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Abstract

The paper is concerned with periodic solutions of the difference equation un + l — 2aun

- bu*, where a and b are constants, with a > \ and b > 0. A new method is developed
for dealing with this problem and, for period lengths up to 6, polynomial equations are
given which allow the periodic solutions to be determined in a precise and practical
manner. These equations apply whether the periodic solutions are stable or unstable and
the elements of the cycle can be determined with an accuracy which is not affected by
instability of the cycle.

A simple transformation puts the equation into the form wn+i => w1 — A, where
A = a2 — a, and the detailed discussion is based on this simpler form. The discussion
includes details such as the number of cyclic solutions for a given value of A, the pattern
of the cycles and their stability. For practical purposes, it is enough to consider a
restricted range of values of A, namely - j < A < 2, although the equations obtained are
valid for A > 2.

1. Introduction

Difference equations of the form

"n+l = (2° - bun)Un ( U )

are well known in population dynamics. They can be regarded as a finite

analogue of the logistic differential equation

N'{t)=N{t){C-BN(t)}, (1.2)

where C and B are positive constants and N(t) is the population size at time /. If

we replace N\i) by (\/h){N{t + h) - N(t)}, with h > 0, and write un for
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(2] Periodic solutions of a difference equation 79

N(nh), then equation (1.1) is obtained with

la = 1 + hC > 1, b = hB > 0. (1.3)

In this case un+, — «„ has the same sign as N' for a given population size and, in
particular, the equilibrium values are the same. Indeed, equation (1.1) is the
Cauchy-Euler approximation to (1.2) and the solutions behave in the same way
for h small (Hurewicz [4]). However, the solutions of the difference equation
show a much richer variety of possible behaviour for larger values of h. In a
review article [8], May has drawn attention to these possibilities and suggested
that the difference equation provides a more appropriate model than the
differential equation in a number of practical applications. In particular, the
difference equation can have solutions which oscillate above and below the
equilibrium level TV* = C/B, whereas solutions of equation (1.2) approach N*
from one side only.

A change of scale, with vn = bun, is enough to eliminate b from the difference
equation. The solutions then depend on the value of a and the variety of
solutions available becomes greater as a increases. Periodic solutions can arise
and a good deal of information is available about the existence and stability of
these periodic solutions for different values of a (see May [8], Hoppensteadt and
Hyman [3]). For longer periods, much of this information comes from computa-
tional studies. In the present paper, algebraic equations are given which allow
the periodic solutions to be determined for periods up to 6. These equations are
valid whether the solutions are stable or unstable, although information about
the stability comes out as a by-product. For periods 5 and 6, the solutions are
only stable within narrow intervals of the parameter a and outside these
intervals iteration of equation (1.1) can give an apparent periodicity when the
initial value is not an element of a periodic solution or an apparent drift away
from periodicity when the initial value is a good approximation to an element of
a periodic solution.

Section 2 introduces a preliminary transformation which simplifies the discus-
sion. Some known results are cited and the general problem is outlined. Section
3 considers solutions of period 5 in detail, to illustrate the approach that is used.
Each periodic solution is identified by the sum of its elements, a, and, for a
given value of a, a is determined from a polynomial equation of degree 6. The
elements of the periodic solution are then found as the zeros of a polynomial of
degree 5.

Corresponding equations for solutions with periods 2, 3, 4 and 6 are sum-
marized in Section 4. In the most complicated case, for solutions with period 6,
appropriate values of a come from a polynomial equation of degree 9 and the
elements of the periodic solution are the roots of an equation of degree 6.
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80 A. Brown [31

The results for solutions with periods 3 and 4 are discussed in Section 5 and
Section 6 gives a similar discussion for solutions of periods 5 and 6. The results
are summarized in Table 1.

2. Preliminary transformation and notation

Starting from equation (1.1), with 2a > 1 and b > 0, we can obtain a simpler
form by using wn = a — bun, which gives

% + i = "I ~ * - F K ) , (2.1)

where ,4 = a2 — a. This is essentially the form used by Chaundy and Phillips
[1], who considered the convergence of the sequence {wn}. They showed that, as
n —» oo,

(i) for | >vo| > a, wn -* oo monotonically,
(ii) for |H>0| < a and \ < a < \, wn -» 1 - a,
(iii) for |wo| < a and \ < a < 2, wn oscillates finitely, with |wn| < a, and
(iv) for | vvo| < a and a > 2, wn -> oo in general.

The exceptional cases in (iv) are the values of w0 which lead to the equilibrium
values (wn = a and wn = 1 — a) or to a periodic solution. Note also that
w0 = ± a gives wn = a for n > 1. Thus, in looking for periodic solutions of
practical interest, we can impose the restriction that |wo| < a and consider only
sequences with § < a < 2, that is 0.75 < A < 2. (Periodic solutions certainly
exist for a > 2 but result (iv) indicates that they are unstable.)

For A = 2, Lorenz [7] gives an exact solution and this is of considerable help
in checking results. If we write w0 = 2 cos <j>, then wn = 2 cos(2"<» and the
condition for wn to equal w0 becomes

(2" ± 1)* = 2NTT, (2.2)

for any integer TV. It should be noted that this condition gives not only the
solutions with basic period n but also those with basic period n/p, where p is a
factor of n. (When p = n we get the equilibrium values.) These exact solutions
will be referred to later as the trigonometric solutions.

For a > j , the relationship A = a2 — a can be inverted to give

which means that we can treat A as the relevant parameter in discussing
equation (2.1) and occasionally refer back to a when comparing results with
those found by other authors. Also we can write, for m = 2, 3, . . . ,

,(*vn)}, (2.3)
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141 Periodic solutions of a difference equation 81

where F} = F. Thus Fm is the wth iterate of equation (2.1) and Fm(wn) will be a
polynomial of degree 2m in wn. Setting wn+m = wn gives a polynomial equation
of degree 2m, namely

Gm(wJ = ^ ( * O - H-, = 0. (2.4)

Since F'(wn) = 2wn, we can write

F'm = 2wm + n_,F;_, = 2"Vvm+n_1»vm+n_2 • • • wn. (2.5)

The equation Gm(wn) = 0 must hold for a solution with period m although for
m > 1 the degree of the equation can be reduced slightly. When m is a prime
number, the degree of the equation can be reduced by 2, since Gm(wn) must
include factors wn — a and wn — (1 — a), which correspond to the equilibrium
solutions. The product of these two factors, w2 — wn — A, can be removed from
Gm, leaving an equation of degree 2m — 2. When m is a composite number, with
factor/?, then Gp(wn) must be a factor of Gm(wn) and the degree of equation (2.4)
can be reduced by 2P, with the possibility of a further reduction from the
cofactor of p. Despite these reductions, the dominant effect is that the degree of
the equation increases exponentially with the length of the period and a direct
solution soon becomes impracticable.

3. Equations for solutions of period 5

For convenience, we shall denote a solution with basic period 5 as a C5
solution, with a similar notation for solutions with other basic periods. Also we
write bx, b2, b3, b4 and b5 for the elements of the solution, with

5

h5(x) = II (* - bi) = x5 - ax4 + fix3 - yx2 + Sx - e. (3.1)

This equation defines a, /?, y, S and e as symmetric functions of the b's, with full
permutational symmetry. It turns out that /?, y, S and e can be expressed in
terms of a, and so a knowledge of a defines hs(x). (Since it does not matter
which element of the C5 solution we take as bt, it is appropriate to identify h5(x)
by a symmetric function of the elements, such as a. The values of bt can be
determined by solving hs(x) = 0 once a is known.)

If we write G5(x) = (x2 - x - A)H5(x), then H5 is a polynomial in x of
degree 30 and h5 must be a factor of H5. At most we can expect six C5 solutions
for a given value of A, corresponding to a factorization of H5 into fifth-degree
polynomials of the form h5(x). To avoid carrying out this factorization explicitly,
we derive a sixth-degree equation for a and look for real roots of this equation.
A fair amount of algebra is required to derive the equation for a but solving it
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82 A. Brown [s|

for a given value of A is straightforward. For each real a we can then calculate
/?, y, 8 and e and solve h5(x) = 0.

The condition for local stability in the general case is that l-F̂ CwJI < 1 and
for our C5 solution this becomes

using equation (2.5) and noting that e = blb2b3b4by Thus the stability of the
solution is determined by the value of e.

The basic equations for the elements bt are

bi+1 = bf-A, 1 = 1,2,3,4,5, (3.3)

where b6 = bx, and we want to use these equations to express /?, y, 8 and e in
terms of a and then to form an equation for a. From the theory of equations
(Uspensky [10] or other books on the topic) any symmetrical function of the bt

can be expressed in terms of a, /?, y, 8 and e and if we can relate two
symmetrical functions by means of equations (3.3) we get an equation relating
a, /8, y, 8 and e. For example, taking summations over /' = 1 to 5 and using
equation (3.3)

2b? = I,(A + bi+l) = 5A +a, (3.4)

2 b? = 2 (A + bi+l)
2 = 5A2 + 2Aa + (5A + a). (3.5)

From the theory of equations

2 bf = a2 - 2/3 and 2 bf = a4 - 4a2p + 202 + 4ay - 48, (3.6)

and we get

a2 - 20 = a + 5A

and

a4 - 4a2P + 2/32 + 4ay - 45 = a + 5A + 2aA + 5A2. (3.7)

These examples typify the procedure, that is bf is replaced by bi+l + A wherever
it occurs and this links a symmetric function of higher degree with a function of
lower degree.

One snag which arises is that the function of lower degree may not have full
permutational symmetry, since equations (3.3) have cyclic symmetry rather than
permutational symmetry. To deal with this, it is convenient to introduce func-
tions with cyclic symmetry in the b's. If we use 2 0 to denote cyclic summation
(over 1 to 5 in this case), we can write

Px = S o btb2 = bxb2 + b2b3 + b3b4 + b4b5 + b5bt, (3.8)

Pi = So bxb3 = 20 bxb4 = p-fiv (3.9)
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[ 6 ] Periodic solutions of a difference equation 8 3

These functions arise naturally in equations such as

2 bf = 20 b,(A + b2) = Aa + fiv (3.10)

2 bf = 2 0 bx{A + b2f = 2 0 b{(A
2 + 2Ab2 + A + b3)

= A2a + 2,40, + Aa + 02. (3.11)

Combining these with standard relationships from the theory of equations gives

a3 - 3a0 + 3y = 2 0 b\ = 0, + aA, (3.12)

a5 - 5a3/? + 5a*y - 50y + 5a02 - 5aS + 5e

= 2 0 b\ = & + y*a + 2,40, + >l2a. (3.13)

Equations (3.7), (3.9), (3.12) and (3.13) suffice to express 0, y, S and e in terms of
a and fix. The detailed expressions are

2/? = a2 - a - 5A, 6y = a3 - 3a2 - 13a/l + 20,, (3.14)

248 = a4 - 6a3 + a2(3 - 22,4) + a(l&A - 6) + 45A2 - 30A + 8a£,, (3.15)

120e = a5 - 10a4 + a3(15 - 30,4) + a2(70,4 - 18) + a(149A2 - 126A - 12)

-60A + /?,(20a2- 20a - 2 4 - 52A). (3.16)

At this stage we need two more equations if we are to solve for /?, and a.
From equation (3.3),

IIo(63 - b2) = IIo(62 - b2),

where IIQ is used as a cyclic product sign, and if we take the Z>'s as distinct this
gives

1 = no(6, + b2y (3.i7)

Similarly,

1 = IU&, + 63). (3.18)

This looks promising but in fact both these equations lead to the same relation-
ship

0 = (5A2 + 5A - 1) + a(l + 4A + 2A2) + 0(1 + 3,4)

+ y(l + 2 / 4 ) + 5 + 2e. (3.19)

An equivalent form is

48e = -a 4 + (2 - SA)a3 + (10/4 - 3)a2 + (56A2 - 26A - 6)a

+ (24 - 30,4 + 15,42) - 80,(« + 1 + 2/4). (3.20)

An additional equation can be obtained in different ways, one being to use the
symmetrical function

S = aS - 5e + (a2 - 2/?)y = 2 {bfbjbk + 2bfbjbkbm), (3.21)

https://doi.org/10.1017/S0334270000000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000072


84 A. Brown [7)

where the summation is over 1 to 5 for i,j, k and m, with i ¥=j *£ k =£ m. Using
equations (3.3),

S= y(2 + 1A) + 58 + 0(1 + 4A) + 2a + 5aA + 10/4 + 0,(1 + A),

(3.22)

and equating the two expressions for 5 leads to

120e = a5 - 7a4 + (13 - 3O/4)a3 + (52/4 - 9)a2

+ (149/42 - 8SA - 6)a + ISA2 - 30/4

+ 0,(8a2 - 32a - 40 - 40/4). (3.23)

Equations (3.16), (3.20) and (3.23) can be used to eliminate e and 0,. This gives

0 = (2a - 5)K(a, A), (3.24)

where

K(a,A) =a6 + a5 + (3 - 1U)«4 + (11 - 18/4)a3 + (44 - 19/4 + 19/42)a2

+ (36 + 24A + \lA2)a + (32 - 28/4 + 40/42 - 9^3). (3.25)

The solution a = | in equation (3.24) arises because equations (3.17) and (3.18)
are satisfied when bl = b2 = b3 = b4 = b5 = j and these elements also provide
an equilibrium solution of equations (3.3) in the limiting case as a —»j. Thus the
effective equation for a is AT(a, A) = 0. For a given value of A we can look for
real roots of this equation and for each real root we evaluate 0, 0,, y, 8 and e
and obtain the elements of the C5 solution, if there is one, from h5(x) = 0. In
solving for 0,, the equation used in practice was

0,(4Oa2 - 8 - 24/4) = -2a 5 + 15a4 + (20,4 - 20)a3 + (21 - 90/4)a2

- (ISA2 - 122/4 + 6)a + (120 - 30/4 + 75/42),

(3.26)

obtained by eliminating e between equations (3.16) and (3.20).

4. Equations for periods 2, 3, 4 and 6

For C2 solutions, the results are well known (May [8], Levin and May [7]) and
require little comment. In our notation, the basic equations are, for elements bx

and b2,

b2= b2 - A a n d bx=>b\- A . (4.1)

Subtracting one from the other gives a = bx + b2 = -\, assuming ft, ¥=b2, while
adding them gives

= 1 - / 4 . (4.2)
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[8) Periodic solutions of a difference equation 85

Thus bx and b2 are solutions of the equation

0 = x2-ax + p = x2 + x + l - A (4.3)

and the condition for real, distinct roots is A > | . From equation (4.2), the
solutions are locally stable if —1 < 4(1 — A) < I, that is, for \< A < | . Levin
and May [7] note that in this case local stability implies global stability for
K| < a.

For solutions with period 3, we can write G3(x) = (x2 — x — A)H3{x), where
H3 is a polynomial of degree 6. A typical C3 solution will give a factor

h3(x) = (x - bx)(x - b2)(x - b3) = x3 - ax2 + fix - y (4.4)

and at most we can have two factors of this type in H3. Detailed analysis along
the same lines as in Section 3 gives

2/? = a2 - a - 3A and 6y = a3 - 2a2 - a(l + 1A) - 3A, (4.5)

with a satisfying the quadratic equation

a2 + a+2-A=0. (4.6)

For A <\ this equation does not have real roots but for A >\ there are real
roots and corresponding C3 solutions, obtained by solving h3(x) = 0. The 6's
satisfy a relationship

(6, + b2)(b2 + b3)(b3 + bx) = 1, (4.7)

which corresponds to equations (3.17) and (3.18) of the C5 case. The condition
for local stability for the C3 solutions is |y| < \.

For solutions with period 4, we can write GA(x) = G2(x)H4(x), where H4 is a
polynomial of degree 12. A typical C4 solution gives a factor

hA(x) = (x - b{)(x - b2)(x - b3)(x - bA) = x4 - ax3 + (5x2 - yx + S

(4.8)

and H4 can at most have three factors of this type. Thus we can expect a to
satisfy a cubic equation and the analysis confirms this. For our typical C4
solution, there are two equations similar to (4.7). They are

(6, + b3){b2 + bA) = -\ (4.9)

and

(*. + b2)(b2 + b3)(b3 + b4)(b4 + bx) = 1. (4.10)

Equation (4.9) gives

Pi = 2 0 bib2 = bxb2 + b2b3 + b3b4 + b4bt = - 1 , (4.11)

so, although the distinction between cyclic symmetry and permutational symme-
try begins to appear at this stage, it causes no difficulty. As in Section 3, we can
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use the basic equations for the C4 solution to obtain

2/3= a2- a - 4A, 6y = a3 - 3a2 - lOaA - 2, (4.12)

and

245 = a4 - 6a3 + a2(3 - \6A) + a{\2A - 14) + 24{A2 - A), (4.13)

giving {I, y and 8 in terms of a. The equation for a is / (a, A) = 0, with

J(ot,A) = a3 + (3 - 4A)a + 4. (4.14)

This equation has at least one real solution for any value of A but, as in the case
of C2 solutions, the corresponding equation h4{x) = 0 does not always have real
solutions. (A simple example of this is A = 0, a = -1 and h4(x) = xA + x3 + x2

+ x + 1.) In fact, real C4 solutions occur only for A > | . In the border-line
case, A = | , equation (4.14) has a single real root, a = -2, and the equation
h4(x) = 0 gives a C2 solution which is at the limit for local stability, a result
which agrees with the folk-lore for the subject. For the C4 solutions, the
condition for local stability is |fi| < -^.

For solutions with period 6 the algebra becomes heavier but the procedure
follows the same lines. We can write

G6(x) = (x2 - x - A)(x2 + x + 1 - A)H3(x)H6(x), (4.15)

where H6 is a polynomial of degree 54. The first three factors cover, respectively,
the equilibrium solutions, the C2 solutions and the C3 solutions, which are
included as degenerate cases in the equation wn+6 = wn. The C6 solutions come
from the remaining factor, that is from H6(x) = 0. As before, a C6 solution with
elements bx to b6 will be represented in H6 by a factor

6

h6(x) = II (x - bt) = x6 - ax5 + px4 - yx3 + 8x2 - ex + 9, (4.16)
/= l

and at most there can be nine factors of this type. In agreement with this it turns
out that a satisfies the equation L(a, A) = 0, where

L(a, A) = a9 - a8 + (2 - 24^)a7 + (14 - SA)a6

+ (49 - \6A + 144^2)a5 + (175 - \6A + l\2A2)a4

+ (140 + 136,4 + 160A2 - 256A3)a3

+ (196 - 552A + 4&0A2 - 256A3)a2

+ (448 - 4\6A - 304A2 + 256A3)a + (384,4 - 592A2 + 256A3).

(4.17)

Also, /?, y, S, e and 9 can be expressed in terms of a and /?,, where

/?, = 2 0 bxb2 = 6,Z>2 + b2b3 +b3b4 + b4b5 + b5b6 + b6by (4.18)
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The relevant equations are, for a + 1 ¥= 0,

2/3 = a2 - a - 6A, 6y = a3 - 3a2 - 16,4a + 2)3,, (4.19)

245 = a4 - 6a3 + (3 - 28/4 )a2 + (24A - 6)a + 72/4 2 - 36A + 8a/S,, (4.20)

120e = a5 - 10a4 + (15 - 40,4)a3 + (100.4 - 22)a2

+ (264.42 - 156,4 - 8)a + (8 - 32,4)

+ (20a2 - 20a - 24 - 72,4)0, + 16{(y8, + 2A - 2)/ (1 + a)},

(4.21)

7200 = a6 - l l a 5 + (35 - 50A)a* + (200A - 37)a3

+ (544.42 - 326.4 + 64)a2 - (264/12 - 424.4 + 4)a

- (80 + 136,4 - 1O8O/42 + 720/43) - 112{(y3, + 2,4 - 2)/ (1 + a)}

+ 0,{2Oa3 - 100a2 - (104 + 272/4)a - 80 - 48.4}. (4.22)
The cyclic summation /?, can be written as a rational function of a in two ways
and the equation for a comes from equating these two expressions for /?,. More
precisely, for a ¥= 3,

0 = /8,M,(a) + M2(a) and 0 = / ^ ( a ) + N2(a), (4.23)

where

M, = 5a3 + 10a2 + (9 - SA)a + 8 - 8.4, (4.24)
M2 = G)(«6 - 4 « 5 - 2a3 + 15a2 + 150a + 96)

- .4 (5a4 + 24a2 + 52a + 15) + 16A 2(a2 + a), (4.25)

JV, = 5a5 + (35 - 60/l)a4 + (49 - 148/4)a3 + (87 - 376.4 + 240A2)a2

+ (208 - 548.4 + 320^2)a + (80 - 180.4 + S0A2), (4.26)

and

N2 = ( | )a 8 - 2a7 - a6 + (30A - 3)a5

+ {36y42 + 36,4 - (127/4)}a4 + (312^2 - 126,4 - 50)a3

- {\60A3 - 856/42 + 4S2A + (y )}a 2

+ (99 - 1060/4 + 1560/42 - 640A3)a

+ (240 - 990/1 + 1140/42 - 480/43). (4.27)

Eliminating /?, from equations (4.23) gives

0 = 4(A/,AT2 - M2Ny) = 15(a + 1)(4/1 - 3)L(a,A)- (4.28)

Thus A = | , a = -1 and a = 3 have to be examined separately, but it turns out
that the equation L(a, A) = 0 covers these special cases.
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With the equations above, the C6 solutions can be explored systematically.
For a given value of A, the real roots of L(a, A) = 0 can be found to any
desired accuracy and for each real root equations (4.19) to (4.27) can be used to
evaluate /?,, fi, y, S, e and 6. The elements of the C6 solution then come from
solving h6(x) = 0. The criterion for stability is that \9\ < ^ .

For the C6 solutions, the equations corresponding to (3.17) and (3.18) are

(6, + b4)(b2 + b5)(b3 + b6) = - 1 , (4.29)

1 = Do(6, + b2) and 1 - D^i, + b3), (4.30)

where the cyclic product 1^ is now taken over 1 to 6. Equations (4.23) for /?,
come essentially from equations (4.30).

5. Discussion of C3 and C4 solutions

We can take the results for the C2 solutions as sufficiently well known not to
require further discussion and look briefly at the C3 and C4 solutions, which
illustrate some of the ideas that occur in the C5 and C6 solutions. For the C3
solutions, the equation for a, equation (4.6), has no real solutions for A < \ but,
for A > \, the equation has real, distinct roots, say a, and a2, with a, < -\ < a2.
For the critical value A = \, the equation has a double root a = - 5 . It can be
shown that there is a C3 solution corresponding to each real value of a. Thus we
get C3 solutions for A > A* = 1.75 and we can refer to A* as the critical value
for A, with a* as the corresponding double root value for a. This notation will
be used in other cases where a similar situation arises.

For A = \ and a = -\,y =\ and the corresponding C3 solution represents a
limiting case for local stability. For A >\, a, decreases and a2 increases as A
increases. Now, from equations (4.5) and (4.6), we can write

y = _ («3 + 2a2 + 3a + 1),

which gives dy/da = -(3a2 + 4a + 3) < 0. For the solution corresponding to
the a, roots, y increases with A and these solutions are unstable. On the other
hand, y decreases with A for the o2 family of solutions and there is a range of A
for which -5 < y < £ and the solutions are locally stable. It is easy to check that
the equation y = - (a3 + 2a2 + 3a + 1) = - | gives a unique real value of a
and a corresponding value for A, say A**, with local stability for A* <A <
A**.

This type of behaviour occurs for C4, C5 and C6 solutions also, in the sense
that real solutions for a mostly occur in pairs for A > A *, where A * is a critical
value of A. At A = A* there is a double root, a = a*, and the corresponding
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[12 1 Periodic solutions of a difference equation 89

solution is on the limit of stability. As A increases from A*, one family of a
values gives unstable solutions while the other family gives local stability for
A* < A < A**, where A** is an upper critical value.

For C4 solutions, a is obtained from J(a, A) = 0, with J(a, A) as defined in
equation (4.14). The equation has a negative root for all values of A but these
negative roots do not lead to real solutions for bx, b2, b3 and b4 as long as A < | .
This can be proved algebraically. For A = f, a = -2 and the equation h4(x) = 0
gives bl = b3 =\(-\ + y/2) and b2 = b4 ={-(-l - V2)> that is' a c2 solution
with Z>,62 = -\- For A>\, the negative root for a gives a real C4 solution
which is locally stable for a small range of values of A, In Table 1, where the
results are summarized, the negative roots are denoted by a, and the critical
value A* is given as 1.25, in the sense that the values of a, lead to real C4
solutions for A > A *.

Positive roots for a appear for A > A* = | {1 + (2)2/3}, with a double root for
A = A* and distinct roots a2 and a3 for A > A*. It can be shown that each
positive root leads to a real C4 solution. Taking a2 < a3, the table indicates that
the a3 values lead to locally stable solutions for A* <A <A**, while the a2

values lead to unstable solutions.
The last column of Table 1 shows values of the b, for a typical solution and it

will be observed that the solution corresponding to negative values of a is
similar to a C2 solution in its behaviour. It might be described as a split-level
C2 solution. The solutions corresponding to positive values of a show a decrease
from Z>, to bA, with a sharp increase from b4 to bx at the beginning of the next
cycle. In terms of the population problem, this represents a gradual increase in
the population over three seasons (or generations) with a catastrophic drop at
the end of that time, a pattern reminiscent of some of the "plague" outbreaks
described by Elton [2].

The critical values for the C3 solutions agree with those given by May
[8, Table 3]. For the C4 solutions, May's table could be misleading since he
records only the critical values corresponding to the a3 family of solutions. (It
should be noted that May's parameter a corresponds to twice the parameter a as
defined in this paper.)

6. Discussion of C5 and C6 solutions

Table 1 shows similar results for C5 and C6 solutions. The roots are arranged
in order of increasing magnitude, with a, <a2 < a3 < a4 <a5 <a6 when six
real, distinct roots occur in the C5 case. In particular, all six values of a were
determined for A = 2 and found to agree with the trigonometric solutions
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114 ] Periodic solutions of a difference equation 91

mentioned in Section 2. The corresponding periodic solutions also agreed with
the trigonometric solutions. A similar check was made for the C6 solutions for
A = 2.

For the C5 solutions, a computer programme was used to evaluate K(a, A)
for different values of A and it was evident that the real roots occurred in pairs
and led to real C5 solutions, except in one special case. The special case arose
for A = | and a = - 1 , which gives a minimum value of K(a, A), with K = 0 at
the minimum. For neighbouring values of A and a, K is positive and a slight
increase in A does not lead to two real, distinct solutions for a. Equation (3.26)
for /?, gives an indeterminate form at A =\ and a = -1 but it can be shown
that

0,2 = (2 + 2A)(i + 4aA + 5A2 + 28- 0,(1 + 2/4), (6-0

which leads to a quadratic equation for /?,. In the general case, this provides a
useful check on the solution for /?, /?, and S. For A =\ and a = - 1 , equation
(6.1) gives (I? + Y@\ + ^ = 0 and we get complex solutions for /?„ which
shows that this special case does not lead to a real C5 solution.

In the critical cases listed in Table I, a = a* and A = A* gives a point where
K = 0 and dK/da = 0 but dK/dA ^ 0. In practice, it was fairly easy to find
approximate solutions for a* and A * and then to improve the approximation by
iteration, using the equations K = 0 and dK/da = 0. In each case, the (a*, A*)
solution gave e = 0.03125, thus corresponding to a limiting value of e for local
stability.

The C5 solutions corresponding to a,, a2, a3 and a4 show similar characteris-
tics, in that bx > b2 > b3 but there is a jump upward from b3 to Z>4 and then a
drop to b5. In a paper by May and Oster [9] the theorem by Li and Yorke [6]
about chaotic behaviour is mentioned and there is a statement that the proof of
the theorem applies if there exists any cycle with an odd period. This claim is
doubtful since the C5 pattern above is not covered by the statement of Li and
Yorke's theorem.

For solutions of period 6, the equation for a is L(a, A) =0 , with L(a, A)
given by equation (4.17). Since L(a, A) is a polynomial of odd degree in a, it
must have at least one real zero for all values of A. This zero is indicated by a5

in Table 1 and its value decreases from zero at A = 0 to -0.6 at A = 1 and to
-0.76 at A =2. It corresponds to the a, family of roots in the C4 case and has
similar characteristics. For A < A *, the a5 values do not lead to real C6
solutions. For A = A* = 1.768529, the equation h6(x) = 0 gives a degenerate
C6 solution, with Z>, = b4 = 1.3494, b2 = b5 = 0.0525, b3 = b6 = -1.7658 and
b\b2b3 = -0.125. In fact, this is the C3 solution which is at the limit for local
stability, as indicated by the value for A** in the C3 entry in Table 1. For
A > A*, the a5 roots lead to real C6 solutions whose form is similar to that for
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C3 solutions and which are locally stable for 1.768529 <A < 1.111222. As
mentioned earlier, the stability criterion is that \9\ < ^ .

The other real roots occur in pairs and lead to real C6 solutions except in one
special case similar to that which arose when considering the C5 solutions. The
special case occurs when a = a0 = 0.597634 and A = Ao= 1.4097134. For
these values of a and A, the polynomials Mx, M2, N{ and N2, as defined in
equations (4.24) to (4.27), are all zero. This means that both equations for /?, are
indeterminate (equation 4.23) and it is easy to verify from equation (4.28) that L,
dL/da and dL/dA are all zero at (a0, Ao). As in the corresponding C5 case, L
has a minimum at (a0, AQ) and is positive for neighbouring points, so (a,,, A^) is
not a starting point for families of real roots of L(a, A) = 0.

Although equations (4.23) give indeterminate forms for /?,, there are quadratic
equations available which can be used to show that /?,, y and S are complex
when a = OQ and A = AQ. Thus the corresponding values for bv b2, • • • , b6

cannot all be real.
As for the C5 solutions, a computer programme was used to evaluate L(a, A)

for different values of A and to examine the solutions of h6(x) — 0 correspond-
ing to zeros of L(a, A). It will be seen from Table 1 that L(a, A) = 0 has at
most three real roots for A < 1.9 but additional pairs of roots appear as A
increases from 1.9 to 2.0. For ,4 = 2,

L(a, 2) = a9 - a8 - 46a7 - 2a6 + 593a5 + 591a4

-996a3 - 1036a2 + 448a + 448
= (a2 - 1)(«3 - 21a - 28)(a2 + pa - 4){a2 - (p + l)a - 4),

(6.2)

where p is the positive root of p2 + p = 16. From this, L(a, 2) = 0 gives nine
real roots which are, in ascending order,

a, =-4.43, a2 = -3.65, a3 =-1.49, a4 = -1.00, a5 =-0.76,

a6 = 0.90, a7 = 1.00, a8 = 5.14, a9 = 5.29.

In terms of the trigonometric solutions in Section 2, the corresponding values of
(j> are, respectively, 22T7-/65, 22W/63; 10^/63, 10T7/65; 14W/65; 6W/65, 6W/63;

2TT/63; 2ir/65. Thus the <f> values pair off in the same way as the a values in
Table 1, with the larger 4> value in each pair corresponding to the unstable a
sequence. For a2, a3, a7 and a8, 0 = + 1 and this checks that these are the a
sequences for which 0 increases as A increases. For au a4, a5, a6 and a9, 9 = - 1 ,
which also agrees with the conclusions about stability. A similar check can be
used for the C3, C4 and C5 entries in Table 1.

Typical C6 solutions are shown in the last column of Table 1. For a, and a2,
the solution oscillates above and below the equilibrium value w = 1 — a, in the
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1161 Periodic solutions of a difference equation 93

manner of a C2 solution but with three distinct levels on either side of the
equilibrium level. For a3, a4, a6 and a7, the solutions show the same type of
behaviour, with a decrease from bt to b4, a partial recovery at b5 and a sharp
drop to b6. For ag and a9, the typical solution shows a decrease from bt to b6,
followed by a sharp increase to start the next cycle. As mentioned before, the
solutions corresponding to a5 are reminiscent of C3 solutions.

For the C5 and C6 solutions, the critical values agree with those given by
May [8, Table 3], although May's table does not have an entry corresponding to
the "solitary" root, a5, in his values for cycles with period 6.

7. Conclusion and acknowledgments

This work arose from looking at papers in which it was hard to tell what had
been proved and what had been deduced from numerical simulation, so to some
extent the aim was to set up equations which could be regarded as exact. The
idea of "factorizing" the equation Hn(x) = 0 emerged from this and it will be
seen that for n = 4, 5 and 6 it results in a considerable simplification of the
original problem. To continue the method to Cl solutions would involve finding
an equation of degree 18 for a and an equation of degree 7 for the elements of
the corresponding periodic solution. It seems likely that this could be done
without any additional technical problems but it would require a fair amount of
time and patience.

The original draft of the paper contained some additional algebraic details but
at the suggestion of the referees the paper has been reduced in length and
corroboration of some less important points has been omitted.

The work on C5 and C6 solutions was completed during study leave at the
University of Southampton and I am grateful to the Faculty of Mathematical
Studies there for the facilities it provided.
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