Manabu Yuasa and Gen'ichiro Hori
Department of Astronomy, University of Tokyo, Bunkyo-ku, Tokyo ll3, Japan

1. INTRODUCTION

A new approach to the planetary theory is examined under the following procedure: 1) we use a canonical perturbation method based on the averaging principle; 2) we adopt Charlier's canonical relative coordinates fixed to the Sun, and the equations of motion of planets can be written in the canonical form; 3) we adopt some devices concerning the development of the disturbing function. Our development can be applied formally in the case of nearly intersecting orbits as the Neptune-Pluto system. Procedure 1) has been adopted by Message (1976).

2. CANONICAL RELATIVE COORDINATES FIXED TO THE SUN

We consider $n+1$ celestial bodies. Let their masses be $m_{i}(i=0, \ldots, n)$ and their coordinates referred to the center of mass be $\vec{\rho}_{i}(i=0, \ldots, n)$. Then the Hamiltonian F of this system can be written as

$$
\begin{equation*}
F=-T+V=-\frac{1}{2} \sum_{i=0}^{n} m_{i} \stackrel{\rightharpoonup}{p}_{i}^{2}+\sum_{i>j \geq 0} \frac{k^{2} m_{i} m_{j}}{\rho_{i j}} \tag{1}
\end{equation*}
$$

where T, V, k^{2}, and $\rho_{i j}$ represent the kinetic energy, the potential energy, the gravitational constant of Gauss, and $\left|\vec{\rho}_{i}-\vec{\rho}_{j}\right|$ respectively. We regard m_{0} as the $S u n$ and $m_{i}(i=1, \ldots, n)$ as the planets. The relative coordinates $\vec{r}_{i}(i=0, \ldots, n)$ fixed to the sun are introduced by putting $\vec{r}_{i}=\vec{\rho}_{i}-\vec{\rho}_{0}(i=0, \ldots, n)$. Next, we introduce the momenta $\vec{p}_{i}(i=1, \ldots, n)$ which are conjugate to the coordinates $\overrightarrow{\mathbf{r}}_{i}(i=1, \ldots, n)$ as follows (Charlier 1902):

$$
\begin{equation*}
\vec{p}_{i}=\frac{\partial T}{\partial \dot{q}_{i}}=\frac{\partial}{\partial \vec{r}_{i}} \frac{1}{2} \sum_{i=0}^{n} m_{i} \dot{\bar{\phi}}_{i}^{2}=m_{i} \stackrel{\stackrel{\rightharpoonup}{p}}{i} \tag{2}
\end{equation*}
$$

Then the Hamiltonian of the system is given by

$$
\begin{equation*}
F=\sum_{i=1}^{n}\left\{-\frac{1}{2} \frac{\vec{p}_{i}^{2}}{m_{i}^{\prime}}+\frac{\mu_{i} m_{i}^{\prime}}{r_{i 0}}\right\}+\sum_{i>j \geqslant 1}\left(-\frac{\vec{p}_{i} \cdot \vec{p}_{j}}{m_{0}}+\frac{k^{2} m_{i} m_{i}}{r_{i j}}\right) \tag{3}
\end{equation*}
$$

where $m_{i}{ }^{\prime}=m_{0} m_{i} /\left(m_{0}+m_{i}\right), \mu_{i}=k^{2}\left(m_{0}+m_{i}\right)$, and $r_{i j}=\left|\vec{r}_{i}-\vec{r}_{j}\right|$.
Let the quantities $a_{i}, e_{i}, I_{i}, \ell_{i}, \omega_{i}$, and Ω_{i} be the semi-major axis, the eccentricity, the inclination, the mean anomaly, the argument of perihelion, and the longitude of the node of the motion of the i-th planet around the $S u n$. Then the canonical variables $L_{i}, G_{i}, H_{i}, \ell_{i}, g_{i}$, and h_{i} can be defined as

$$
\begin{array}{ll}
L_{i}=m_{i} \cdot \sqrt{\mu_{i} a_{i}}, G_{i}=L_{i} \sqrt{1-e_{i}^{2}}, & H_{i}=G_{i} \cos I_{i} \tag{4}\\
\ell_{i}=\text { mean anomaly, } g_{i}=\omega_{i} & h_{i}=\Omega_{i} .
\end{array}
$$

The equations of motion are

$$
\begin{equation*}
\frac{d\left(L_{i}, G_{i}, H_{i}\right)}{d t}=\frac{\partial F}{\partial\left(\ell_{i}, g_{i}, h_{i}\right)}, \frac{d\left(\ell_{i}, g_{i}, h_{i}\right)}{d t}=-\frac{\partial F}{\partial\left(L_{i}, G_{i}, H_{i}\right)} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
F=F_{0}+F_{1}, \quad F_{0}=\sum_{i=1}^{n} \frac{\mu_{i}{ }^{2} m_{i}{ }^{\prime} 3}{2 L_{i}^{2}}, \quad F_{1}=\sum_{i>j \geq 1}\left(-\frac{\vec{p}_{i} \cdot \vec{p}_{j}}{m_{0}}+\frac{k^{2} m_{i} m_{j}}{r_{i j}}\right) \tag{6}
\end{equation*}
$$

The function F_{1} is the disturbing function and to be represented by L_{i}, $G_{i}, H_{i}, l_{i}, g_{i}$, and h_{i}.
3. DEVELOPMENT OF THE DISTURBING FUNCTION IN TERMS OF THE INCLINATIONS

We consider only two planets m_{1} and m_{2}. If v_{1} and v_{2} are the true longitudes of the two planets, the mutual distance r_{12} is given by

$$
\begin{align*}
r_{12}^{2} & =r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2}\left[c_{1}^{2} c_{2}^{2} \cos \left(v_{1}-v_{2}\right)+c_{1}^{2} s_{2}^{2} \cos \left(v_{1}+v_{2}-2 \Omega_{2}\right)+s_{1}^{2} c_{2}^{2} \cos \left(v_{1}+v_{2}-2 \Omega_{1}\right)\right. \\
& +s_{1}^{2} s_{2}^{2} \cos \left(v_{1}-v_{2}-2 \Omega_{1}+2 \Omega_{2}\right)+2 c_{1} s_{1} c_{2} s_{2}\left\{\cos \left(v_{1}-v_{2}-\Omega_{1}+\Omega_{2}\right)\right. \tag{7}\\
& \left.\left.-\cos \left(v_{1}+v_{2}-\Omega_{1}-\Omega_{2}\right)\right\}\right]
\end{align*}
$$

where $c_{i}=\cos \left(I_{i} / 2\right), s_{i}=\sin \left(I_{i} / 2\right),(i=1,2)$. At this stage we define

$$
\begin{equation*}
q \equiv\left(r_{1}^{2}+r_{2}^{2}\right) / 2 r_{1} r_{2}\left(c_{1} c_{2}-s_{1} s_{2}\right)^{2} \tag{8}
\end{equation*}
$$

and the inverse of the mutual distance is expressed as

$$
\begin{equation*}
\frac{1}{r_{12}}=\frac{1}{\sqrt{2 r_{1} r_{2}}\left(c_{1} c_{2}-s_{1} s_{2}\right)}\left[q-\cos \left(v_{1}-v_{2}\right)-\frac{\delta}{\left(c_{1} c_{2}-s_{1} s_{2}\right)^{2}}\right]^{-1 / 2} \tag{9}
\end{equation*}
$$

with

$$
\begin{align*}
\delta & =s_{1}^{2} c_{2}^{2} \cos \left(v_{1}+v_{2}-2 \Omega_{1}\right)+c_{1}^{2} s_{2}^{2} \cos \left(v_{1}+v_{2}-2 \Omega_{2}\right)+s_{1}^{2} s_{2}^{2} \cos \left(v_{1}-v_{2}-2 \Omega_{1}+2 \Omega_{2}\right) \\
& +2 c_{1} s_{1} c_{2} s_{2}\left\{\cos \left(v_{1}-v_{2}-\Omega_{1}+\Omega_{2}\right)-\cos \left(v_{1}+v_{2}-\Omega_{1}-\Omega_{2}\right)\right\} \tag{10}\\
& +\left(2 c_{1} s_{1} c_{2} s_{2}-s_{1}^{2} s_{2}^{2}\right) \cos \left(v_{1}-v_{2}\right)
\end{align*}
$$

By the binomial expansion of the equation (9), $1 / r_{12}$ is written in the form

$$
\begin{align*}
\frac{1}{r_{12}} & =\frac{1}{\sqrt{2 r_{1} r_{2}}\left(c_{1} c_{2}-s_{1} s_{2}\right)} \sum_{n=0}^{\infty}(-1)^{n}\binom{-1 / 2}{n}\left[\frac{\delta}{\left(c_{1} c_{2}-s_{1} s_{2}\right)^{2}}\right]^{n} \times \\
& \times\left[q-\cos \left(v_{1}-v_{2}\right)\right]^{-(n+1 / 2)} . \tag{11}
\end{align*}
$$

Furthermore, we expand $\left[q-\cos \left(v_{1}-v_{2}\right)\right]^{-(n+1 / 2)}$ by the $2-n d$ kind associated Legendre function Q_{μ}^{ν}. And we get

$$
\begin{equation*}
\frac{1}{r_{12}}=\sum_{n=0}^{\infty} \sum_{j=-\infty}^{\infty} \frac{2^{n}}{n!}\left(c_{1} c_{2}-s_{1} s_{2}\right)-2 n_{\delta} n_{\beta_{n+1 / 2}}(j)(q) \operatorname{cosj}\left(v_{1}-v_{2}\right) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{n+1 / 2}^{(j)}=\frac{(-1)^{n}}{2^{n_{\pi}}} \frac{\left(q^{2}-1\right)^{-n / 2}}{\sqrt{r_{1} r_{2}}\left(c_{1} c_{2}-s_{1} s_{2}\right)} Q_{j-1 / 2}^{n}(q) \tag{13}
\end{equation*}
$$

These expansions converge regardless of the values of r_{1} and r_{2} except for the following two cases: l) the case when two planets collide; 2) the case when $\Omega_{1}-\Omega_{2}=\pi, v_{1}=v_{2}, v_{1}+v_{2}-\Omega_{1}-\Omega_{2}=0$, and $r_{1}=r_{2}$. Consequently, above development can be applied formally even in the case of nearly intersecting orbits as the Neptune-Pluto system.
4. DEVELOPMENT OF THE DISTURBING FUNCTION IN TERMS OF THE ECCENTRICITIES

We use Newcomb's operator and $r_{1}, r_{2}, v_{1}, v_{2}$ can be expressed in terms of $a_{1}, a_{2}, e_{1}, e_{2}, \lambda_{1}, \lambda_{2}, \ell_{1}, \ell_{2}$, where λ_{1}, λ_{2} are the mean longitudes. For the simplicity of notations, we put

$$
\begin{align*}
\frac{2 n}{n!}\left(c_{1} c_{2}-s_{1} s_{2}\right)-2 n_{\delta} n_{\operatorname{cosj}}\left(v_{1}-v_{2}\right) & =\sum_{Y} C_{n, Y}\left(I_{1}, I_{2}\right) \cos \left[j\left(v_{1}-v_{2}\right)+y_{1} v_{1}\right. \tag{14}\\
& \left.+y_{2} v_{2}+y_{3} \Omega_{1}+y_{4} \Omega_{2}\right]
\end{align*}
$$

where the summation is taken in all the combinations of $\mathrm{y}_{1}, \ldots, \mathrm{Y}_{4}$ appeared. Then the inverse of the mutual distance can be expanded as follows:

$$
\begin{align*}
\frac{l}{r_{12}} & =\sum_{n=0}^{\infty} \sum_{j=-\infty}^{\infty} \sum_{y} k_{1} \sum_{=-\infty}^{\infty} k_{2}=\sum_{-\infty}^{\infty} s_{1}=\left|k_{1}\right|+0,2, \ldots s_{2} \sum_{=}^{\sum}\left|k_{2}\right|+0,2, \ldots C_{n, y}\left(I_{1}, I_{2}\right) \times \\
& \times \Pi_{k_{1}}^{s_{1}}\left(D_{1} \mid j+y_{1}\right) \Pi_{k_{2}}^{s_{2}}\left(D_{2} \mid-j+y_{2}\right) e_{1}^{s_{1}} e_{2}^{s_{2}} \beta_{n+1 / 2}^{(j)}\left(q_{0}\right) \times \tag{15}
\end{align*}
$$

$$
\times \cos \left[j\left(\lambda_{1}-\lambda_{2}\right)+y_{1} \lambda_{1}+y_{2} \lambda_{2}+y_{3} \Omega_{1}+y_{4} \Omega_{2}+k_{1} \ell_{1}+k_{2} \ell_{2}\right],
$$

where $D_{1}=a_{1} \cdot \partial / \partial a_{1}, D_{2}=a_{2} \cdot \partial / \partial a_{2}, q_{0}=\left(a_{1}^{2}+a_{2}^{2}\right) / 2 a_{1} a_{2}\left(c_{1} c_{2}-s_{1} s_{2}\right)^{2}$, and $\Pi_{k_{1}}^{S_{1}}\left(D_{1} \mid j+y_{1}\right), \Pi_{k_{2}}^{S_{2}^{2}}\left(D_{2} \mid-j+y_{2}\right)$ are Newcomb's operators.
5. EVALUATIONS OF $\beta_{n+1 / 2}^{(j)}\left(q_{0}\right)$

From the equations (11) and (12) we get

$$
\begin{align*}
& \frac{(2 n-1)!!}{2^{2 n} \sqrt{2 a_{1} a_{2}}\left(c_{1} c_{2}-s_{1} s_{2}\right)}\left[q_{0}-\cos \left(v_{1}-v_{2}\right)\right]^{-(n+1 / 2)} \tag{16}\\
& =\beta_{n+1 / 2}^{(0)}+2 \sum_{j=1}^{\infty} \beta_{n+1 / 2}^{(j)} \operatorname{cosj}\left(v_{1}-v_{2}\right),
\end{align*}
$$

and we can determine the values of $\beta_{n+1 / 2}^{(j)}$ by the numerical Fourier analysis if $a_{1}, a_{2}, c_{1}, c_{2}, s_{1}, s_{2}$ are given. On the other hand, the equation (13) and the recurrence formulas of $Q \mu$ give rise to the recurrence formulas of $\beta, D_{1} \vee \beta$, and $D_{2} \vee \beta$. These recurrence formulas are of much help for the evaluation of β.

The practical development of the disturbing function has been performed to the fourth order of the eccentricity and the inclination. As an application, we are trying to study the Neptune-Pluto system by a canonical perturbation method.

REFERENCES

Charlier, C. L. : 1902, "Die Mechanik des Himmels", Erster Band, pp. 234-237.
Message, P. J. : 1976, in "Long-Time Predictions in Dynamics", ed. V. Szebehely and B. D. Tapley (D. Reidel Publishing Company), pp. 279-293.

