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1. Introduction. As is well known in the theory of graphs a tree is a 
connected graph without cycles. Many characterizing properties of trees are 
known (1), for example the cyclomatic number is equal to zero, which is also 
equal to p — 1, where p is the number of connected components of the graph. 
The graphs with cyclomatic number equal to p — 1 are defined here as tree-
equivalent graphs. A tree is always a tree-equivalent graph but not conversely. 
The properties of tree-equivalent graphs are studied here. It is shown that by 
an operation on tree-equivalent graphs one can obtain a tree without disturbing 
the set of local degrees. The existence of trees with given local degrees follows 
as a corollary of the existence of tree-equivalent graphs. 

2. Definitions. 

2.1. An unoriented graph G is defined whenever we have a set X of abstract 
elements and a set U of edges which are undirected curves joining some pairs 
of distinct elements of X. I t is denoted by (X, U). 

2.2. If the maximum number of edges appearing in a graph which join the 
same two vertices is S, then the graph is called an S-graph. 

2.3. For any vertex a, the subgraph of all vertices and edges that can be 
arrived at by travelling along the edges of the graph, including a, is called a 
connected component of G. 

2.4. The number dt of edges incident to a vertex xt of G is called the local 
degree of G at xt. 

2.5. A cycle is a sequence of edges (ulf . . . , uq) such that 
(1) uk is attached to uk-i by one of its extremities and to uk+i by the other 

for 1 < k < qy 

(2) the initial extremity of U\ coincides with the terminal extremity of uqy 

(3) no edge appears twice. 

2.6. The cyclomatic number K{G) of an 5-graph G is defined to be m — n + p 
where m is the number of edges, n is the number of vertices, and p is the number 
of connected components. This number also has the property that K(G) 
linearly independent cycles exist in the graph. 

2.7. Let {Ci}, i = 1, 2, . . . , r, and {Tj},j = 1, 2, . . . , s, be the p connected 
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components of an 5-graph G without isolated vertices and let 5 > 1. If each 
d has at least one cycle, if each Tj is a tree, and if 

K(G) = p-l( = r + s-l), 

then G is said to be a tree-equivalent graph. 

3. Properties of tree-equivalent graphs. 

3.1. A tree-equivalent graph does not have isolated vertices (by definition). 

3.2. The local degrees (du d2, . . . , dn) of a tree-equivalent graph satisfy the 
following: 

(1) 1 < dt < n - 1, 
(2) Zidt = 2(n- 1). 

Proof. Since G is tree-equivalent, we have 

m = k(G) + n — p = (p — 1) + n — p — n — 1 ; 

but ^2idi = 2m, since each edge contributes one count each to two of the d t. 
Hence E ^ z = 2(n - 1). 

By 3.1, each dt > 1. There are exactly n — 1 edges in G, since m = n — 1 
and almost n — 1 edges can be incident with any vertex. Therefore dt < w — 1. 

3.3. 4̂ graph for which the above property 3.2 holds is a tree-equivalent graph. 

We need only prove that K(G) = m — n-\-p=p — 1, which is obviously 
true, and that there is at least one connected component which is a tree. But 
if each connected component contained a cycle, then each component would 
contain at least as many edges as vertices, whence it would follow that m > n, 
contradicting the hypothesis that m = ^^tdi=n — 1. Therefore G has at 
least one component which is a tree, i.e. s > 1. 

4. Existence of tree-equivalent graphs. 

THEOREM 4.1. A graph with n vertices with prescribed non-zero local degrees 
which add up to 2 (n — 1) always exists. 

By 3.3, the existence of such a graph is equivalent to the existence of a 
tree-equivalent graph. For every tree-equivalent graph let us construct an 
incidence matrix A = (atj) of n — 1 rows and n columns such that 

__ (l if the edge i is incident to the vertex Xj, 
13 \ 0 otherwise; 

here i = 1,2, . . . , n — 1 are the numbered edges of the graph and {x;}, 
j = 1,2, ... ,n, are the vertices of the graph. The existence of a tree-equivalent 
graph is equivalent to the existence of an incidence matrix A with each row sum 
equal to two and the j th column sum equal to dj. Thus we have to show the 
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existence of a matrix of O's and l 's with prescribed row and column sums. 
This is a particular case of a problem solved by Ryser for which we refer to (2). 
From the majorization conditions given therein, it follows in our case that our 
matrix always exists, which in turn implies the existence of a tree-equivalent 
graph with prescribed local degrees. 

THEOREM 4.2. If p > 1, a tree-equivalent graph p — 1 components on n vertices 
can be obtained from a tree-equivalent graph of p components and n vertices 
without altering the local degrees of the graph. 

Proof. Let G be a tree-equivalent graph with p (>1) components. Then G 
has a component which contains a cycle. Let u be an edge of this cycle and v 
be a pendant edge of a component Tt which is a tree. If u joins the vertices 
a and b, and v joins c and d, then the removal of u and v and the insertion of 
an edge (a, c) and an edge (b, d) converts G into a new graph with the same 
local degrees and p — 1 components. This graph still remains a tree-equivalent 
graph by 3.3. 

COROLLARY 4.1. A tree with prescribed non-zero local degrees (d\, d2, . . . , dn) 
exists if 

Ttidt = 2(n - 1). 

Proof. Given that dt are non-zero and that ^ dt = 2(n ~ 1), a graph with 
local degrees dt exists by Theorem 4.1 and it is tree-equivalent by 3.3. There
fore by Theorem 4.2, one can reduce the number of connected components 
step by step until one obtains a tree-equivalent graph with one component 
and local degrees du that is, a tree with these local degrees. 

I acknowledge with thanks the suggestions of the referee for the improvement 
of the paper. 
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