𝑊1,2 ([−1, 1]) minimizes with
the boundary values 𝑣𝑁 (𝑟, 𝜃,±1) = ± 𝑓𝑁 (𝑟). In particular, when 𝑓𝑁 (𝑟) ≥ 1 we have 𝑣𝑁 (𝑟, 𝜃, 𝑦) =
𝑦 𝑓𝑁 (𝑟), and when 𝑓𝑁 (𝑟) ≤ 1 we have 𝑣𝑁 (𝑟, 𝜃, 𝑦) = sgn(𝑦) (|𝑦 | − 1 + 𝑓𝑁 (𝑟))+. In either setting, we
have |𝜕𝑟 𝑣𝑁 | ≤ |𝜕𝑟 𝑓𝑁 |.

Computing just like in Lemma 2.2, we get that∬
𝑅𝑁

				𝜕𝑣𝑁𝜕𝑟

				2 �

∫ 2𝑁

1

1
𝑟2 log(2𝑁)2 𝑟 𝑑𝑟 =

1
log(2𝑁)

𝑁→∞
→ 0. (4.6)

From here, we argue identically as above, noting that we never use the precise bound on
∬
𝑅𝑁

			 𝜕𝑣𝑁𝜕𝑟 			2,
just that it goes to zero as 𝑁 → ∞, and every other quantity stays bounded.

For example, the contradiction in the proof of Lemma 3.5 now comes when 𝜂 ≤ 𝐶
𝜂 log(2𝑁 )

, which is
not true for 𝑁 > 1 large enough.

5. Accumulating cusps for almost minimizers

In this section, we prove that the cusp set for almost-minimizers to equation (1.1) can be essentially
arbitrary. To state our results in maximum generality, we introduce the variable coefficient version of
equation (1.1):

𝐽Ω(𝑢) :=
∫
Ω
|∇𝑢 |2 + 𝑞2

+(𝑥)𝜒{𝑢>0} (𝑥) + 𝑞2
−(𝑥)𝜒{𝑢<0} 𝑑𝑥. (5.1)

Throughout this section, we will assume that 𝑞± ∈ 𝐶0,𝛼 (Ω) for some 𝛼 ∈ (0, 1) and that the weights
satisfy the nondegeneracy condition; 𝑞± ≥ 𝑐0 > 0 in all of the domain. Clearly, we recover the original
functional (1.1) by letting 𝑞± ≡ 𝜆± in equation (5.1).

We now state our main result.

Theorem 5.1. Let 𝑓 − ≤ 𝑓 + ∈ 𝐶2(R𝑛) such that 𝑓 + = 𝑓 − = 0 outside of 𝐵(0, 𝑅/10) for some large
𝑅 > 0. Let Γ± be the graphs of 𝑓 ±. For any 𝑞± ∈ 𝐶0,𝛼, with 𝑐−1

0 ≥ 𝑞± ≥ 𝑐0 > 0, there exists an
almost-minimizer u to the energy 𝐽𝐵 (0,𝑅) such that Γ± = 𝜕{±𝑢 > 0}.
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Notice that for u as in Theorem 5.1 we have ΓBP (𝑢) = 𝜕R𝑛−1 { 𝑓 −(𝑥) = 𝑓 +(𝑥)}. Recall that any closed
set can be the zero set of a 𝐶2 function (take a smoothing of the distance function to the given set,
c.f. [29, VI, Theorem 2]). As such, we have the following corollary (compare to Theorem 1.7 from the
introduction).

Corollary 5.2. Let 𝐸 ⊂ R𝑛−1 be any compact set with no interior point in 𝑅𝑛−1, and let 𝑞± ∈ 𝐶0,𝛼 (R𝑛)
be nondegenerate and bounded. Then, for some 𝑅 > 0 large enough depending on E, there exists an
almost-minimizer u to 𝐽𝐵 (0,𝑅) with weights 𝑞± such that ΓBP(𝑢) = 𝐸 .

Furthermore, we can take Γ+ := 𝜕{𝑢 > 0} to be the reflection of Γ− := 𝜕{𝑢 < 0} around {𝑥𝑛 = 0}
⊂ R𝑛.

Theorem 5.1 will follow from two lemmas, the first a general result about what functions are almost-
minimizers to the two-phase functional. The second, a construction of such functions.

Lemma 5.3. Let, 𝑛 ≥ 2, 𝛼 ∈ (0, 1), 𝑓 − ≤ 𝑓 + ∈ 𝐶2(R𝑛) such that 𝑓 − = 𝑓 + = 0 outside of 𝐵(0, 𝑅/10)
for some 𝑅 > 1, and let Γ± be the graph of 𝑓 ±. Let Ω+ (resp. Ω−) be the part of 𝐵(0, 4𝑅) that lies above
(resp. below) the graph of 𝑓 + (resp. 𝑓 −) for some 𝑅 > 0 large. Let 𝑢± ∈ 𝐶1,𝛼 (Ω

±
) be such that there

exists a constant 𝐶1 > 0 such that for 𝑥 ∈ Ω± ∩ 𝐵(0, 2𝑅) we have that

𝐶−1
1 dist(𝑥, Γ±) ≤ 𝑢± ≤𝐶1dist(𝑥, Γ±)

|∇𝑢±| ≤𝐶1

‖𝐷2𝑢±‖ ≤𝐶1dist(𝑥, Γ±)−1.

(5.2)

Then 𝑢 = 𝑢+ − 𝑢− is an almost-minimizer to equation (5.1) inside of 𝐵(0, 𝑅), where 𝑞± are the 𝐶0,𝛼

functions which agree with |∇𝑢±| on Γ±.
More precisely, there exists a constant 𝐶 = 𝐶 (𝐶1, ‖ 𝑓

±‖𝐶2 , ‖𝑢±‖𝐶1,𝛼 (Ω±)
) > 0 and 1 > 𝑟0 =

𝑟0 (𝐶1, ‖ 𝑓
±‖𝐶2 , ‖𝑢±‖𝐶1,𝛼 (Ω±)

) > 0 such that, for any ball B satisfying 𝐵 ⊂ 𝐵(0, 𝑅), and 𝑟 (𝐵) ≤ 𝑟0 we
have

𝐽𝐵 (𝑢) ≤ 𝐽𝐵 (𝑣) + 𝐶𝑟𝑛+
𝛼

4𝑛+2𝛼 (5.3)

for any 𝑣 = 𝑢 on 𝐵(0, 𝑅)\𝐵.

Key to the proof of Lemma 5.3 is the following result which is adapted from [24].

Lemma 5.4. Let v be a critical point to 𝐽𝐵 (associated to 𝑞±). Assume there exists, parameterized by
𝑡 ∈ [𝑎, 𝑏], a family of 𝜙𝑡 : 𝐵 → R (continuous in both variables) that satisfy the following properties:

1. Δ𝜙𝑡 = 0 in {𝜙𝑡 ≠ 0} ∩ 𝐵.
2. {𝜙𝑡 = 0} = 𝜕{𝜙𝑡 > 0} = 𝜕{𝜙𝑡 < 0}. Furthermore, 𝑡 ↦→ {𝜙𝑡 = 0} is continuous in the Hausdorff

distance sense.
3. At every point on 𝜕{±𝜙𝑡 > 0}, there exists a ball inside {±𝜙𝑡 > 0} which touches the free boundary

at that point.
4. At every 𝑥1 ∈ 𝜕{±𝜙𝑡 > 0}, we satisfy

(𝜕𝜈+𝜙𝑡 )
2(𝑥1) − (𝜕𝜈−𝜙𝑡 )

2(𝑥1) ≥ 𝑞2
+(𝑥1) − 𝑞2

−(𝑥1)

(respectively ≤ 𝑞2
+ − 𝑞2

−)
5. 𝜙𝑏 ≤ 𝑣 in 𝐵 (respectively 𝜙𝑏 ≥ 𝑣).
6. For all 𝜌 ∈ [𝑎, 𝑏], 𝜙𝜌 ≤ 𝑣 on 𝜕𝐵 and 𝜙𝜌 < 𝑣 on 𝜕𝐵 ∩ {𝑣 ≠ 0} (respectively with the inequalities

reversed),

then we have that 𝜙𝑎 ≤ 𝑣 in 𝐵 (respectively 𝜙𝑎 ≥ 𝑣 in 𝐵).
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Proof of Lemma 5.3, assuming Lemma 5.4. We first check the almost-minimization condition (5.3) for
𝑥0 ∈ Γ+ ∩ Γ−:

Case 1. Let 𝑥0 ∈ Γ+ ∩ Γ− and 𝑟 > 0 small enough, and let 𝑣 = 𝑢 on 𝐵(0, 𝑅)\𝐵(𝑥0, 𝑟).
Since 𝑢± ∈ 𝐶1,𝛼 (Ω±) and Γ+ ∩ Γ− is closed and smooth, there exists an 𝑟0 such that if 𝑟 < 𝑟0, then,

for 𝑥 ∈ 𝐵(𝑥0, 𝑟)

𝑞+(𝑥0) ((𝑥 − 𝑥0) · 𝑒)
+−𝑞−(𝑥0) ((𝑥 − 𝑥0) · 𝑒)

− − 𝑟1+7𝛼/8 ≤ 𝑢(𝑥)

𝑢(𝑥) ≤ 𝑞+(𝑥0) ((𝑥 − 𝑥0) · 𝑒)
+−𝑞−(𝑥0) ((𝑥 − 𝑥0) · 𝑒)

− + 𝑟1+7𝛼/8.
(5.4)

Recall that 𝑞±(𝑥0) = |∇𝑢±|(𝑥0) by definition. To give more detail, equation (5.4) follows from the Taylor
series expansion of 𝑢± at the point 𝑥0, where we have used the fact that Γ± share a unit normal, e, at 𝑥0,
which we take to point into the set {𝑢 > 0}.

Recall the functional proved to be monotone by Weiss [31]:

𝑊 (𝑢, 𝑥0, 𝑟) ≡
1
𝑟𝑛

∫
𝐵 (𝑥0 ,𝑟 )

|∇𝑢 |2 + 𝑞2
+(𝑥)𝜒{𝑢>0} + 𝑞2

−(𝑥)𝜒{𝑢<0} 𝑑𝑥 −
1

𝑟𝑛+1

∫
𝜕𝐵 (𝑥0 ,𝑟 )

𝑢2 𝑑𝜎.

It follows from equation (5.4) and the 𝐶0,𝛼-character of |∇𝑢±| that

𝑊 (𝑢, 𝑥0, 𝑟) ≤
1
2

Vol(𝐵(0, 1)) (𝑞2
+(𝑥0) + 𝑞2

−(𝑥0)) + 𝐶𝑟7𝛼/8, (5.5)

where 𝐶 > 0 depends on the 𝐶0,𝛼-norm of |∇𝑢±| restricted to Ω
±

.
We now want to show that for any minimizer v to 𝐽𝐵 (𝑥0 ,𝑟 ) with 𝑣 = 𝑢 in R𝑛\𝐵(𝑥0, 𝑟) we have

(𝜕{𝑣 > 0} ∪ 𝜕{𝑣 < 0}) ∩ 𝐵(𝑥0, 𝑟) ⊂ {𝑥 ∈ 𝐵(𝑥0, 𝑟) | | (𝑥 − 𝑥0) · 𝑒 | < 𝑟1+𝛼/2}. (5.6)

Assume that equation (5.6) holds. We would like to compare 𝑊 (𝑣, 𝑥0, 𝑟) to 𝑊 (𝑢, 𝑥0, 𝑟) but naïvely
underestimating 𝑊 (𝑣, 𝑥0, 𝑟) by 𝑊 (𝑣, 𝑥0, 0) is problematic as 𝑥0 may not be in the free boundary of v. To
combat this, let 𝑥+ be the closest point to 𝑥0 in 𝜕{𝑣 > 0} and 𝑥− the closest point to 𝑥0 in 𝜕{𝑣 < 0}. We
note that equation (5.6) implies that |𝑥0 − 𝑥±| < 𝑟1+𝛼/2. Let 𝜌 = 𝑟/2 − max{|𝑥+ − 𝑥0 |, |𝑥− − 𝑥0 |}. Note
that 𝐵(𝑥±, 2𝜌) ⊂ 𝐵(𝑥0, 𝑟) and 𝑟 > 2𝜌 > 𝑟 (1 − 𝑟𝛼/2). Also, 𝐵(𝑥0, 𝑟/2) ⊃ 𝐵(𝑥±, 𝜌). Hence,

𝑊 (𝑣, 𝑥0, 𝑟/2) ≥ 𝑊 (𝑣+, 𝑥+, 𝜌) +𝑊 (𝑣−, 𝑥−, 𝜌) − 𝐶𝑟𝛼/2, (5.7)

because |2𝜌/𝑟 − 1| < 𝑟𝛼/2 and v is Lipschitz in 𝐵(𝑥0, 𝑟/2) with a constant controlled by
1
𝑟𝑛

∫
𝐵 (𝑥0 ,𝑟 )

|∇𝑣 |2 ≤ 1
𝑟𝑛 𝐽𝐵 (𝑥0 ,𝑟 ) (𝑢), the latter of which is bounded by the Lipschitz norm of u and the

supremums of 𝑞±.
To estimate each term in the summand on equation (5.7), we think of 𝑣+, 𝑣− is being separate critical

points to the one-phase problems associated to weights 𝑞±|𝜕{𝑣±>0} := 𝜕𝜈±𝑣
±|𝜕{𝑣±>0}. By the regularity

theory of the two-phase problem in [20] and equation (5.6), we know that 𝜕{±𝑣 > 0} are 𝐶1,𝛼 in
𝐵(𝑥0, 𝑟/2). Thus, 𝑞± ∈ 𝐶0,𝛼 (𝜕{𝑣± > 0}) and can be extended Hölder continuously to all of 𝐵(𝑥0, 𝑟/2)
(with norm uniform in the constants we care about).

The free boundary condition satisfied by v being a minimizer to the two-phase problem tells us that
𝑞± := 𝜕𝜈±𝑣

± = 𝑞± at one-phase points, but at two-phase points the free boundary condition only implies
that 𝑞± := 𝜕𝜈±𝑣

± ≥ 𝑞±. These observations tell us that ‖𝑞± − 𝑞±‖𝐿∞ (𝐵 (𝑥0 ,𝑟/2)) ≤ 𝐶𝑟𝛼.
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By monotonicity, we can underestimate each

𝑊 (𝑣±, 𝑥±, 𝜌) ≥
1
𝜌𝑛

∫
𝐵 (𝑥± ,𝜌)

|∇𝑣±|2 + 𝑞2
±(𝑥)𝜒{±𝑣>0} 𝑑𝑥 −

1
𝜌𝑛+1

∫
𝜕𝐵 (𝑥± ,𝜌)

(𝑣±)2 𝑑𝜎 − 𝐶𝑟𝛼

≥
1
2

Vol(𝐵(0, 1))𝑞2
±(𝑥

±) − 𝐶𝑟𝛼

≥
1
2

Vol(𝐵(0, 1))𝑞2
±(𝑥

±) − 𝐶𝑟𝛼

≥
1
2

Vol(𝐵(0, 1))𝑞2
±(𝑥0) − 𝐶𝑟𝛼 .

Putting this back into equation (5.7), using monotonicity and equation (5.5) we get that

𝑊 (𝑣, 𝑥0, 𝑟) ≥ 𝑊 (𝑣, 𝑥0, 𝑟/2) − 𝐶𝑟𝛼/2 ≥
1
2

Vol(𝐵(0, 1)) (𝑞2
+(𝑥0) + 𝑞2

−(𝑥0)) − 𝐶𝑟𝛼/2

≥ 𝑊 (𝑢, 𝑥0, 𝑟) − 𝐶𝑟𝛼/2.

Multiplying through by 𝑟𝑛 gives the almost-minimization inequality.
So to finish Case 1, it suffices to prove equation (5.6). Here is where we apply Lemma 5.4. We do

this on the interval [𝑎, 𝑏] = [𝑟1+𝛼/2, 3𝑟] (recall that we can take r small so that 3𝑟 < 1). To simplify
notation, let us assume that 𝑥0 = 0 and 𝑒 = 𝑒𝑛. We then create the family of sub/supersolutions to the
two-phase problem in 𝐵(𝑥0, 𝑟) defined by

𝑤𝑡 = 𝑀+(𝑥𝑛 − 𝑡)+ − 𝑚−(𝑥𝑛 − 𝑡)−, 𝑤𝑡 = 𝑚+(𝑥𝑛 + 𝑡)+ − 𝑀−(𝑥𝑛 + 𝑡)−,

where 𝑚± = min𝐵 (𝑥0 ,𝑟 ) 𝑞± and 𝑀± = max𝐵 (𝑥0 ,𝑟 ) 𝑞±. Let v be a minimizer to the two-phase problem in
𝐵(𝑥0, 𝑟) with boundary values u.

We first verify condition (5) in Lemma 5.4. We note that for any 𝑥 ∈ 𝐵(𝑥0, 𝑟)

𝑤3𝑟 (𝑥) ≤ −2𝑚−𝑟 ≤ −2𝑞−(𝑥0)𝑟 + 𝐶𝑟1+𝛼 (5.4)
≤ inf

𝜕𝐵 (𝑥0 ,𝑟 )
𝑢 = inf

𝜕𝐵 (𝑥0 ,𝑟 )
𝑣 ≤ 𝑣(𝑥)

where the last inequality follows from the minimum principle applied to the superharmonic function
−𝑣− and the middle inequalities follow from the 𝐶0,𝛼 continuity of 𝑞− and the fact that we can take
𝑟0 � inf

𝐵 (0,𝑅) 𝑞−.
To check condition (6) in Lemma 5.4, we will show that 𝑤𝑡 |𝜕𝐵 (𝑥0 ,𝑟 ) < 𝑢 |𝜕𝐵 (𝑥0 ,𝑟 ) for all 𝑟1+7𝛼/8 <

𝑟1+𝛼/2 ≤ 𝑡 ≤ 3𝑟 . When 𝑥𝑛 > 𝑡 we have

𝑤𝑡 (𝑥) = 𝑀+(𝑥𝑛 − 𝑡) ≤ 𝑞+(𝑥0) (𝑥𝑛 − 𝑡) + (osc𝑞+)(|𝑥𝑛 | + |𝑡 |)

≤ 𝑞+(𝑥0)𝑥𝑛 − 𝑞+(𝑥0)𝑟
1+𝛼/2 + 𝐶𝑟1+𝛼 < 𝑞+(𝑥0)𝑥𝑛 − 𝑟1+7𝛼/8 (5.4)

≤ 𝑢(𝑥),

again assuming 𝑟0 is small enough.

When 0 ≤ 𝑥𝑛 < 𝑡, we note that 𝑤𝑡 (𝑥) < 0. So there is only something to prove if 𝑢(𝑥) < 0
(5.4)
⇒ 𝑥𝑛 <

𝐶𝑟1+7𝛼/8. In this case 𝑥𝑛 < 𝑡/2 (for r small enough), and we have

𝑤𝑡 (𝑥) ≤ 𝑚−(𝑥𝑛 − 𝑡) ≤ −
𝑚−

2
𝑡 ≤ −

𝑚−

2
𝑟1+𝛼/2 < −𝑟1+7𝛼/8 (5.4)

≤ 𝑢(𝑥).

When 𝑥𝑛 < 0, we have

𝑤𝑡 (𝑥) = 𝑚−(𝑥𝑛 − 𝑡) ≤ 𝑞−(𝑥0) (𝑥𝑛 − 𝑡) + 𝐶𝑟1+𝛼 ≤ 𝑞−(𝑥0)𝑥𝑛 − 𝐶𝑟1+𝛼/2 (5.4)
< 𝑢(𝑥).
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Condition (1) in Lemma 5.4 follows from the fact that 𝑤𝑡 is linear where it is not zero. Conditions
(2) and (3) follow from the observation that {𝑤𝑡 = 0} = {𝑥𝑛 = 𝑡} which moves continuously with t.
Finally, the free boundary condition, Condition (4), follows from the definition of 𝑀±, 𝑚±.

Thus, by Lemma 5.4 above (which will be checked below) it must be the case that 𝑤𝑟1+𝛼/2 ≤ 𝑣 in all
of 𝐵(𝑥0, 𝑟). A similar argument shows that 𝑤𝑟1+𝛼/2 ≥ 𝑣 in all of 𝐵(𝑥0, 𝑟). Thus, 𝜕{𝑣 > 0}, 𝜕{𝑣 < 0} ⊂

{𝑥 ∈ 𝐵(𝑥0, 𝑟) | |𝑥𝑛 | ≤ 𝑟1+𝛼/2}.

Case 2. Now, we assume that 𝑥0 ∈ Γ+ ∪ Γ−. Let 𝑀 > 1 to be chosen later. If R is such that 𝐵(𝑥0, 𝑀𝑟) ∩
(Γ+ ∩ Γ−) ≠ ∅ then note that 𝐵(𝑥0, 𝑟) ⊂ 𝐵(𝑦, 2𝑀𝑟), for some 𝑦 ∈ Γ+ ∩ Γ−. As such, if 𝑢 = 𝑣
in 𝐵(0, 𝑅)\𝐵(𝑥0, 𝑟), then 𝑢 = 𝑣 in 𝐵(0, 𝑅)\𝐵(𝑦, 2𝑀𝑟). So Case 1 tell us that u satisfies the almost-
minimization criterion in these balls with some 𝐶̃ = 𝐶 (2𝑀)𝑛+𝛼/2 (where 𝐶 > 0 comes from Case 1).

If 𝐵(𝑥0, 𝑀𝑟) ∩ (Γ+ ∩Γ−) = ∅, we assume, without loss of generality, that 𝑥0 ∈ Γ+\Γ− and we assume
that 𝐵(𝑥0, 𝑟) ∩ Γ− ≠ ∅ (otherwise 𝑢− is identically zero on 𝐵(𝑥0, 𝑟) and the analysis is even easier).
Pick 𝑦 ∈ 𝐵(𝑥0, 𝑟) ∩ Γ−. As long as 𝑀 > 3 then 𝐵(𝑦, 2𝑟) ∩ (Γ+ ∩ Γ−) = ∅ and 𝑢+, 𝑢− satisfy one-phase
versions of equation (5.4) in 𝐵(𝑥0, 2𝑟) and 𝐵(𝑦, 2𝑟) respectively. To show that 𝑢+ and 𝑢− each satisfy
the correct energy inequalities for the one-phase versions of J inside of 𝐵(𝑥0, 𝑟) and 𝐵(𝑦, 𝑟) we proceed
as in Case 1 (but the argument is simpler because we need only care about one-phase functionals).
The almost-minimization property for u in 𝐵(𝑥0, 𝑟) for the two-phase functional then follows since the
two-phase energy is the sum of the one-phase energies. We omit these details.

Case 3. Assume that 𝑥0 ∉ Γ+∪Γ−. Let 𝑀 > 1 be as above (perhaps enlarge a bit, to be determined later),
and let 𝜀 � 1 (to be determined later). If 𝐵(𝑥0, 𝑀𝑟1−𝜀) ∩ (Γ+ ∪ Γ−) ≠ ∅, then the almost minimization
criterion in 𝐵(𝑦, 2𝑀𝑟1−𝜀)5 for some 𝑦 ∈ Γ+ ∪ Γ− shows that

𝐽𝐵 (𝑥0 ,𝑟 ) (𝑢) − 𝐽𝐵 (𝑥0 ,𝑟 ) (𝑣) ≤ 𝐶 (2𝑀𝑟1−𝜀)𝑛+𝛼/2 = 𝐶𝑀 𝑟 (1−𝜀) (𝑛+𝛼/2) ≤ 𝐶𝑀 𝑟𝑛+𝛼/4,

for any 𝑢 = 𝑣 outside of 𝐵(𝑥0, 𝑟). Note this last inequality above holds for 𝑟 < 1 as long as (1 − 𝜀) (𝑛 +
𝛼/2) ≥ 𝑛 + 𝛼/4 ⇔ 𝛼

2(2𝑛+𝛼) ≥ 𝜀.
Thus, we may assume that 𝐵(𝑥0, 𝑀𝑟1−𝜀) ∩ (Γ+ ∪ Γ−) = ∅. If 𝐵(𝑥0, 𝑟) ⊂ {𝑢 = 0} the almost-

minimization criterion follows from the fact that 𝑢 ≡ 0 in 𝐵(𝑥0, 𝑟). So we may assume that
𝐵(𝑥0, 𝑀𝑟1−𝜀) ⊂ {𝑢 > 0} (the negative phase follows similarly).

Let v minimize 𝐽𝐵 (𝑥0 ,𝑟 ) with boundary values 𝑢 |𝜕𝐵 (𝑥0 ,𝑟 ) . Let us first assume that v is simply a
harmonic function in 𝐵(𝑥0, 𝑟) (this will be the case when 𝑣 > 0). We compute that∫

𝐵 (𝑥0 ,𝑟 )
|∇𝑢 |2 − |∇𝑣 |2 = −

∫
𝐵 (𝑥0 ,𝑟 )

|∇(𝑢 − 𝑣) |2 =
∫
𝐵 (𝑥0 ,𝑟 )

Δ𝑢(𝑢 − 𝑣).

We note that

𝑢 − 𝑣 < max
𝐵 (𝑥0 ,𝑟 )

𝑢 − min
𝐵 (𝑥0 ,𝑟 )

𝑣 = max
𝐵 (𝑥0 ,𝑟 )

𝑢 − min
𝜕𝐵 (𝑥0 ,𝑟 )

𝑢 < osc𝐵 (𝑥0 ,𝑟 )𝑢 < 𝐶𝑟,

where we used the maximum principle and the assumption on |∇𝑢 |. Similarly, with a lower bound so
that sup𝐵 (𝑥0 ,𝑟 ) |𝑢 − 𝑣 | ≤ 𝐶𝑟 . By our assumptions

|Δ𝑢(𝑧) | ≤ ‖∇2𝑢(𝑧)‖ ≤ 𝐶dist(𝑧, {𝑢 = 0})−1 ≤ 𝐶𝑟 𝜀−1, ∀𝑧 ∈ 𝐵(𝑥0, 𝑟).

Note the last inequality above is because 𝐵(𝑥0, 𝑀𝑟1−𝜀) ⊂ {𝑢 > 0}. Putting all of this together, we get
that ∫

𝐵 (𝑥0 ,𝑟 )
|∇𝑢 |2 − |∇𝑣 |2 ≤ 𝐶𝑟𝑛+𝜀 . (5.8)

5It may be surprising that we break scaling by considering a radius of size 𝑟1−𝜀 , but we are merely taking advantage of the
lack of scale invariance in the characterization of almost-minimizers
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If v does vanish, the maximum principle still says that 𝑣 ≥ 0. Let h be the harmonic extension of
𝑢 |𝐵 (𝑥0 ,𝑟 ) into 𝐵 := 𝐵(𝑥0, 𝑟) and compute, recalling that ℎ > 0,

𝐽𝐵 (𝑣) − 𝐽𝐵 (ℎ) ≥ −(sup
𝐵

𝑞2
+) |{𝑣 = 0} ∩ 𝐵 | +

∫
𝐵
|∇𝑣 |2 − |∇ℎ|2

= −(sup
𝐵

𝑞2
+) |{𝑣 = 0} ∩ 𝐵 | +

∫
𝐵
|∇(𝑣 − ℎ) |2

= −(sup
𝐵

𝑞2
+) |{𝑣 = 0} ∩ 𝐵 | +

∫
𝜕{𝑣>0}∩𝐵

𝜕𝜈𝑣ℎ 𝑑H𝑛−1

≥ −(sup
𝐵

𝑞2
+) |{𝑣 = 0} ∩ 𝐵 | + (inf

𝐵
ℎ) (inf

𝐵
𝑞+)H𝑛−1(𝜕{𝑣 = 0} ∩ 𝐵)

= −(osc𝐵𝑞2
+) |{𝑣 = 0} ∩ 𝐵 |

+ (inf
𝐵

𝑞+)

(
(inf
𝜕𝐵

𝑢)H𝑛−1(𝜕{𝑣 = 0} ∩ 𝐵) − inf
𝐵

𝑞+|{𝑣 = 0} ∩ 𝐵 |

)
.

We apply the isoperimetric inequality to {𝑣 = 0} ∩ 𝐵 (recall that 𝑣 > 0 on 𝜕𝐵) and estimate
inf𝜕𝐵 𝑢 ≥ 𝐶−1(dist(𝑥0, 𝜕{𝑢 > 0}) − 𝑟) ≥ 𝐶̃−1𝑟1−𝜀 to get

𝐽𝐵 (𝑣) − 𝐽𝐵 (ℎ) ≥ −𝐶𝑟𝛼+𝑛 + 𝐶 |{𝑣 = 0} ∩ 𝐵 |
𝑛−1
𝑛 (𝑟1−𝜀 − 𝑐 |{𝑣 = 0} ∩ 𝐵 |1−

1
𝑛 ).

As long as 𝜀 < 1/𝑛 and 𝑟 < 𝑟0 is small enough we have 𝐽𝐵 (𝑣) − 𝐽𝐵 (ℎ) ≥ −𝐶𝑟𝛼+𝑛, which combined
with equation (5.8) (which compares u to its harmonic extension) gives us the inequality we want. �

Although Lemma 5.4 is really a minor modification of [24, Lemma 2.3] (see also [4]), we give a
proof for the convenience of the reader.

Proof of Lemma 5.4. Let 𝐸 = {𝜌 ∈ [𝑎, 𝑏] | 𝜙𝜌 ≤ 𝑣}. Since 𝜌 ↦→ 𝜙𝜌 (𝑥0) is continuous for every 𝑥0 ∈ 𝐵
it must be the case that E is a closed subset of [𝑎, 𝑏]. Furthermore, 𝑏 ∈ 𝐸 by assumption. Thus, we will
have shown that 𝐸 = [𝑎, 𝑏] (and we will be done) if we can show that E is (relatively) open in [𝑎, 𝑏].

We first observe that for all 𝑡 ∈ 𝐸 we have {𝜙𝑡 > 0} ∩ 𝐵 ⊂ 𝐵 ∩ {𝑣 > 0}. Indeed, otherwise the zero
sets of 𝜙𝑡 and v would touch in the interior of B. If 𝜙𝑡 (𝑥1) = 𝑣(𝑥1) = 0, then it must be the case that
𝑥1 ∈ 𝜕{𝑣 > 0} (since 𝜙𝑡 ≤ 𝑣 and 𝑥1 ∈ 𝜕{𝜙𝑡 > 0} by the condition (2) on the zero set of 𝜙𝑡 ). If 𝑥1 is a
two-phase point for v, then Condition (4) implies that 𝜕𝜈+𝜙𝑡 (𝑥1) ≥ 𝜕𝜈+𝑣(𝑥1) or 𝜕𝜈−𝜙𝑡 (𝑥1) ≤ 𝜕𝜈−𝑣(𝑥1).
Either way we get a contradiction to the Hopf maximum principle. If 𝑥1 is a one-phase point for v, then
𝜕𝜈+𝜙𝑡 (𝑥1) ≥ 𝑞+(𝑥1) = 𝜕𝜈+𝑣(𝑥1), and we again get a contradiction by the Hopf maximum principle.
Note in both cases we use the condition that 𝜙𝑡 < 𝑣 on the boundary whenever they are both nonzero to
conclude that 𝑣 − 𝜙𝑡 ≠ 0, and thus the normal derivatives above must have a strict sign.

Since for all 𝑡0 ∈ 𝐸 we have {𝜙𝑡0 > 0} ∩ 𝐵 ⊂ 𝐵 ∩ {𝑣 > 0} and since 𝑡 ↦→ 𝜕{𝜙𝑡 > 0} is continuous
there exists a 𝜀 > 0 such that if |𝑡 − 𝑡0 | < 𝜀 we have {𝜙𝑡 > 0} ∩ 𝐵 ⊂ 𝐵 ∩ {𝑣 > 0}.

Thus, in {𝜙𝑡 > 0} we have that both functions are harmonic and 𝑣 ≥ 𝜙𝑡 on 𝜕 ({𝜙𝑡 > 0} ∩ 𝐵) =
(𝜕𝐵 ∩ {𝜙𝑡 > 0}) ∪ (𝜕{𝜙𝑡 > 0} ∩ 𝐵). Thus 𝑣 ≥ 𝜙𝑡 on this set. Furthermore, 𝑣 > 0 = 𝜙𝑡 on {𝜙𝑡 = 0} ∩ 𝐵
(by the assumption that the zero set is the free boundary).

Finally, on the set {𝑣 ≤ 0} we have 𝜙𝑡 < 0 so the difference 𝑣 − 𝜙𝑡 is superharmonic on {𝑣 ≤ 0}. On
the boundary of this set, we have 𝑣 − 𝜙𝑡 ≥ 0 so by the maximum principle we have 𝑣 ≥ 𝜙𝑡 on this set
and putting this together with the previous parts on all 𝐵. This shows E is open, and we are done. �

We are ready to finish by constructing the functions satisfying the hypothesis of Lemma 5.3. First,
we recall the definition of the regularized distance function, introduced in [14]:

𝐷𝜇,𝛽 (𝑥) :=
(∫

1
|𝑥 − 𝑦 |𝑑+𝛽

𝑑𝜇(𝑦)

)−1/𝛽
. (5.9)
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We use the following facts about this regularized distance; see [14, 11].

Lemma 5.5. Let 𝛽 > 0, and let 𝜇 be a d-Ahlfors regular measure. Then

𝐷𝜇,𝛽 ∈ 𝐶∞(R𝑛\spt𝜇) ∩ 𝐶 (R𝑛)

satisfies the following estimates with 𝐶1 > 0 depending on 𝑛, 𝛽, 𝑑 and the Ahlfors regularity character
of 𝜇:

𝐶−1
1 dist(𝑥, spt𝜇) ≤ 𝐷𝜇,𝛽 (𝑥) ≤𝐶1dist(𝑥, spt𝜇)

‖∇𝐷𝜇,𝛽 (𝑥)‖ ≤𝐶1

‖𝐷2𝐷𝜇,𝛽 (𝑥)‖ ≤𝐶1dist(𝑥, spt𝜇)−1.

(5.10)

Furthermore, there is some dimensional constant 𝑐 = 𝑐(𝑛, 𝑑, 𝛽) > 0 such that if spt𝜇 is given
by a 𝐶2-submanifold and Θ𝑑 (𝜇, 𝑄) := lim𝑟↓0

𝜇 (𝐵 (𝑄,𝑟 ))
𝑟𝑑

satisfies Θ𝑑 (𝜇, 𝑄)−1/𝛽 ∈ 𝐶0,𝛼 (spt(𝜇)) then
|∇𝐷𝜇,𝛽 | ∈ 𝐶0,𝛼 (R𝑛) and on the support of 𝜇 we have |∇𝐷𝜇,𝛽 | = 𝑐Θ𝑑 (𝜇, 𝑄)−1/𝛽 .

Proof. The estimates in equation (5.10) are straightfoward applications of the Ahlfors regularity condi-
tion (c.f. [14, 11]). If spt𝜇 has a tangent at 𝑥0 and if Θ𝑑 (𝜇, 𝑥0) exists, the fact that the nontangential limit
of |∇𝐷𝜇,𝛽 | exists at 𝑥0 and is equal to 𝑐Θ𝑑 (𝜇, 𝑄)−1/𝛽 is contained in the proof of [11, Theorem 5.3].

Thus, to complete the proof of the lemma, it suffices to show that |∇𝐷𝜇,𝛽 | extends to spt(𝜇) in
a Hölder continuous fashion. This follows from the 𝐶2-character of spt(𝜇) and the estimates in [11,
Section 2]; to be slightly more precise the difference between ∇𝐷𝜇,𝛽 at a point 𝑥 ∈ R𝑛 \ spt(𝜇) and
the closest point 𝑄 ∈ spt(𝜇) is controlled by the 𝛼 numbers (in the sense of Tolsa [30]) of 𝜇 at the
point Q and the scale |𝑥 −𝑄 | (c.f. [11, equation (2.19)]). Since, Θ𝑑 (𝜇, 𝑄) and spt(𝜇) are regular, these
𝛼-numbers decay like 𝑟𝛼, which gives the desired result. �

We are now ready to complete the proof of Theorem 5.1.

Proof of Theorem 5.1. Let 𝑑𝜇±(𝑄) = 𝑞−1
± (𝑄)𝑑H𝑛−1 |Γ± (𝑄), and let 𝑢± = 𝐷𝜇± ,1 in Ω± and identically

equal to zero elsewhere. Note that 𝜇± are Ahlfors regular by the boundedness and nondegeneracy of
𝑞± and the 𝐶2-character of 𝑓 ± (we don’t need to worry about issues at infinity because 𝑓 ± are constant
outside of a large ball).

The result immediately follows from Lemmas 5.5 and 5.3. �

6. Appendix

6.1. Proof of Lemma 2.1

Fix −3𝑁 ≤ 𝑥 ≤ 3𝑁 . In this section, we will study minimizers of equation (2.2) with boundary data
𝑣𝑁 (±1) = ± 𝑓𝑁 (𝑥).

We know that the set {𝑣𝑁 = 0} is an interval and that 𝑣𝑁 is harmonic (i.e., affine) in {𝑣𝑁 ≠ 0}
∩ (−1, 1). Hence, we can search for 𝑣𝑁 among the function 𝑣𝑁 with boundary data 𝑣𝑁 (±1) = ± 𝑓𝑁 (𝑥),
with 𝑣𝑁 = 0 on [𝑎, 𝑏], and which are linear on [−1, 𝑎] and [𝑏, 1]:

𝑣𝑁 (𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑓𝑁 (𝑥)
𝑎+1 (𝑦 − 𝑎), if − 1 ≤ 𝑦 ≤ 𝑎

0, if 𝑎 ≤ 𝑦 ≤ 𝑏
𝑓𝑁 (𝑥)
1−𝑏 (𝑦 − 𝑏), if 𝑏 ≤ 𝑦 ≤ 1.

Then

𝐻 (𝑣𝑁 ) =
( 𝑓𝑁 (𝑥))2

1 − 𝑏
+
( 𝑓𝑁 (𝑥))2

𝑎 + 1
+ 2 − (𝑏 − 𝑎).
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We will minimize 𝐺 (𝑎, 𝑏) = ( 𝑓𝑁 (𝑥))2

1−𝑏 +
( 𝑓𝑁 (𝑥))2

𝑎+1 + 2 − (𝑏 − 𝑎) given the constraint −1 < 𝑎 ≤ 𝑏 < 1.

6.1.1. Assume 𝑓𝑁 (𝑥) ≥ 1
We claim that 𝐺 (0, 0) ≤ 𝐺 (𝑎, 𝑏) for any −1 < 𝑎 ≤ 𝑏 < 1, hence the minimizer is 𝑣𝑁 (𝑥) = 𝑦 𝑓𝑁 (𝑥).

Notice that 𝐺 (0, 0) = 2( 𝑓𝑁 (𝑥))2 + 2, hence it suffices to show

2( 𝑓𝑁 (𝑥))2 + 2 ≤ ( 𝑓𝑁 (𝑥))2
(

1
1 − 𝑏

+
1

𝑎 + 1

)
+ 2 − 𝑏 + 𝑎.

This is equivalent to

𝑏 − 𝑎 ≤ ( 𝑓𝑁 (𝑥))2
(

1
1 − 𝑏

− 1 +
1

𝑎 + 1
− 1

)
= ( 𝑓𝑁 (𝑥))2

(
𝑏

1 − 𝑏
−

𝑎

𝑎 + 1

)
.

Since 𝑓𝑁 (𝑥) ≥ 1, it suffices to show that

𝑏 − 𝑎 ≤
𝑏

1 − 𝑏
−

𝑎

𝑎 + 1

which holds since −1 < 𝑎 and 𝑏 < 1.

6.1.2. Assume 0 ≤ 𝑓𝑁 (𝑥) < 1
Looking for critical points of G, one looks for solutions of

𝜕𝐺

𝜕𝑎
(𝑎, 𝑏) = −

( 𝑓𝑁 (𝑥))2

(1 + 𝑎)2 + 1 = 0,
𝜕𝐺

𝜕𝑏
(𝑎, 𝑏) =

( 𝑓𝑁 (𝑥))2

(1 − 𝑏)2 − 1 = 0,

leading to (1 + 𝑎)2 = (1 − 𝑏)2 = ( 𝑓𝑁 (𝑥))2. Now, 1 + 𝑎 = − 𝑓𝑁 (𝑥) and 1 − 𝑏 = − 𝑓𝑁 (𝑥) are impossible
(unless 𝑓𝑁 (𝑥) = 0) because −1 < 𝑎 ≤ 𝑏 < 1, so 𝑎 = 𝑓𝑁 (𝑥) − 1 and 𝑏 = 1 − 𝑓𝑁 (𝑥). Notice that 𝑎 ≤ 𝑏
is only satisfied when 𝑓𝑁 (𝑥) ≤ 1.

We have 𝐺 ( 𝑓𝑁 (𝑥) − 1, 1− 𝑓𝑁 (𝑥)) = 4 𝑓𝑁 (𝑥). Let us now show 4 𝑓𝑁 (𝑥) ≤ 𝐺 (𝑎, 𝑏) for any −1 < 𝑎 ≤

𝑏 < 1. It suffices to show

2 𝑓𝑁 (𝑥) ≤
( 𝑓𝑁 (𝑥))2

1 − 𝑏
+ 1 − 𝑏, and 2 𝑓𝑁 (𝑥) ≤

( 𝑓𝑁 (𝑥))2

𝑎 + 1
+ 1 + 𝑎,

which are both true, as the minimizers of the right-hand sides occur when 𝑏 = 1 − 𝑓𝑁 (𝑥) and 𝑎 =
𝑓𝑁 (𝑥) − 1.

Hence, the minimizer is 𝑣𝑁 (𝑦) = sgn(𝑦) (|𝑦 | − 1 + 𝑓𝑁 (𝑥))+.

6.2. Energy bounds when 𝑥 ∈ [−𝑁, 𝑁]

In this subsection, we want to provide some crucial bounds on 𝐻𝑥 (𝑢𝑁 (𝑥,−)) when 𝑥 ∈ [−𝑁, 𝑁]. Notice
that if 𝑥 ∈ [−𝑁, 𝑁], 𝑣𝑁 (𝑥, 𝑦) = sgn(𝑦) (|𝑦 | −𝛼)+. Therefore, 𝐻𝑥 (𝑣𝑁 (𝑥, ·)) = 4(1−𝛼). We want to show
that if 𝑢𝑁 is large and 𝑣𝑁 is zero, then the slice energy of 𝑢𝑁 is quantitatively bigger than that of 𝑣𝑁 .

More precisely, we have the following claim.

Claim 6.1. Let 𝑥 ∈ [−𝑁, 𝑁]\𝑋0, and assume that 𝑢𝑁 (𝑥, 𝑦) > 𝛽 > 0 (or 𝑢𝑁 (𝑥, 𝑦) < −𝛽 < 0) for some
𝑦 < 𝛼/2. Then there exists 𝜂 = 𝜂(𝛼, 𝛽) > 0 such that 𝐻 (𝑢𝑁 (𝑥, ·)) ≥ 𝐻 (𝑣𝑁 (𝑥, ·)) + 𝜂.

We first start with estimates on the energy depending on the size of the zero set of 𝑢𝑁 : call
𝐴 = {𝑦 ∈ [−1, 1] : 𝑢𝑁 (𝑥, 𝑦) = 0} and 𝛿 = |𝐴|, so 0 ≤ 𝛿 < 2. We have

𝐻 (𝑢𝑁 (𝑥, ·)) = 2 − 𝛿 +

∫ 1

−1
|𝜕𝑦𝑢𝑁 (𝑥, ·) |2𝑑𝑦

https://doi.org/10.1017/fms.2022.105 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.105


Forum of Mathematics, Sigma 25

Now, since 𝑓𝑁 (𝑥) = 1 − 𝛼 for |𝑥 | < 𝑁 , by comparing with a linear function we have

∫ 1

−1
|𝜕𝑦𝑢𝑁 (𝑥, ·) |2𝑑𝑦 ≥

(1 − 𝛼)2

inf 𝐴 + 1
+

(1 − 𝛼)2

1 − sup 𝐴
= (1 − 𝛼)2

(
1

1 − sup 𝐴
+

1
inf 𝐴 + 1

)
.

Recall that for 𝑥, 𝑦 > 0, 1
𝑥 + 1

𝑦 ≥ 4
𝑥+𝑦 , with equality only if 𝑥 = 𝑦. Applying this inequality with

𝑥 = 1 − sup 𝐴 and 𝑦 = inf 𝐴 + 1, we conclude

∫ 1

−1
|𝜕𝑦𝑢𝑁 (𝑥, ·) |2𝑑𝑦 ≥ (1 − 𝛼)2 4

2 − sup 𝐴 + inf 𝐴
=

4(1 − 𝛼)2

2 − (sup 𝐴 − inf 𝐴)
≥

4(1 − 𝛼)2

2 − |𝐴|

=
4(1 − 𝛼)2

2 − 𝛿
.

Therefore,

𝐻 (𝑢𝑁 (𝑥, ·)) ≥ 2 − 𝛿 +
4(1 − 𝛼)2

2 − 𝛿
= 4(1 − 𝛼) +

(2(1 − 𝛼) − (2 − 𝛿))2

2 − 𝛿
.

Rearranging we get by Lemma 2.1:

𝐻 (𝑢𝑁 (𝑥, ·)) ≥ 𝐻 (𝑣𝑁 (𝑥, ·)) +
(𝛿 − 2𝛼)2

2 − 𝛿
. (6.1)

Notice that, if 𝛿 ≤ 𝛼/2, equation (6.1) gives 𝐻 (𝑢𝑁 (𝑥, ·)) ≥ 𝐻 (𝑣𝑁 (𝑥, ·)) + 𝛼2

2 , hence we can assume
𝛿 > 𝛼/2.

Now, we assume there is a point (𝑥, 𝑦0) with 𝑦0 < 𝛼/2 and 𝑢𝑁 (𝑥, 𝑦0) > 𝛽 > 0 (the case where it is
negative follows similarly). We have two cases:

Case 1. Assume there exists 𝑦̃ > 𝑦0 with 𝑢𝑁 (𝑥, 𝑦̃) = 0. Let 𝐴+ = sup{𝑦 | 𝑢𝑁 (𝑥, 𝑦) = 0} be the largest
such value of y, and let 𝐴− = inf{𝑦 | 𝑦 > 𝑦0, 𝑢𝑁 (𝑥, 𝑦) = 0} be the smallest such value of y. Furthermore,
let 𝐵+ = sup{𝑦 < 𝑦̃ | 𝑢𝑁 (𝑥, 𝑦) = 0} and 𝐵− = inf{𝑦 | 𝑢𝑁 (𝑥, 𝑦) = 0}. We then have that

𝐻 (𝑢𝑁 (𝑥, 𝑦)) ≥ 2 − (𝐴+ − 𝐴− + 𝐵+ − 𝐵−) +
𝛽2

𝐴− − 𝑦̃
+

𝛽2

𝑦̃ − 𝐵+
+ (1 − 𝛼)2

(
1

𝐵− + 1
+

1
1 − 𝐴+

)
.

Using again 1/𝑥 + 1/𝑦 ≥ 4
𝑥+𝑦 we have

𝐻 (𝑢𝑁 (𝑥, 𝑦)) ≥ 2 − (𝐴+ − 𝐴− + 𝐵+ − 𝐵−) +
4𝛽2

𝐴− − 𝐵+
+

4(1 − 𝛼)2

2 − (𝐴+ − 𝐵−)
.

Let 𝑧 = (𝐴− − 𝐵+) and 𝑤 = 𝐴+ − 𝐵−. We notice that 𝑤 − 𝑧 = 𝐴+ − 𝐴− + 𝐵+ − 𝐵− ≥ 𝛿. Let
𝐺 (𝑧, 𝑤) := 2 − (𝑤 − 𝑧) + 4𝛽2

𝑧 +
4(1−𝛼)2

2−𝑤 . We want to find the minimum of 𝐺 (𝑧, 𝑤) on the do-
main (𝑧, 𝑤) ∈ [0, 2]2 ∩ {𝑤 − 𝑧 ≥ 𝛿} as this gives a lower bound for 𝐻 (𝑢𝑁 (𝑥, 𝑦)). Straight forward
calculus shows that the only critical point of 𝐺 (𝑧, 𝑤) is a local minimum at (𝑧, 𝑤) = (2𝛽, 2𝛼) which
gives the lower bound 𝐻 (𝑢𝑁 (𝑥,−)) ≥ 4(1 − 𝛼) + 4𝛽 = 𝐻 (𝑣𝑁 (𝑥,−)) + 4𝛽. On the boundary of the
domain, it is easy to see that 𝐺 (𝑧, 𝑤) = +∞ when 𝑧 = 0 or 𝑤 = 2. When 𝑤 − 𝑧 = 𝛿, we rewrite
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the offset equation above,

𝐻 (𝑢𝑁 (𝑥, 𝑦)) ≥ 2 − 𝛿 +
4𝛽2

𝑧
+

4(1 − 𝛼)2

2 − (𝑧 + 𝛿)

≥ 2 − 𝛿 − 𝑧 + 𝑧 +
4𝛽2

𝑧
+

4(1 − 𝛼)2

2 − (𝑧 + 𝛿)

≥ 4(1 − 𝛼) + 𝑧 +
4𝛽2

𝑧

+
−4(1 − 𝛼) (2 − 𝛿 − 𝑧) + (2 − 𝛿 − 𝑧)2 + 4(1 − 𝛼)2

2 − 𝛿 − 𝑧

≥ 𝐻 (𝑣𝑁 (𝑥,−)) +
4𝛽2

𝑧
+
(𝛿 + 𝑧 − 2𝛼)2

2 − 𝛿 − 𝑧
+ 𝑧

≥ 𝐻 (𝑣𝑁 (𝑥,−)) +
4𝛽2

𝑧
+ 𝑧.

Minimizing this in z we get that 𝑧 = 2𝛽, giving us the same lower bound as above, 𝐻 (𝑢𝑁 (𝑥,−)) ≥
𝐻 (𝑣𝑁 (𝑥,−)) + 4𝛽.

Case 2. Here, we have that the zero set of 𝑢𝑁 (𝑥,−) lies totally below 𝑦0, that is, if 𝐴 = {𝑦 | 𝑢𝑁 (𝑥, 𝑦) = 0},
then sup 𝐴 < 𝑦0. Calculating as above, we have

𝐻 (𝑢𝑁 (𝑥,−)) ≥ 2 − 𝛿 + (1 − 𝛼)2
(

1
inf 𝐴 + 1

+
1

1 − sup 𝐴

)
.

Note that inf 𝐴 ≤ sup 𝐴 ≤ 𝑦0 ≤ 𝛼/2 and sup 𝐴 − inf 𝐴 ≥ |𝐴| = 𝛿.
Calling 𝑥 = inf 𝐴 and 𝑦 = sup 𝐴, we obtain the bounds 𝑥 + 𝛿 ≤ 𝑦 ≤ 𝛼

2 ,−1 < 𝑥 ≤ 𝛼
2 − 𝛿. We want to

minimize the function 𝐺 (𝑎, 𝑏) = 1
𝑎+1 + 1

1−𝑏 in the domain given by those bounds, recalling that 𝛼
2 < 𝛿.

Notice that as a approaches −1, 𝐺 (𝑎, 𝑏) goes to infinity. When 𝑏 = 𝛼
2 , we minimize 𝐺 (𝑎, 𝑏) when

𝑎 = 𝛼
2 − 𝛿. Finally, when 𝑏 = 𝑎 + 𝛿, we obtain the function 𝑔(𝑎) = 1

𝑎+1 + 1
1−𝑎−𝛿 , with −1 < 𝑎 ≤ 𝛼

2 − 𝛿.
This function has a minimum at 𝑎 = − 𝛿

2 .
Case a: When 𝛼

2 − 𝛿 < − 𝛿
2 (that is, 𝛿

2 < 𝛼
2 ), one compares 𝐺 (𝛼/2 − 𝛿, 𝛼/2) = 1

1+ 𝛼
2 −𝛿

+ 1
1− 𝛼

2
with

𝐺 (−𝛿/2, 𝛿/2) = 2
1− 𝛿

2
to find

𝐺 (𝑎, 𝑏) ≥ 𝐺 (−𝛿/2, 𝛿/2) =
4

2 − 𝛿
.

In this case, we follow the computations of 6.1, recalling we are now under the case 𝛿 < 𝛼, and notice that

𝐻 (𝑢𝑁 (𝑥, ·)) ≥ 𝐻 (𝑣𝑁 (𝑥, ·)) +
(𝛿 − 2𝛼)2

2 − 𝛿
≥ 𝐻 (𝑣𝑁 (𝑥, ·)) +

(𝛿 − 2𝛼)2

2 − 𝛿
≥ 𝐻 (𝑣𝑁 (𝑥, ·)) +

𝛼2

2
.

Case b: When 𝛼
2 − 𝛿 ≤ − 𝛿

2 (that is, 𝛼
2 ≤ 𝛿

2 ), we conclude the minimum of G is attained when
𝑎 = inf 𝐴 = 𝛼

2 − 𝛿 and 𝑎 = sup 𝐴 = 𝛼
2 . Note that 1

𝑤 + 1
𝑧 = 4

𝑤+𝑧 +
(𝑤−𝑧)2

𝑤𝑧 (𝑤+𝑧) , and apply this to
𝑤 = 1 − 𝛼/2, 𝑧 = 1 + 𝛼/2 − 𝛿. Using the same arguments as above, we get that

𝐻 (𝑢𝑁 (𝑥,−)) ≥ 𝐻 (𝑣𝑁 (𝑥,−)) +
(𝛿 − 2𝛼)2

2 − 𝛿
+

(𝛼 − 𝛿)2

(1 − 𝛿) (1 − 𝛼/2) (1 + 𝛼/2 − 𝛿)
.

A straightforward calculation shows that 𝐻 (𝑢𝑁 (𝑥,−)) ≥ 𝐻 (𝑣𝑁 (𝑥,−)) + 𝛼2

104 .
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